
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines

Bartosz Kostrzewa𝑎,∗, Simone Bacchio𝑐, Jacob Finkenrath𝑐, Marco Garofalo𝑏,
Ferenc Pittler𝑐, Simone Romiti𝑏and Carsten Urbach𝑏for the ETM Collaboration
𝑎High-Performance Computing and Analytics Lab, Rheinische Friedrich-Wilhelms-Universität Bonn,
Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany

𝑏Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,
Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 14-16, 53115 Bonn, Germany

𝑐The Cyprus Institute, CASTORC, 20 Konstantinou Kavafi Street, 2121 Nicosia, Cyprus
E-mail: bartosz.kostrzewa@uni-bonn.de, s.bacchio@cyi.ac.cy,
j.finkenrath@cyi.ac.cy, garofalo@hiskp.uni-bonn.de, sromiti@uni-bonn.de,

urbach@hiskp.uni-bonn.de

We present how we ported the Hybrid Monte Carlo implementation in the tmLQCD software
suite to GPUs through offloading its most expensive parts to the QUDA library. We discuss
our motivations and some of the technical challenges that we encountered as we added the
required functionality to both tmLQCD and QUDA. We further present some performance details,
focussing in particular on the usage of QUDA’s multigrid solver for poorly conditioned light quark
monomials as well as the multi-shift solver for the non-degenerate strange and charm sector in
𝑁 𝑓 = 2 + 1 + 1 simulations using twisted mass clover fermions, comparing the efficiency of
state-of-the-art simulations on CPU and GPU machines. We also take a look at the performance-
portability question through preliminary tests of our HMC on a machine based on AMD’s MI250
GPU, finding good performance after a very minor additional porting effort. Finally, we conclude
that we should be able to achieve GPU utilisation factors acceptable for the current generation
of (pre-)exascale supercomputers with subtantial efficiency improvements and real time speedups
compared to just running on CPUs. At the same time, we find that future challenges will require
different approaches and, most importantly, a very significant investment of personnel for software
development.

The 39th International Symposium on Lattice Field Theory (Lattice2022),
8-13 August, 2022
Bonn, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:bartosz.kostrzewa@uni-bonn.de
mailto:s.bacchio@cyi.ac.cy
mailto:j.finkenrath@cyi.ac.cy
mailto:garofalo@hiskp.uni-bonn.de
mailto:sromiti@uni-bonn.de
mailto:urbach@hiskp.uni-bonn.de
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

1. Introduction
Simulations of lattice QCD by the Extended Twisted Mass Collaboration (ETMC) have evolved [1–
3] over the past decade to a point where ensembles of gauge configurations directly at the physical
point can reliably be simulated at multiple lattice spacings and in large volumes [4] using the
implementation of the Hybrid Monte Carlo (HMC) algorithm in the tmLQCD software suite [5–
8], which features hybrid OpenMP/MPI parallelisation, macro-based hardware optimisations for
several architectures, nested Omelyan-Mryglod-Folk [9] and force-gradient [10] (FG) integrators,
mass-preconditioning as well as a rational approximation for odd numbers of Wilson (clover)
fermions or the non-degenerate strange and charm sector of the 𝑁 𝑓 = 2+ 1+ 1 Wilson twisted mass
(clover) action.
Moving away from preprocessor macros since about 2015, tmLQCD has been extended with
interfaces to the mixed-precision CG (MP-CG) and multishift CG (MS-CG) implementations in
QPhiX [11–16] targeting SIMD architectures and DD-𝛼AMG [17–19] for an efficient multigrid-
preconditioned (MG-PC) solver for the most poorly conditioned monomials in our molecular
dynamics (MD) Hamiltonian. In turn, we have extended these libraries to support our Dirac
operators and have shown that MG very effectively reduces the cost of simulations close to or at the
physical point [20]. In addition, tmLQCD has been used as glue code by various ETMC contraction
codes, providing a simple interface and input file to use these libraries as well as QUDA [21, 22]
and its highly efficient [23] MG-PC solver for the Wilson (clover) (twisted mass) operator.
At the precision frontier, observables require future ensembles with even larger volumes at many
lattice spacings and with high statistics to ensure adequate control over statistical and systematic
uncertainties. Completed, ongoing and planned ETMC ensemble generation efforts in this direction
directly at the physical point are shown in the left panel of fig. 1. The right panel of the same figure
gives the approximate cost per trajectory (in core hours) of generating ensembles at the physical
pion mass using 𝑁 𝑓 = 2 + 1 + 1 flavours of Wilson twised mass clover fermions as a function of the
spatial lattice extent. The computational costs for these new simulations are such that our current

