
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Optimizing Staggered Multigrid for Exascale
performance

Venkitesh Ayyar,𝑎,∗ Richard Brower,𝑎 M.A. Clark,𝑏 Mathias Wagner𝑏 and Evan
Weinberg𝑏

𝑎Boston University, Boston, MA 02215, USA
𝑏NVIDIA Corporation, Santa Clara, CA 95051, USA

E-mail: vayyar@bu.edu

Adaptive multi-grid methods have proven very successful in dealing with critical slow down for
the Wilson-Dirac solver in lattice gauge theory. Multi-grid algorithms developed for Staggered
fermions using the Kähler-Dirac preconditioning [9] have shown remarkable success. In this work,
we discuss the performance of this staggered multi-grid algorithm in four dimensions. We also
demonstrate that offloading some components of a multi-shift solve to a multi-grid solver leads to
a significant performance improvement in an existing MILC spectrum workflow on the Summit
and Selene supercomputers.

The 39th International Symposium on Lattice Field Theory,
8th-13th August, 2022,
Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:vayyar@bu.edu
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

1. Introduction

The era of exascale computing has finally arrived. After years of improvement and innovation
on the hardware level, as well as innovations in software and algorithms which more optimally utilize
such hardware, we are now capable of running calculations that exceed one exaflop of computing
throughput. This accomplishment is indicative of a commensurate boost in all computing workflows,
and by extension a growth in scientific challenges we can pursue with a computational approach.

Unfortunately, raw flops do not alone unlock super-linear growth in the number of problems we
can tackle. Cutting-edge problems of interest do not scale trivially with the increase in computing
power. The path towards more precise computational science suffers from a phenomena known as
critical slowing down [4], where the cost of meaningful computation scales with a higher exponent
than the naïve arithmetic complexity of the algorithms in use.

One of the clearest indicators of critical slowing down in lattice gauge theory simulations is
non-trivial increases in the costs of one key kernel in most workflows: the iterative solution of the
Dirac linear equation as part of propagator calculations and (rational) hybrid Monte Carlo (RHMC)
evolution [14, 16]. In the approach to the continuum limit, the number of iterations required to solve
the Dirac linear system to a fixed tolerance grows super-linearly. This is best understood in terms
of the non-linear increase in the condition number of the system as the lattice spacing 𝑎 decreases.

There are many methods which stave off but do not solve critical slowing down. One is block-
Krylov solvers, which improve reuse across multiples solves but do improve the condition number
of the matrix [11, 23]. A second is eigenvalue deflation [20] and improvements thereof in [13, 27],
to name a few, which improves the condition number of the matrix by performing an exact solve of
the low space. This approach thus shifts the issue of critical slowing down to the eigensolve. The
one approach that solves critical slowing down in a scalable fashion is a multi-grid (MG) algorithm.

Adaptive multi-grid preconditioning with geometric aggregation have shown remarkable suc-
cess in mitigating critical slowing down in lattice gauge theory applications. The first success was
with the Wilson and Wilson-clover formulations [3, 7, 25] (complimented by the similar algorithm
of inexact deflation in [22]). There have also been successful extensions to twisted-mass and -clover
fermions [18, 26], as well as chiral domain wall fermions [6, 8].

A remaining challenge is the development and deployment of an MG algorithm for Kogut-
Susskind, or staggered, fermions [19]. The mathematical framework of a staggered MG algorithm
was developed in two dimensions in [9]. In this work, we describe the extension and implementation
of an MG algorithm for staggered fermions in four dimensions. We describe the details of the
implementation and share performance on the Summit Supercomputer at Oak Ridge National
Laboratory, as well as the Selene Supercomputer at NVIDIA. Last, we share thoughts on future
directions in the development and optimal implementation of multi-grid solvers.

2. Multi-grid methods for Staggered fermions

2.1 Multi-grid algorithms
At a high level, the idea of an MG approach is to solve, in tandem, modes at all scales in a

given Dirac operator. We solve this as a K-cycle, where the MG preconditioner is the preconditioner
in an outer (flexible) Krylov solver; here we use generalized conjugate residual (GCR) [2]. The
preconditioner is implemented as follows: (1) pre-smooth the current residual, (2) “restrict,” or

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

aggregate, the current residual with a restriction operator to the coarser level, (3), iterate on the
coarser level linear system to some fixed tolerance, (4), “prolongate” the error correction from the
coarser level to the fine level, updating the solution, and (5) post-smoothing the new residual. This
is extended to a recursive algorithm by applying an MG preconditioner to the iterative solve on the
coarser level. This is described in greater detail in [9].

