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COLA is a software library for lattice QCD, written in a combination of modern Fortran and
C/C++. Intel and NVIDIA have dominated the HPC domain in the years leading up to the
exascale era, but the status quo has changed with the arrival of Frontier and other AMD-based
systems in the supercomputing Top 500. Setonix is a next generation HPE Cray EX system hosted
at the Pawsey Supercomputing Centre in Perth, Australia. Setonix features AMD EPYC CPUs
and AMD Instinct GPUs. This report describes some of my experiences in evolving COLA to
adapt to the current hardware landscape.
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The first supercomputer in the world to achieve a HPL benchmark greater than 1 exaflop/s was
Frontier, based at the Oak Ridge National Laboratory. Frontier is a HPE Cray EX system featuring
AMD EPYC “Trento” cores and Radeon Instinct MI250X accelerators. Topping both the June
and November Top 500 lists in 2022 with an Rp,x score of 1.102 exaflop/s, Frontier displaced the
Fugaku supercomputer at RIKEN, which features a bespoke chipset based on the ARM architecture.
The previous crown holder was Summit, another Oak Ridge entry, but with NVIDIA accelerators
and an IBM Power system. The diversity of hardware architectures on leading systems represents
one of the challenges of high performance computing. Research groups typically have allocations
on a variety of machines, and with the recent resurgence of AMD the range of target architectures
has only widened. It is not just platform portability for scientific codes that is essential, but also
performance portability.

The challenges of portability in the context of scientific computing are not new of course, but
there are aspects of the contemporary architecture ecosystem that are distinct. Historically, there
have always been a range of CPU chipsets deployed at HPC facilities. Performant scientific codes
are typically written in C/C++ or Fortran. These languages are not tied to a specific vendor, and it
is reasonable to expect that the compilers for these languages are available on any system. In this
sense, platform portability for CPU codes presents a relatively low barrier for code development.
For performance portability, due to tight language restrictions around aliasing, Fortran compilers
developed by hardware vendors such as Intel and Cray have traditionally been very successful at
generating optimised code. With regard C/C++, the use of architecture specific intrinsic has often
been required to get the most benefit from specific processor features (such as vectorisation).

COLA is a custom in-house code that I began developing in Fortran as a graduate student. The
code is more or less in a constant state of change, either evolving to adapt to new challenges or
expanding to add new features. Key algorithms are solvers for linear systems and eigenmodes [1],
and gauge field generation with Hybrid Monte Carlo [2]. The latter features a number of variants
such as the RHMC algorithm [3] and a selection of filtering techniques [4-6]. Specific physics
features are tailored to the CSSM lattice research programme, for which the COLA software library
has formed the computational foundation for some time [7-64].

The fastest machine in Australia in the November 2022 Top 500 is Setonix, ranked at #15 with
a HPL score of 27 petaflop/s and hosted at the Pawsey Supercomputing Centre in Perth. Similar
to Frontier, Setonix is based on the AMD EPYC platform and also features the Radeon MI250X
accelerators. Building upon the energy efficiency of these accelerators, Setonix ranks at #4 in the
Green 500 list based on performance per Watt, 2 places higher than Frontier at #6. As the world
moves towards a carbon-neutral future, there has been a developing focus on optimising the energy
efficiency [65] of traditionally power hungry high performance computing systems.

To accompany the release of this novel architecture to the Australian supercomputing scene,
the Pawsey Centre for Extreme Scale Readiness (PaCER) scheme was created. Several projects
were chosen to partner with Pawsey to optimise codes and workflows for the next generation
of supercomputers. The CSSM is partnered with the PACER scheme via one of these projects,
Emergent phenomena revealed in subatomic matter. User community initiatives with similar goals
have accompanied the launch of other recent AMD-based systems.

As the Fortran components of COLA do not use any vendor or architecture specific features,
adapting the software to the AMD EPYC platform was fairly straightforward. The enforcement of
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Figure 1: Performance of the COLA fermion matrix on the AMD EPYC “Milan” CPU with the CrayEX,
GCC, and AOCC Fortran compilers, measured relative to the Xeon “Cascade Lake” performance with the
Intel Fortran compiler.

standard compliance does vary between the different compilers, requiring some minor changes for
code which has primarily evolved on the Intel platform. There are three programming environments
available on Setonix, namely Cray EX, GNU GCC, and AOCC (which is based on LLVM). Figure 1
shows the relative performance of the fermion matrix code under these three compilers on a single
dual-socket “Milan” CPU node with a total of 128 cores, as compared to the Intel compiler on a
dual-socket Xeon “Skylake” node with 48 cores. As would be expected given the effort that they put
into their Fortran compiler optimisation, Cray performs the best of the three AMD programming
environments, closely followed by the GNU compiler. At the time of writing, modern Fortran
support within the AOCC programming environment should be considered as preliminary.