(0.091)2

(0.080)2

(0.068)2

(0.057)2

(0.049)2

13
5

17
0

25
0

29
0

34
0

19
0

Mπ [MeV]

a
2
[f
m

2
]

sim. status
done
ongoing
planned

a [fm]
0.091
0.08
0.068
0.057
0.049

3
4
5
6
7
8
9

(0
.0
91
)
2

(0
.0
80
)
2

(0
.0
68
)
2

(0
.0
57
)
2

(0
.0
49
)
2

a2 [fm2]

M
π
·L

L/a 48 64 80 96 112 128

Mπ ≈ 135 MeV

2ndorder

2ndorder + MG

4thorder + MG103

104

105

106

48 64 80 96 112 128 144

L/a

co
re
-h
ou

rs
p
er

tr
a
j.

integrator

2MN

2MNFG

Figure 1: Left: Overview of the completed (circles), ongoing (triangles) and planned (squares) ETMC
ensemble generation at the physical point. The size of the symbol indicates the lattice size. Right: Cost per
trajectory (at the physical pion mass) in units of core hours as a function of the lattice extent in lattice units.
The points stem from production simulations on different machines at roughly constant acceptance rate while
the lines represent fits of the cost models given in eqs. (1) to (3), respectively. See text body for more details.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

strategy of generating ensembles on CPU machines while employing GPU machines for physics
observables is no longer tenable. The figure relies on actual data stemming from different machines
with different generations of CPUs and simulations at different lattice spacings with comparable
acceptance rates. This data is hence subject to variations in CPU core efficiency, the number of
MG iterations as well as the number integration steps required at coarser lattice spacings relative to
simulations at finer ones. Mindful of these caveats, it is still possible to fit approximate models to
the data with the black dotted, blue dashed and solid red curves given by functions of the forms:

𝐶2MN,CG ≈𝑐2 · (𝑉/𝑎4)5/4 (1)

𝐶2MN,MG ≈𝑐′2 · (𝑉/𝑎
4)5/4 (2)

𝐶2MNFG,MG ≈𝑐4 · (𝑉/𝑎4)9/8
, (3)

corresponding to three types of setups: MP-CG only with a nested second order integration scheme;
the same scheme but employing DD-𝛼AMG for the most poorly conditioned monomials; that same
solver setup but employing a FG scheme instead (and appropriate mass-preconditioning). Even
with the best setup, a 1283 · 256 ensemble costs in excess of 2 · 105 core-hours per trajectory and,
when run at a reasonable parallel efficiency, already a 963 · 192 ensemble entails a real time per
trajectory of around six hours. Thus, not only would all currently planned runs require O(109)
core-hours, too much to apply for on available CPU machines, they would also take too much real
time to perform without resorting to generating multiple independent Markov chains, complicating
subsequent analysis. With the actual or imminent availability of (pre-)exascale machines based on
accelerated architectures by various vendors in mind, porting our HMC implementation to these is
thus not only necessary but also timely.

2. Even-odd and mass-preconditioned Dirac operators and framework choice
When used as a driver for inversions of the full Dirac operator from within contraction codes,
tmLQCD’s QUDA interface delegates even-odd preconditioning completely to QUDA by simply
setting solve_type and matpc_type of QudaInvertParam correctly for the given solver1. In
the HMC, however, the even-odd (and mass) preconditioning in the action must match that used in
QUDA. To be specific, our degenerate determinant is written in terms of operators 𝑄±,

𝑄± =𝛾5(𝑀clov ± 𝑖𝜇ℓ𝛾5) s.t. (𝑄+)† = 𝑄− (4)
det(𝑄+𝑄−) = det(𝑄2 + 𝜇2

ℓ) , (5)

where 𝑀clov is the Wilson-clover Dirac operator and 𝜇ℓ is the light twisted quark mass. We employ
asymmetric even-odd preconditioning2 and thus require an implementation of

𝑄̂± = 𝛾5
[
(𝑀𝑜𝑜 ± 𝑖𝜇ℓ𝛾5) − 𝑀𝑜𝑒 (𝑀𝑒𝑒 ± 𝑖𝜇ℓ𝛾5)−1𝑀𝑒𝑜

]
(6)

and for mass-preconditioning, we further require

𝑊̂±(𝜌) = 𝑄̂± ± 𝑖𝜌 s.t. 𝑊̂+(𝜌)𝑊̂− (𝜌) = 𝑄̂+𝑄̂− + 2𝜇ℓ𝜌 + 𝜌2 (7)