The restriction operator 𝑅 is formed from block-orthonormalized near-null vectors, which are
vectors rich in low modes. These vectors are generated via inverse iterations on the homogeneous
system, 𝐴 ®𝜙0 = ®0, where ®𝜙0 is seeded with random numbers. After a large number of iterations the
solution vector will be rich in low modes. Each near-null vector is chirally doubled, preserving
a form of “𝛾5”-Hermiticity on the coarse level; the staggered chiral projector is defined in the
following subsection. The process of block orthonormalization, where the block size defines the
aggregation factor, increases the span of the fine space which is preserved on a coarser level.

Given a restriction operator 𝑅, we define the projection operator 𝑃 via a Galerkin prescription,
𝑃 = 𝑅†. The coarse operator is explicitly constructed as �̂� = 𝑅𝐴𝑃 where the ·̂ notation denotes the
“coarsened” version.

2.2 Staggered fermion and Kähler-Dirac preconditioning fundamentals
The lattice staggered fermion formulation [19] trades some residual fermion doubling for an

exact lattice chiral symmetry and is equivalent to the Kähler-Dirac formulation [5] in the free
field, where there is a one-to-one equivalence between the 2𝑑 hypercube of degrees of freedom for
staggered fermions and the 2𝑑 degrees of freedom for Kähler-Dirac fermions. There is an exact
chiral symmetry generated by 𝛾5 ⊗ 𝜏5 = 𝜖 (𝑥) = (−1)𝑥+𝑦+..., where 𝛾 and 𝜏 denote the spin and taste
space, respectively, and thus the chiral projector is defined by 1

2 (1 ± 𝜖 (𝑥)). The eigenspectrum of
the staggered operator is maximally anti-Hermitian indefinite up to a real mass shift.

The benefits of the physics of the staggered fermion turns into a challenge for staggered fermion
MG. In four dimensions, the four-fold increase in the number of degrees of freedom of a staggered
fermion relative to a Wilson fermion increases the size of the necessary near-null space, with a
commensurate increase in computational complexity. More fundamental is that the general adaptive
MG algorithm described above, which is successful for the Wilson fermion formulation, fails due
to spurious small eigenvalues in the coarsened staggered operator.

It was found in [9] that there is a solution to this problem: a so-called Kähler-Dirac (KD) pre-
conditioner, which deforms the eigenspectrum of the staggered operator to a form more amendable
to MG preconditioning. We consider the unimproved staggered Dirac operator as a sum of two
contributions: the hopping terms that stay within the 2𝑑 hypercube, denoted 𝐵, and the hopping
terms that connect 2𝑑 hypercubes, denoted 𝐶. In the language of the equivalent Kähler-Dirac
operator, these are the internal degrees of freedom as opposed to the matrix elements connecting
sites. The operator can be written as:

𝐷stag = (𝐵 + 𝑚) + 𝐶, (1)

which constitutes a dual-decomposition. In the free field, up to a scaling, the terms (𝐵 + 𝑚)
and 𝐶 are each anti-Hermitian (up to a real mass shift). Each obeys an identical 𝜖-Hermiticity. 𝐵†𝐵

and 𝐶†𝐶 are proportional to the identity matrix, implying they are each separately unitary.
The matrix 𝐵 is block-local: in the free-field case, each hypercube contains 2𝑑 independent sites,

or 2𝑑 degrees of freedom. This makes taking the inverse of 𝐵 trivial. Kahler-Dirac preconditioning

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

(a) Representative spectrum of the free-field
staggered and KD-preconditioned operator in

two dimensions [9].

(b) General schematic
of the staggered MG

algorithm.