GPU acceleration for the COLA fermion matrix inverter was first introduced via NVIDIA
CUDA C/C++ around the time that the Fermi architecture was released. This mixed-language
approach persists to this day. As the CPU aspects of the code are written in modern Fortran, 1
utilise the interoperability provided by the intrinsic /SO C Binding module to interface with the
GPU-accelerated routines that are implemented in CUDA C/C++. A consequence of this approach
is that for many of the key algorithms in COLA there exist two independent implementations — one
in Fortran for CPUs and one in CUDA for GPUs. The ability to cross-check the two implementations
as a form of validation has proved very beneficial during code development. Significant amounts
of utility code reuse are also realised, with the Fortran code that handles the reading of runtime
parameters, the input and output of data, and the initialisation of the MPI process topology being
common to both the CPU and GPU implementations.

Lattice codes have a relatively low flops/byte ratio and as such are typically memory bandwidth
limited. The intrinsic geometric parallelism of the lattice maps naturally onto the massively parallel
nature of the GPU platform. Whilst on a CPU a subvolume of the lattice would typically be
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Figure 2: Performance of the COLA GPU-accelerated conjugate gradient inverter on various device archi-
tectures, measured relative to the Tesla K40 performance. Results are shown for various NVIDIA Tesla cards
with generations ranging from Kepler to Ampere, and the AMD MI100 accelerator.

mapped to a single core, on a GPU each lattice site is mapped to a single thread. The latency
hiding capabilities of the GPU execution model coupled with the high computational power means
that opportunites to perform additional computation in order to reduce traffic from global memory
generally result in an overall speedup of the code. Similarly, the use of mixed-precision techniques
also results in a significant benefit [66]. Historically, the amount of device memory available was
relatively small compared to the size of a fermion field. The available device memory on GPU
accelerators has increased significantly with successive generations, such that limiting the number
of vectors stored is less of a concern than it once was (similarly for register pressure).

Figure 2 shows the relative performance of the GPU-accelerated COLA conjugate gradient
inverter on a variety of GPU architectures, using the NVIDIA Tesla K40 as a reference. Starting
with Kepler, NVIDIA results are provided for generations up to Ampere with the A100. There is a
single data point for AMD Instinct, the MI100. A mixed-precision solver is used for the benchmark,
with 32-bit precision for the inner iterations and 64-bit precision for the outer solver.

To run on the MI100 architecture the CUDA components of COLA were converted to AMD’s
Heterogeneous Interface for Portability (HIP). The HIP SDK provides scripts that automated much
of the process of converting from CUDA code, although some manual effort was required to
complete the conversion. The HIP compiler can target both NVIDIA and AMD accelerators, and
on the Volta platform at least seemed to provide equivalent performance to nvcc. At the time of
writing, the MI250X was not yet available to the author for benchmarking. Setonix will be fully
launched in early 2023, when the MI250X partition becomes available to users. While platform
portability has been demonstrated for the COLA software, it will be interesting to see what can be
achieved in terms of performance on the MI250X.

It seems that one of the aims of HIP is to mirror the functionality provided by CUDA, though



Evolving the COLA software library Waseem Kamleh

this approach necessarily means there is a delay between a CUDA feature release and the appearance
of the HIP equivalent. The dominance of CUDA for GPU-accelerated codes can be attributed to
the fact that NVIDIA was the first vendor to successfully bring to market devices that targeted
the HPC community. Arguably, their success would not have been possible without the large
amount of effort put into developing the CUDA programming environment. Many researchers have
implemented their code in CUDA due to a combination of the rapid maturity it achieved relative
to other programming models (such as OpenCL), and the near-monopoly NVIDIA has had on
accelerated HPC systems for many years.

AMD has had recent success at the hardware level with the launch of high profile HPC systems
such as Frontier in the US, Lumi in Europe, and Setonix in Australia. They must now ensure that
their programming environment rapidly achieves maturity in order to sustain momentum. It is also
interesting to note that Intel is attempting to (re-)enter into the accelerator space with the Xe HPC
platform.

This again raises the issue of (platform and performance) portability for accelerated computing.
CPUs can generally be targeted by Fortran and C/C++ code in a platform-independent manner
whilst maintaining performance (of course, platform-specific optimisations can always improve
upon these). For accelerators, it is a different story. Vendor-specific programming environments
are typically required to get the best performance. Developing divergent branches of the same
code adds significant overhead to an activity that is already at a premium in the academic research
environment, where time well-spent must necessarily translate into the de facto currency of the
field.

In an ideal world we would treat the accelerator space in much the same way as we treat the
traditional compute space. That is, through the establishment of platform-independent programming
models with agreed upon standards that compiler providers implement to target their respective
hardware platforms. Arguably, the natural way for this to proceed would be to have vendor-agnostic
accelerated programming extensions to C/C++ and Fortran. Fortran has included intrinsic parallel
computing features since the 1990s, and accelerator-based programming would seem like a natural
extension. Language standards tend to evolve fairly slowly however, so in the short term we must
look elsewhere. There are vendor-led candidates for cross-platform heterogeneous programming
such as NVIDIA’s OpenACC, AMD HIP, and Intel’s DPC++ for one API. Of course, these can be
expected to perform well on the vendor’s respective hardware, but support for (and performance
on) the competitors hardware is not guaranteed. There are also a number of open candidates for
heterogeneous programming such as OpenCL, SYCL, and Kokkos. The extent to which the various
candidates above provide performance portability is being investigated [67—71]. Future work will
explore this question in the context of continuing to evolve the COLA software library.
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