1It should be noted that QUDA’s parameter set is very large and that (in most cases) a gamma basis change is required.
2ODD_ODD_ASYMMETRIC in QUDA-parlance

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

where 𝜌 is the preconditioning mass, leaving the inverse of the clover term 𝜌-independent. In the
heavy sector we need a two-flavour operator in which the diagonal depends on both 𝜇̄ and 𝜖 :

𝑄̂ℎ = 𝛾5

[
(𝑀𝑜𝑜 + 𝑖 𝜇̄𝛾5𝜏

3 − 𝜖𝜏1) − 𝑀𝑜𝑒 (𝑀𝑒𝑒 + 𝑖 𝜇̄𝛾5𝜏
3 − 𝜖𝜏1)−1

𝑀𝑒𝑜

]
. (8)

When we evaluated different frameworks for implementing our HMC for GPU machines, we
considered essentially three factors: availability of a proven-efficient GPU implementation of a MG-
PC solver; ease of implementation of eqs. (6) to (8) in the given framework and the availability of a
flexible input format for setting up the HMC and RHMC components required for our simulations.
Although doing so would have contributed towards solving the wider performance-portability
challenge of various ETMC codebases, time limitations ruled out extending Grid [24–26] or the
Chroma+QDP-JIT+QUDA tripos [27–30].
The efforts of the QUDA development team towards a device target abstraction and the resulting
development or availability of backends for CUDA, HIP, SYCL and OpenMP, clearly favoured a
compromise of proceeding with tmLQCD + QUDA for the time being without solving the more
general issue. As first steps, we only had to implement: more fine-grained tracking of the state
of the host and device gauge fields (and related objects such as the clover term and MG setup);
eqs. (7) and (8) as well as an extension of tmLQCD’s QUDA interface to support the kinds of solves
required within the HMC. We further enabled the gauge derivative to be offloaded and helped to
modify QUDA’s gradient flow interface such that the values of pertinent flowed observables can be
returned to the host application (if desired) in the addition to the flowed gauge field.

3. Laying the groundwork
Before the main implementation phase, we extended the mechanism by which tmLQCD tracks
the state of its gauge field (and the various copies thereof, as well as their halos). To this end, we
introduced the concept of a tm_GaugeState_t struct at program scope which contains a gauge_id
member, corresponding simply to the position along a trajectory in the HMC, expressed as a real
number3. Whenever the gauge field is updated, the function update_tm_gauge_id is called and
functionality exists which cascades to the state of the clover field and its inverse. A similar set of
states and functions were introduced to the QUDA interface to track the state of the device gauge
and clover fields as well as the MG setup, such that these can be refreshed as necessary. At the cost
of efficiency, this allowed us to keep the representative gauge and conjugate momentum fields on
the host and to add functionality step by step, allowing us to test our developments while being able
to mix QUDA functions with our own CPU functions in different places without having to worry
about breaking any synchronisation assumptions.
As a further preparatory step, we implemented a simple profiling mechanism to quantify relative
costs associated with different parts of our MD Hamiltonian combined with hierarchical information
about the function call tree. While it can be argued that the latter can be obtained using readily
available profiling tools, our wish to profile full scale simulations with O(10) monomials employing
MG-PC, MP-CG and MS-CG solvers on GPU machines makes this ineffective without explicit
(profiler-specific) annotations. Since functions are often called from multiple monomials and
sometimes even at different levels of the call tree (depending on context), it may be difficult

3or the gauge configuration number when tmLQCD is used as a solver driver from within contraction codes

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

20.2%

16.5%

16.1%11.0%

10.7%
7.8%

6.5%

3.2% 2.0%

6.0%

0

5000

10000

15000

20000

reorder(monomial, prop)

a

a

a

a

a

a

a

a

a

a

GAUGE

ndcloverratcor

other and unaccounted for

cloverdetratio1light

cloverdetlight

ndcloverrat2

ndcloverrat3

cloverdetratio3light

ndcloverrat1

cloverdetratio2light

Figure 2: Profile of tmLQCD’s HMC
running multiple trajectories of a 𝑁 𝑓 =

2+1+1, 𝑉/𝑎4 = 643 ·128 ensemble at the
physical point on 16 Marconi-100 nodes
(4 NVIDIA V100 GPUs per node, 2 ×
16-core IBM POWER9 AC922 CPUs per
node). The absolute time in seconds spent
in each monomial is shown as well as what
fraction of the total this corresponds to.