Figure 1: On the left, a comparison of the spectrum of the KD-preconditioned and non-preconditioned
staggered operator. The application of the KD preconditioner converts the staggered spectrum into an
overlap-esque spectrum. On the right, a visual representation of the structure of the five-level staggered-type
MG algorithm. Of note, the second level is the KD-preconditioned operator which still acts on the fine space,
and the fifth level is a deflation space.

involves left- (or right-)multiplying 𝐷stag with 𝐵−1 to obtain

𝐴 = 𝐵−1𝐷stag = I + 𝐵−1𝐶 = I + (𝜖𝐵)−1 (𝜖𝐶) . (2)

Since 𝜖𝐵 and 𝜖𝐶 are each unitary in the free field, their product is also unitary, and thus the
final Kähler-Dirac preconditioned operator has a shifted-circular, a.k.a. overlap-esque, structure.
This is shown on the left-hand side of Fig. 1. We perform an MG aggregation on this operator.

The observations we make here break down in the interacting case as neither operator is unitary.
Further, in the four-dimensional case, the more relevant operator is the HISQ [17, 24] operator. Here
the dual decomposition breaks down due to the introduction of a Naik term. However, everything
noted above remains approximately true in these cases, so we put our blinders on and carry on with
the KD-preconditioned operator.

2.3 Kähler-Dirac preconditioned multigrid

We now describe the high-level implementation of our algorithm. A complementary sketch of
the process is given in the right-hand side of Fig. 1. First, our outer-most operator is the full HISQ
stencil containing the fat and long links. The next recursive level is the Kähler-Dirac preconditioned
operator. This is an abuse of language since this next “level” does not include a thinning of degrees
of freedom. We nonetheless insert it into the same algorithmic structure—including a pre- and
post-smoother surrounding it—and denote this level as “pseudo-fine” to reflect its nature.

Subsequent levels are constructed as expected: generate near-null vectors, perform a chiral
doubling by applying 1

2 (1 ± 𝜖 (𝑥)), perform a block orthonormalization, construct a prolongator,
restrictor, and coarse operator, then recurse. As described in previous publications, we take the non-
traditional approach of generating near-null vectors with the coarse operator and then coarsening
the block-preconditioned version of said operator. In general this improves the condition number
on each level, analogous to even-odd preconditioning for the Wilson-clover operator [15].

As a final optimization, we perform a deflation with the low-lying singular values on the coarsest
level. This is inspired by deflation of a Hermitian positive definite operator in [28], however, the key

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

innovation in the QUDA library is using singular value decomposition deflation instead. The use of
deflation in the workflow is an acknowledgement that recursing to an arbitrarily small problem size
can be inefficient. This means that we do not have a perfect MG algorithm, and there is residual
critical slowing down on the coarsest level. The deflation addresses this, with the benefit that
because it is a much smaller operator, generating the eigenspace is more efficient than generating
the eigenspace for the fine operator.

3. Implementation and Results

3.1 Details of the implementation
For our investigations here, we utilize the efficient implementation of MG workflows in

the QUDA library for GPUs [12]. Originally developed for NVIDIA GPUs, it now features a
performance-portable abstraction that includes formal support for HIP to target AMD GPUs, as
well as near-complete support for SYCL and work-in-progress support for OpenMP device targets.

QUDA’s solvers utilize reduced-precision methods and gauge-link compression based on their
inherent symmetries. HISQ long links, being in the 𝑈 (3) group, can be compressed as 9 or 13 real
numbers. Conjugate Gradient (CG) is run in mixed precision, here mixed double/half, where “half”
refers to a 16-bit fixed-point format with a per-site fp32 norm. The staggered and HISQ operators
use GPU-initiated communications via NVSHMEM support when run on NVIDIA GPUs.

The coarse stencil operator is also highly optimized; the coarse links are stored in 16-bit fixed
point format, and additional parallelism is exposed in the matrix-vector application to compensate
for reduction in parallelism possible by the size of the local volume alone. Halo exchanges for the
coarse spinor fields utilize NVSHMEM packing kernels on NVIDIA GPUs. This is an important
optimization given that communications on the coarse level are inherently latency limited.