to differentiate between physically and algorithmically reasonable hot spots and those caused by
incorrect parameter / algorithm choices or implementation / interfacing mistakes. The new stack-
based profiler is used through just two functions: tm_stopwatch_push and tm_stopwatch_pop.
The former starts a timer at a given level of the call tree and annotates it with (caller-defined) context
information (similar to UNIX paths), while the latter stops the timer of the current level and prints
the measured time to stdout with the aforementioned context information.
As a specific example, the function cloverdet_derivative, which calculates the force due to a
Wilson clover (twisted mass) fermion determinant, is bracketed by such calls:

1 tm_stopwatch_push (&g_timers , __func__ , mnl ->name);

2 [...]

3 tm_stopwatch_pop (&g_timers , 0, 1, "");

and the same applies to almost all functions further down the call tree, giving output like:
1 # TM_QUDA: Time for invert_eo_degenerate_quda 2.937360e-01 s level: 3 proc_id: 0 /HMC/cloverdetlight:clover [...]

2 # : Time for gamma5 5.561520e-04 s level: 3 proc_id: 0 /HMC/cloverdetlight:cloverdet_derivative/solve_degen [...]

3 [...]

4 # : Time for sw_all 4.972867e-01 s level: 2 proc_id: 0 /HMC/cloverdetlight:cloverdet_derivative

5 # : Time for cloverdet_derivative 1.252163e+00 s level: 1 proc_id: 0 /HMC/cloverdetlight:cloverdet_derivative

An R script is provided in profiling/hmc_mk2 which generates a PDF report from such a log
file (even if it is incomplete) visualising and tabulating the distribution of the time spent in various
parts, as shown exemplarily in fig. 2, where the different labels correspond to different monomials
in our MD Hamiltonian (going into the details is beyond the scope of the present proceedings).

4. Implementation details and performance
4.1 Multigrid solver in the light sector
The importance of using a MG-PC solver in simulations close to or at the physical point can hardly
be overstated. While one could worry about the (minor) setup overhead at the start of a run and
due to setup refreshes or updates of the coarse-grid operators, the algorithmic superiority more
than makes up for these. As shown in fig. 3, in computing the fermionic derivative, QUDA’s MG
is faster than its MP-CG by about a factor of 100 at the physical light quark mass. In practice, we
optimize costs by employing a mixture of solvers for different monomials in the light sector, usually
MG for the two most poorly conditioned determinant ratios and MP-CG everywhere else, leading
to an overall whole-application speedup of about a factor of four compared to using MP-CG alone.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

mu,d ms mc

1

10

100

0.001 0.010 0.100

aµ

in
ve
rs
io
n
ti
m
in
g
[s
ec
]

Solver

CG

MG

Figure 3: QUDA-MG and mixed-precision CG
compared as a function of the twisted quark mass.
The timings refer to a single inversion in the
case of CG and two inversions in the case of
MG (including some unavoidable overheads), as
required in the calculation of the fermion deriva-
tive. The dashed vertical lines indicate the phys-
ical light and approximate strange and charm
quark masses.

Depending on the type of mass preconditioning employed, using QUDA-MG in the HMC requires
some care. To be specific, when 𝜌 in eq. (7) is 20 to 30 times larger than the target quark mass, the
setup fails to precondition the fine grid operator well, resulting in hundreds of outer GCR iterations.
In determinant ratios with large 𝜌 in the denominator, we counter this by employing MP-CG in
the heatbath step while still using MG in the derivative and acceptance step. With more effort, as
was done for DD-𝛼AMG [18], QUDA-MG could be modified to more effectively deal with eq. (7).
Another inefficiency which can perhaps be resolved in the future, is that coarsening currently only
supports the symmetrically even-odd-preconditioned operator. We simply ignore this and set:
• matpc_type = QUDA_MATPC_ODD_ODD in QudaMultigridParam.invert_param
• matpc_type = QUDA_MATPC_ODD_ODD_ASYMMETRIC in the outer solver,
likely resulting in slightly higher iteration counts than with a more consistent setup.

4.2 Mixed-precision multi-shift solver in the heavy sector
As can be seen in fig. 2, a significant fraction of total runtime is spent in monomials simulating
partial fractions of the rational approximation of the non-degenerate 1 + 1 sector of our action
(ndcloverratN and ndcloverratcor in the figure). In simulations on CPU machines, the
calculation of the correction term for the rational approximation [31, 32] contributes significantly
to the total cost. This is shown in the table of fig. 4: using only QPhiX MS-CG takes about 1360
seconds and dropts to around 990 seconds employing DD-𝛼AMG refinement [19]. On 32 NVIDIA
A100 GPUs instead, this takes only 220 seconds using double precision MS-CG and improves down
to around 170 seconds when single precision MS-CG with double-half shift-by-shift refinement is
used. Similar improvements are seen in all calls of MS-CG, as shown in the left panel of fig. 4.

4.3 Efficiency
In our profiles, we can identify monomials which are very much GPU-dominated as shown in the
left panel of fig. 5, where almost all of the time is spent in the solver driver (solve_degenerate),
the corresponding QUDA function (invertQuda) or unavoidable overheads related to the MG
solver. On the other hand, as shown in the right panel of the same figure, we still have monomials
with very poor offloading fractions. In the force calculation for the rational approximation, outer
products must be computed on multiple two-flavour spinors and for the largest shifts, the solver
requires only very few iterations. Since we have not yet extended QUDA to support exactly what
we require, these outer products on the CPU thus dominate total cost in this case.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

0

5

10

15

20

10 20 30

call #

so
lv
e
ti
m
e
[s
ec
]

precision / refinement

double

single / single

single / half

CPU: 3072 Intel Xeon Platinum 8168 cores (64 Juwels nodes)
GPU: 32 A100 + 384 EPYC Rome 7402 cores (8 Juwels Booster nodes)

Machine / Algorithm HB ACC

(CPU) QPhiX multi-shift CG 810 s 550 s
(CPU) DD-𝛼AMG accelerated multi-shift CG 590 s 400 s
(GPU) QUDA mshift CG (double) 145 s 93 s
(GPU) QUDA mshift CG (single / single) 127 s 79 s
(GPU) QUDA mshift CG (single / half) 103 s 66 s

Figure 4: Left: Timings of MS-CG calls along a trajectory (643 · 128 lattice) running on 32 A100 GPUs (8
Juwels Booster nodes) using full double precision (red circles), single precision MS-CG with double-single
shift-by-shift refinement (blue squares) or single precision MS-CG with double-half shift-by-shift refinement
(green triangles). Right: Comparison of timings of the rational approximation correction term in the same
simulation between running on 3072 CPU cores (64 Juwels nodes) and 32 A100 GPUs.

other 8.7 %

solve_degenerate 91.3 %

invert_eo_degenerate_quda 100.0 %

other 0.0 %

invertQuda 60.7 %

MG_Preconditioner_Setup_Refresh 19.7 %

other 5.8 %

updateMultigridQuda_sign_flip 13.8 %

derivative:2 derivative:3 derivative:4

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

call tree level

tim
e

cloverdetratio2light derivative

deriv_Sb 20.1 %

H_eo_sw_ndpsi 11.9 %

other 6.1 %

Qsw_tau1_sub_const_ndpsi 11.7 %

solve_mms_nd 22.5 %

sw_all 21.6 %

sw_term 6.1 %

invert_eo_quda_twoflavour_mshift 99.3 %

other 0.7 %

invertMultiShiftQuda 77.6 %

loadCloverQuda 7.6 %

loadGaugeQuda 6.0 %

other 8.8 %

derivative:2 derivative:3 derivative:4

0

200

400

600

800

0

250

500

750

0

1000

2000

3000

4000

call tree level

tim
e

ndcloverrat1 derivative

Figure 5: Left: Hierarchical profile of the force calculation of a monomial (see also fig. 2) dominated by
the solve_degenerate function running mostly on the GPU (specifically invertQuda and unavoidable
MG overheads). Right: Profile of a monomial derivative where only about 20% is offloaded to the GPU
(solve_mms_nd).

Even with these inefficiencies we reach overall GPU utilisation fractions between 30 and 70%
depending on the machine, the size of the machine partition and the simulation parameters (larger
partitions, lighter quark mass → higher utilisation). In order to attempt an apples-to-apples com-
parison, fig. 6 shows the cost per trajectory in node-hours on 3072 Intel Xeon Platinum 8168 cores
(64 Juwels nodes) compared to the cost in GPU-hours on 32 NVIDIA A100 (8 Juwels Booster
nodes) for a 643 · 128 ensemble at the physical point. Since a Juwels node uses about a factor of
four less power than a Juwels Booster node, we can estimate that in addition to reducing real time
by a factor of around 1.7, energy efficiency has improved by about a factor of three, with further
improvement expected when the remaining parts of the fermionic force are offloaded.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

4thorder + MG (CPU)

4thorder + MG (GPU)100

101

102

103

104

48 64 80 96 112 128 144

L/a

[N
o
d
e/
G
P
U
]-
h
ou

rs
p
er

tr
a
j.