Our implementation of the KD-preconditioned operator has evolved significantly over the
course of this work. We initially performed a unitary transformation of the staggered operator,
acting on all 𝑉 sites on the lattice with 𝑁𝑐 = 3 degrees of freedom per site, into an operator acting
on 𝑉

2𝑑 “super-sites” with 2𝑑 times 𝑁𝑐 = 3 → 48 degrees of freedom. The stencil of this operator
included many zeroes in deterministic locations. Next, we constructed the inverse of the block-local
term 𝐵 and pre-applied it to each “hopping” term. In the HISQ case, distance-three Naik terms on
the KD-preconditioned operator were dropped. The justification being perturbative: the leading
coefficient of the Naik term is 5% of the magnitude of the fat link terms. This required storing
nine 482 matrices per 2𝑑 super-site: eight for the pre-computed hopping terms and one for the KD
inverse term (𝐵 + 𝑚)−1. This corresponds to 9 × 482/16 = 1296 complex numbers per fine site.

The revised approach is to apply the KD operator in a form that takes the decomposition
𝐴 = (𝐵 + 𝑚)−1𝐷stag literally. First, we apply the HISQ operator, taking full advantage of the
optimizations already present in the QUDA. Next, we apply the local KD operator in a separate
kernel. It is a point of future optimization to fuse these operations.

In contrast to the initial brute-force implementation, the optimized operator requires loading
the existing fat and long 3 × 3 links in four directions per fine site on the 𝑉-sized lattice, along with
the same explicit (𝐵+𝑚)−1 matrix per 𝑉

2𝑑 sites. This corresponds to 8×32 +482/16 = 180 complex
numbers per fine site: a 72% reduction. An extra benefit is the fine links do not require additional
storage because they can be reused from the outer HISQ operator.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

Level Property Value

0 Solver MG-preconditioned GCR
0 Operator Full (non-Schur) HISQ operator
0 Degrees of freedom 𝑁𝑐 = 3
0 Solver convergence 10−10

0 Pre-, post-smoother none, CA-GCR(8)

1 Solver MG-preconditioned GCR
1 Operator KD-preconditioned (truncated) HISQ
1 Degrees of freedom 𝑁𝑐 = 3
1 Solver convergence 0.25 or 8 iterations
1 Pre-, post-smoother none, CA-GCR(8)

1 → 2 Setup solver CGNE
1 → 2 Setup tolerance 10−6 or 2000 iterations
1 → 2 Aggregate size 4 x 6 x 6 x 6

Level Property Value

2 Solver MG-preconditioned GCR
2 Operator Schur-preconditioned
2 Degrees of freedom 𝑁𝑐 = 64, 𝑁𝑠 = 2
2 Solver tolerance 0.25 or 8 iterations
2 Pre-, post-smoother none, CA-GCR(8)

2 → 3 Setup solver CGNE
2 → 3 Setup tolerance 10−6 or 2000 iterations
2 → 3 Aggregate size 3 x 2 x 2 x 3

3 Solver SVD-deflated CA-GCR(16)
3 Operator Schur-preconditioned
3 Degrees of freedom 𝑁𝑐 = 96, 𝑁𝑠 = 2
3 Singular vectors 1024
3 Deflation acceleration Yes, 400-degree Chebyshev polynomial

Table 1: Key parameters for the MG preconditioner.

One benefit to this formulation is we have the flexibility to preserve or drop the Naik con-
tribution. When we preserve the Naik term, the KD-preconditioned operator is an exact left
preconditioning of the full HISQ operator. When we truncate the Naik contribution, it becomes
a less effective preconditioner on paper, however it shows comparable, if not better, performance
during runs at scale due to a factor-of-two reduction in memory traffic during the stencil application
and a factor-of-three reduction in data communicated.

In the following subsection we present results from solving the HISQ linear system with an
MG preconditioner. We only present results for the optimized implementation of the full HISQ
operator and the truncated operator because the memory overheads of the brute force operator lead
to at least a doubling of the number of required nodes.

3.2 Performance comparison of Multigrid vs Conjugate Gradient
While the algebraic description above suggests a successful MG algorithm, it does not prove

the viability of the technique in production workflows. The one true metric of success is an
improvement in time to solution for propagator solves.

For our studies here, we consider a 1443 × 288, 2+1+1 physical pion mass HISQ configuration
shared by the MILC collaboration. The configuration is very fine, with a lattice spacing of 0.04 fm,
and has a bare light and strange quark mass of 0.000569 and 0.01555, respectively.