3072 cores Intel Xeon Platinum 8168 (64 nodes)

32 NVIDIA A100 + 384 cores AMD EPYC Rome 7402 (8 nodes)

machine real CPU node-hrs / kWh
time GPU-hrs

64 nodes 2.61 h 167 ∼ 84
(Juwels)

32 GPUs 1.58 h 50.6 ∼ 24
(Juwels Booster)

Figure 6: Left: Cost per trajectory for a 643 · 128 simulation at the physical point (in node-hours for the
CPU machine, GPU-hours for the GPU machine). Right: Real time and cost per trajectory on 64 Juwels
nodes and 8 Juwels Booster nodes, respectively. Estimate of the respective power usage per trajectory.

2

4

6

8

4 8 16 32

Nodes

S
p
ee
d
-u
p

ideal

Juwels Booster

1

2

3

4

28 49 56 98 112

Nodes

S
p
ee
d
-u
p

ideal

Juwels Booster

Figure 8: Left: Strong-scaling
of a 643 · 128 simulation at the
physical point from 4 to 32 Juwels
Booster nodes. Right: Strong-
scaling of a 1123 · 224 simulation
at the physical point from 28 to
112 Juwels Booster nodes.

4.4 Strong-scaling and performance-portability

Created in M
aste

r P
DF Editor

0.4

0.6

0.8

1.0

1 2 3

(Mπ/M
phys
π )2

ti
m
e
p
er

tr
a
je
ct
or
y
[h
]

GPU type

A100

MI250

MI250 PRELIMINARY

Figure 7: Time per trajectory for well-
thermalised 𝑁 𝑓 = 2+1+1, 𝑉/𝑎4 = 323 · 64
simulations from about 𝑀𝜋 ∼ 250 MeV
down to the physical point (using the same
number of integration steps for all pion
masses) on a single Juwels Booster node
with 4 A100 GPUs (green circles) and a
single node of a test system at JSC with 4
MI250 GPUs.

In fig. 8 we show full-application behaviour for a 643 ·128
simulation scaled from 4 to 32 Juwels Booster nodes and
a 1123 · 224 simulation scaled from 28 to 112 nodes.
While strong scaling is quite good, it will worsen once
the remaining parts of the fermionic force are offloaded
as it will become more dominated by the scalability of
the MG algorithm.
Finally, to demonstrate the performance-portability of our
approach, in fig. 7 we show the time per trajectory of
thermalised 323 · 64 simulations running at different pion
masses on a single node of Juwels Booster (4 NVIDIA
A100 GPUs) and a single node of a preliminary test sys-
tem at JSC (4 AMD MI250 GPUs). It should be noted that
the environment (ROCm version, drivers, software stack)
on the AMD-based test system was not at all final and that
none of the algorithmic parameters, in particular the MG
setup, were retuned for the MI250-based machine. Still,
with just a little bit of work on the tmLQCD build system,
we were able to run tmLQCD + QUDA unmodified with
good performance on an architecture wich we had never used before.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

5. Conclusions

We have shown in this contribution that employing QUDA through its C interface to offload the
most expensive parts of the HMC is suitable for the current generation of GPU-accelerated super-
computers. Although we still need to offload a number of parts of the fermion force, we expect to
eventually be able to reach GPU utilisations between 60 and 70% on (pre-)exascale machines for
state-of-the-art simulations. Because we are dependent on a backend being available for a particular
architecutre, QUDA is likely not a general solution for our performance-portability problem, for
instance to target future CPU generations. We will also run into issues if very dense GPU con-
figurations are coupled with weak driver CPUs to keep total power consumption under control, as
we would need to offload a much larger fraction of tmLQCD’s functionality, necessitating support
for different memory layouts and execution spaces and thus essentially a complete rewrite. Further
improvements to scalability could be obtained through task parallelism (e.g. multiple monomials
on the same time scale, the n-th root trick or through modular supercomputing architectures [33])
at the cost of substantial refactoring. These improvements could be achieved by moving to Grid or
perhaps by using Kokkos [34] as a performance-portability layer. In addition, the interfacing layer
provided by Lyncs [35] could allow combining different libraries (Grid and QUDA, for example)
and enable both task parallelism and higher programmer productivity. All of these challenges, how-
ever, require a significant personnel investment into software development for lattice field theory,
ideally as a community effort.

Acknowledgments
We would like to thank the QUDA developers for their tremendous work as well as the many pleasant and productive
interactions during this and previous efforts. We thank the ETMC for the most enjoyable collaboration. B.K. was funded
by HPC.NRW. for part of this work. S.B. and J.F. are supported by the H2020 project PRACE 6-IP (grant agreement No.
82376) and the EuroCC project (grant agreement No. 951740). We acknowledge support by the European Joint Doctorate
program STIMULATE grant agreement No. 765048. This work is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) and the NSFC through the funds provided to the Sino-German Collaborative
Research Center CRC 110 “Symmetries and the Emergence of Structure in QCD” (DFG Project-ID 196253076 - TRR
110, NSFC Grant No. 12070131001). The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project through computing time on the GCS supercomputer JUWELS Booster [36]
at the Jülich Supercomputing Centre. Some of the runs done for this work were carried out on the Bender GPU cluster
at the University of Bonn and we gratefully acknowledge support by the HRZ-HPC team.

References

[1] ETM Collaboration, A. Abdel-Rehim et al., Phys. Rev. D 95, 094515 (2017), arXiv:1507.05068 [hep-lat].
[2] C. Alexandrou et al., Phys. Rev. D 98, 054518 (2018), arXiv:1807.00495 [hep-lat].
[3] Extended Twisted Mass Collaboration, C. Alexandrou et al., Phys. Rev. D 104, 074520 (2021),
arXiv:2104.06747 [hep-lat].

[4] J. Finkenrath et al., PoS LATTICE2021, 284 (2022), arXiv:2201.02551 [hep-lat].
[5] K. Jansen and C. Urbach, Comput. Phys. Commun. 180, 2717 (2009), arXiv:0905.3331 [hep-lat].
[6] A. Abdel-Rehim et al., PoS LATTICE2013, 414 (2014), arXiv:1311.5495 [hep-lat].
[7] A. Deuzeman, K. Jansen, B. Kostrzewa and C. Urbach, PoS LATTICE2013, 416 (2014), arXiv:1311.4521
[hep-lat].

9

http://arxiv.org/abs/1507.05068
http://arxiv.org/abs/1807.00495
http://arxiv.org/abs/2104.06747
http://arxiv.org/abs/2201.02551
http://arxiv.org/abs/0905.3331
http://arxiv.org/abs/1311.5495
http://arxiv.org/abs/1311.4521
http://arxiv.org/abs/1311.4521


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
4
0

Twisted mass ensemble generation on GPU machines Bartosz Kostrzewa

[8] C. Urbach et al., https://github.com/etmc/tmLQCD .
[9] I. Omelyan, I. Mryglod and R. Folk, Computer Physics Communications 151, 272 (2003).

[10] M. A. Clark, B. Joo, A. D. Kennedy and P. J. Silva, Phys. Rev. D 84, 071502 (2011), arXiv:1108.1828
[hep-lat].

[11] B. Joó et al., Lattice qcd on intel xeon phi coprocessors, in Supercomputing, edited by J. M. Kunkel, T. Ludwig
and H. W. Meuer, pp. 40–54, Berlin, Heidelberg, 2013, Springer Berlin Heidelberg.

[12] S. Heybrock et al., Lattice qcd with domain decomposition on intel® xeon phi co-processors, in SC ’14, pp. 69–80,
2014.

[13] B. Joó, D. D. Kalamkar, T. Kurth, K. Vaidyanathan and A. Walden, Optimizing wilson-dirac operator and linear
solvers for intel® knl, in International Conference on High Performance Computing, pp. 415–427, Springer, 2016.

[14] M. Schröck, S. Simula and A. Strelchenko, PoS LATTICE2015, 030 (2016), arXiv:1510.08879 [hep-lat].
[15] B. Joó, D. D. Kalamkar, T. Kurth, K. Vaidyanathan and A. Walden, Optimizing wilson-dirac operator and linear

solvers for intel® knl, in High Performance Computing, edited by M. Taufer, B. Mohr and J. M. Kunkel, pp.
415–427, Cham, 2016, Springer International Publishing.