We distribute the calculation over 864 GPUs. We perform a 6 × 3 × 6 × 8-way partitioning
of the global volume, leading to a per-GPU local volume of 24 × 48 × 24 × 36. For the Summit
supercomputer, with 6 NVIDIA V100 GPUs per node, this corresponds to 144 nodes, and for the
Selene supercomputer, with 8 NVIDIA A100 GPUs per node, we use 108 nodes.

Many parameters go into tuning an MG solve between the near-null space generation, coarsest-
level SVD deflation, and the parameters of the MG solve itself. We summarize the parameters of
our HISQ workflow in Table 1. We note that for the smoother and for the coarsest-level solve we
have developed a communication-avoiding s-step version of GCR, denoted CA-GCR, an extension
of the idea developed in [10] for generalized minimum residual (GMRES).

In Fig. 2, we show the solver performance of our staggered MG algorithm compared with the
typical Schur-preconditioned CG solve for the HISQ stencil. In all cases we performed the solve to
a relative tolerance of 10−10 on the full (non-Schur) operator. In the case of the single-parity CG
solve, this requires a solve to the relative tolerance 𝑚 × 10−10.

On the left, we show the performance of CG and MG-preconditioned GCR on both the Summit
and Selene supercomputers. In this case, we are using the full HISQ stencil in the KD-preconditioned

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

(a) Comparison of timings for MG and CG runs (b) Ratio of timings from MG to CG on Summit

Figure 2: On the left, the time to solution for conjugate gradient and MG-preconditioned GCR on Summit
(solid lines) and Selene (dashed lines). The MG-preconditioned solve uses the full HISQ stencil in the
pseudo-fine operator. On the right, the relative performance of MG-preconditioned solves—with the full
HISQ stencil and the truncated stencil in the pseudo-fine operator—to a standalone CG solve on Summit.

operator, that is, we do not drop the Naik term. While the cost of the CG solve scales with the
inverse of the mass, corresponding to the expected scaling of the condition number, we see that
the MG-preconditioned solve shows only a slight dependence on the mass. This is an indication of
successful removal of critical slowing down.

On the right, we show the relative performance of our MG algorithm against a CG solve on
Summit. Here, we present two curves: the performance boost for the full HISQ stencil in the KD-
preconditioned operator (green triangles), and the performance boost for the truncated stencil in the
KD-preconditioned operator (black circles). For the smallest mass, 𝑚 = 0.000569, the performance
gain is more than 10x for both the full and the truncated operator. Perhaps even more impressively,
there is rough performance parity at the strange quark mass, 𝑚 = 0.01555.

There is an important note to go along with this data. We generate the near-null vectors and
singular vectors on the coarsest level once using the operators formed from the smallest mass,
𝑎𝑚 = 0.000569. We save these and reuse them for each subsequent solve. This approach is an
emulation of a propagator workflow, where the costs of re-generating near-null vectors and singular
vectors, along with re-formulating the coarse operator, could become end-to-end prohibitive.

We note that these numbers do not include the setup costs as that is a point of active optimization.

3.3 Multigrid performance on a MILC workflow on Summit
We see in section 3.2 that the staggered MG algorithm in four dimensions offers a very

significant benefit over CG for light masses. However, it is important to understand how useful this
algorithm in actual lattice gauge theory workflows with multiple masses and greater complexity.
We consider a workflow that involves computing propagators for ten different quark masses, ranging
from the physical light quark to the strange quark. Typically this workflow is run using multi-shift
CG, where the propagator for each mass shift is solved simultaneously with the overhead of only
one matrix-vector application per iteration.

In the most general case it is challenging to formulate a preconditioned multi-shift CG. This
makes applying the MG preconditioner described here non-trivial. The simplest, and effective,
solution is to apply an MG preconditioner to the smallest subset of masses, where there is the

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

greatest benefit [1]. We reuse the coarse operators from the lightest mass for other masses in
this subset. The remaining masses, equivalently shifts, are still solved in what is now a much less
expensive multishift CG. For this workflow, we split the ten masses 3:7 between MG and multi-shift,
an empirical decision that will be better explored in the future.

Table 2 gives a comparison of normalized timings for MG and CG on the Summit supercom-
puter, where we have used 144 nodes as described above for MG, and 72 nodes for CG, owing to the
reduced memory overheads. The propagator time corresponds to the time it takes to solve for three
right hand sides for an MG solve, and six for CG solves—three for the even system, three for the
odd. We see that, when normalized by node-hours, the cost of MG setup is amortized after roughly
three propagator calculations.