[16] B. Joó et al., https://github.com/JeffersonLab/qphix .
[17] A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, SIAM J. Sci. Comput. 36, A1581 (2014),

arXiv:1303.1377 [hep-lat].
[18] C. Alexandrou et al., Phys. Rev. D 94, 114509 (2016), arXiv:1610.02370 [hep-lat].
[19] C. Alexandrou, S. Bacchio and J. Finkenrath, Comput. Phys. Commun. 236, 51 (2019), arXiv:1805.09584

[hep-lat].
[20] S. Bacchio, C. Alexandrou and J. Finkerath, EPJ Web Conf. 175, 02002 (2018), arXiv:1710.06198 [hep-lat].
[21] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181, 1517 (2010),

arXiv:0911.3191 [hep-lat].
[22] R. Babich et al., Scaling Lattice QCD beyond 100 GPUs, in SC ’11, 2011, arXiv:1109.2935 [hep-lat].
[23] M. A. Clark et al., Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization, in SC ’16,

pp. 795–806, 2016, arXiv:1612.07873 [hep-lat].
[24] P. A. Boyle, G. Cossu, A. Yamaguchi and A. Portelli, PoS LATTICE2015, 023 (2016).
[25] D. Richtmann, P. A. Boyle and T. Wettig, PoS LATTICE2018, 032 (2019), arXiv:1904.08678 [hep-lat].
[26] D. Richtmann, N. Meyer and T. Wettig, MRHS multigrid solver for Wilson-clover fermions, in 39th International

Symposium on Lattice Field Theory, 2022, arXiv:2211.13719 [hep-lat].
[27] SciDAC, LHPC, UKQCD Collaboration, R. G. Edwards and B. Joo, Nucl. Phys. B Proc. Suppl. 140, 832 (2005),

arXiv:hep-lat/0409003.
[28] F. Winter, arXiv:1111.5596 [hep-lat].
[29] F. T. Winter, PoS LATTICE2013, 042 (2014).
[30] F. Winter, M. Clark, R. Edwards and B. Joó, A framework for lattice qcd calculations on gpus, in 2014 IEEE 28th

International Parallel and Distributed Processing Symposium, pp. 1073–1082, 2014.
[31] M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98, 051601 (2007), https://link.aps.org/doi/10.1103/

PhysRevLett.98.051601.
[32] M. Lüscher, Computational strategies in lattice qcd, 2010.
[33] E. Suarez, N. Eicker and T. Lippert, Modular supercomputing architecture: from idea to production, in Contem-

porary high performance computing, pp. 223–255, CRC Press, 2019.
[34] H. Carter Edwards, C. R. Trott and D. Sunderland, Journal of Parallel and Distributed Computing 74, 3202 (2014),

https://www.sciencedirect.com/science/article/pii/S0743731514001257, Domain-Specific Lan-
guages and High-Level Frameworks for High-Performance Computing.

[35] S. Bacchio, J. Finkenrath and C. Stylianou, PoS LATTICE2021, 542 (2022), arXiv:2201.03873 [hep-lat].
[36] Jülich Supercomputing Centre, Journal of large-scale research facilities 5 (2019), http://dx.doi.org/10.

17815/jlsrf-5-171.

10

https://github.com/etmc/tmLQCD
http://arxiv.org/abs/1108.1828
http://arxiv.org/abs/1108.1828
http://arxiv.org/abs/1510.08879
https://github.com/JeffersonLab/qphix
http://arxiv.org/abs/1303.1377
http://arxiv.org/abs/1610.02370
http://arxiv.org/abs/1805.09584
http://arxiv.org/abs/1805.09584
http://arxiv.org/abs/1710.06198
http://arxiv.org/abs/0911.3191
http://arxiv.org/abs/1109.2935
http://arxiv.org/abs/1612.07873
http://arxiv.org/abs/1904.08678
http://arxiv.org/abs/2211.13719
http://arxiv.org/abs/hep-lat/0409003
http://arxiv.org/abs/1111.5596
https://link.aps.org/doi/10.1103/PhysRevLett.98.051601
https://link.aps.org/doi/10.1103/PhysRevLett.98.051601
https://www.sciencedirect.com/science/article/pii/S0743731514001257
http://arxiv.org/abs/2201.03873
http://dx.doi.org/10.17815/jlsrf-5-171
http://dx.doi.org/10.17815/jlsrf-5-171

	Introduction
	Even-odd and mass-preconditioned Dirac operators and framework choice
	Laying the groundwork
	Implementation details and performance
	Multigrid solver in the light sector
	Mixed-precision multi-shift solver in the heavy sector
	Efficiency
	Strong-scaling and performance-portability

	Conclusions