Run type Summit Nodes MG Setup One Propagator
Units — Node-hours Node-hours

Multishift CG 72 — 9.87 × 104

MG+CG (full op) 144 2.28 × 105 3.34 × 104

MG+CG (truncated op) 144 1.89 × 105 3.37 × 104

Table 2: Performance comparison of mixed MG and multishift CG vs just multishift CG for a propagator
workflow with 10 masses ranging from the light to the strange quark. The break-even point for the full pseudo-
fine operator is ≈ 3.5 propagators, while for the truncated pseudo-fine operator it is ≈ 2.9 propagators.

4. Conclusion

4.1 Summary
In this work we have described a successful implementation of a multi-grid solver for the HISQ

operator in four dimensions. More importantly, we have demonstrated the success of the algorithm
on a very fine 1443 × 288 physical pion mass HISQ configuration, showing the near-elimination of
critical slowing down across a range of masses from the physical light up to the strange quark mass.
Using the QUDA library for lattice calculations on GPUs, we have demonstrated a 10x speedup in
solver time to a fixed tolerance at the light quark mass for a solve distributed over 144 nodes of the
Summit supercomputer, and shown we can break even in solve time at the strange quark mass.

Due to the performance portability work that went into QUDA, we have also successfully run
this algorithm on a smaller configuration on the Crusher supercomputing testbed at ORNL.

4.2 Future directions
A key challenge of the current algorithm is the high overhead of generating several near-null

vectors for the HISQ operator due to the large number of low modes inherent to the staggered
formulation. We are currently exploring multiple avenues to improve the setup time, including but
not limited to: multi-right hand side solver methods, Chebyshev filter approaches to generating
near-null vectors [6], and block-TRLM methods for singular vector generation.

Although this algorithm has a clear use case in the measurement of correlation functions in
lattice gauge theories, there is potential for using it for gauge generation. One challenge in using
it in HMC is that we must evolve the near-null vectors as the gauge field evolves. This has been
successfully applied in the Wilson-clover case [21] and the Shamir domain wall case [6], however
the relatively higher setup costs for HISQ MG and the presence of multi-shift solves in RHMC
make this less trivial. These studies will be a follow-up to the improved setup investigations above.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

Acknowledgments
This work was supported in part by the U.S. Department of Energy (DOE) under Award No.

DE-SC0015845 and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration. For
computation, we used the Summit and Crusher supercomputers at Oak Ridge National Laboratory.

References

[1] C. Alexandrou, S. Bacchio, and J. Finkenrath, Multigrid Approach in Shifted Linear
Systems for the Non-Degenerated Twisted Mass Operator, Computer Physics Communications,
236 (2019), pp. 51–64.

[2] O. Axelsson, A Generalized Conjugate Gradient, Least Square Method, Numerische Mathe-
matik, 51 (1987), pp. 209–227.

[3] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Manteuffel, S. F. McCormick,
J. C. Osborn, and C. Rebbi, Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac
Operator, Phys. Rev. Lett., 105 (2010), p. 201602.

[4] T. Blum, R. S. Van de Water, D. Holmgren, R. Brower, S. Catterall, et al., Working
Group Report: Lattice Field Theory, (2013).

[5] G. T. Bodwin and E. V. Kovács, Equivalence of Dirac-Kähler and Staggered Lattice Fermions
in Two Dimensions, Phys. Rev. D, 38 (1988), pp. 1206–1219.

[6] P. Boyle and A. Yamaguchi, Comparison of Domain Wall Fermion Multigrid Methods,
arXiv e-prints, (2021), p. arXiv:2103.05034.

[7] J. Brannick, R. C. Brower, M. A. Clark, J. C. Osborn, and C. Rebbi, Adaptive Multigrid
Algorithm for Lattice QCD, Phys.Rev.Lett., 100 (2008), p. 041601.

[8] R. C. Brower, M. A. Clark, D. Howarth, and E. S. Weinberg, Multigrid for Chiral Lattice
Fermions: Domain wall, Phys. Rev. D, 102 (2020), p. 094517.

[9] R. C. Brower, M. A. Clark, A. Strelchenko, and E. Weinberg, Multigrid Algorithm for
Staggered Lattice Fermions, Phys. Rev. D, 97 (2018), p. 114513.

[10] A. T. Chronopoulos and S. K. Kim, s-Step Orthomin and GMRES Implemented on Parallel
Computers, arXiv:2001.04886, High Energy Physics - Lattice, (2020).

[11] M. Clark, A. Strelchenko, A. Vaquero, M. Wagner, and E. Weinberg, Pushing memory
bandwidth limitations through efficient implementations of block-krylov space solvers on gpus,
Computer Physics Communications, 233 (2018), pp. 29–40.

[12] M. A. Clark, B. Joó, A. Strelchenko, M. Cheng, A. Gambhir, and R. C. Brower,
Accelerating lattice qcd multigrid on gpus using fine-grained parallelization, in Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’16, IEEE Press, 2016.

[13] M. A. Clark, C. Jung, and C. Lehner, Multi-Grid Lanczos, in 35th International Symposium
on Lattice Field Theory (Lattice 2017) Granada, Spain, June 18-24, 2017, 2017.

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
5

Multigrid for staggered fermions in 4D Venkitesh Ayyar

[14] M. A. Clark and A. D. Kennedy, Accelerating Dynamical-Fermion Computations Using
the Rational Hybrid Monte Carlo Algorithm with Multiple Pseudofermion Fields, Physical
Review Letters, 98 (2007).

[15] T. A. DeGrand and P. Rossi, Conditioning Techniques for Dynamical Fermions, Comput.
Phys. Commun., 60 (1990), pp. 211–214.

[16] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Physics
Letters B, 195 (1987), pp. 216–222.

[17] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. P. Lepage, J. Shigemitsu, H. Trot-
tier, and K. Wong, Highly Improved Staggered Quarks on the Lattice, with Applications to
Charm Physics, Phys. Rev., D75 (2007), p. 054502.

[18] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann, Adaptive Aggregation-Based
Domain Decomposition Multigrid for the Lattice Wilson–Dirac Operator, SIAM Journal on
Scientific Computing, 36 (2014), pp. A1581–A1608.

[19] J. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories,
Phys. Rev. D, 11 (1975), pp. 395–408.

[20] C. Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operators, Journal of research of the National Bureau of Standards,
45 (1950), pp. 255–282.

[21] M. Lüscher, Deflation Acceleration of Lattice QCD Simulations, Journal of High Energy
Physics, 2007 (2007), pp. 011–011.

[22] M. Lüscher, Local coherence and deflation of the low quark modes in lattice qcd, Journal of
High Energy Physics, 2007 (2007), p. 081.

[23] A. A. Nikishin and A. Y. Yeremin, Variable Block CG Algorithms for Solving Large
Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative
Scheme, SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 1135–1153.

[24] K. Orginos, D. Toussaint, and R. L. Sugar, Variants of Fattening and Flavor Symmetry
Restoration, Phys. Rev., D60 (1999), p. 054503.

[25] J. C. Osborn, R. Babich, J. J. Brannick, R. C. Brower, M. A. Clark, S. D. Cohen,
and C. Rebbi, Multigrid solver for clover fermions, arXiv:1011.2775, High Energy Physics -
Lattice, (2010).

[26] D. Richtmann, N. Meyer, and T. Wettig, MRHS Multigrid Solver for Wilson-Clover
Fermions, PoS, LATTICE2022 (2022).

[27] E. Romero, A. Stathopoulos, and K. Orginos, Multigrid Deflation for Lattice QCD, Journal
of Computational Physics, 409 (2020), p. 109356.

[28] A. Yamaguchi and P. Boyle, Hierarchically deflated conjugate residual, PoS, LATTICE2016
(2016), p. 374.

10


	Introduction
	Multi-grid methods for Staggered fermions
	Multi-grid algorithms
	Staggered fermion and Kähler-Dirac preconditioning fundamentals
	Kähler-Dirac preconditioned multigrid

	Implementation and Results
	Details of the implementation
	Performance comparison of Multigrid vs Conjugate Gradient
	Multigrid performance on a MILC workflow on Summit

	Conclusion
	Summary
	Future directions


