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gauge configurations and computing solutions of the Dirac equation. One such key kernel in the
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1. Introduction

With the advent of modern spectroscopy methods for multi-hadron systems [1–3], ever more
complicated physical systems are coming into reach. While a variety of two-meson systems
including with several coupled channels have been investigated (see [4] for a plenary review at this
conference), and more recently even studies of three-meson systems have started appearing [5–12]
(also subject of a topical review this year [13]), the situation for systems with baryons is comparably
less advanced. Hadron interactions involving baryons are however among the fundamental building
blocks for an understanding of nuclear physics rooted in QCD (for a review, see for instance [14]).
Examples include two-nucleon interactions, which – when determined at sufficiently light pion
mass – can serve as a validation system to establish the reliability of these kinds of lattice QCD
calculations [15–18]; three-nucleon interactions, which are difficult to access phenomenologically
and hence present a great opportunity for lattice QCD to provide useful data; a variety of meson-
baryon systems, for instance nucleon-pion scattering in the isospin 𝐼 = 3/2 channel featuring the
Δ(1232) resonance [19–21].

Even though modern spectroscopy methods present no conceptual difficulties generalizing
to systems involving baryons, there are a few challenges in practice. Baryonic systems typically
suffer from a worse signal-to-noise ratio than purely mesonic systems, requiring larger amounts
of statistics to obtain meaningful results. In addition to necessitating more correlation-function
samples, every individual sample tends to be more computationally expensive compared to the
mesonic sector due to the increased number of quark fields. At the correlator-construction level,
algorithms eliminating redundant computations have been devised to alleviate the proliferation of
Wick contractions [5, 22–24].

This work is concerned with improving the efficiency of the computation of baryon functions
in the stochastic LapH method [2]. In the stochastic LapH framework, baryon blocks are rank-
three tensors in dilution indices, carrying additional labels identifying the baryon operator (flavor,
spin, hadron momentum) as well as the three noises used for the stochastic estimate of the quark
propagators in the LapH subspace. Correlators are then computed through tensor contractions over
dilution indices of those baryon functions as governed by Wick’s theorem. This beneficial property
of the stochastic LapH method – the evaluation of complicated multi-hadron correlation functions
is reduced to tensor contractions involving blocks representing the constituent hadrons – enables
the re-use of baryon blocks for a wide variety of physical systems. The optimizations presented in
this work are hence immediately applicable to a breadth of calculations involving baryons.

This contribution is organized as follows: section 2 defines the baryon-block kernel and
discusses its computational characteristics, section 3 contrasts several implementation strategies,
and benchmark results are presented in section 4.

2. Baryon blocks in the stochastic LapH method

The stochastic LapH method [2] is a stochastic variant of distillation [1] which avoids the
𝑉2 scaling with the spatial simulation volume 𝑉 by stochastically estimating the quark propagator
projected into the LapH (or distillation) subspace. A useful quantity for the computation of multi-
hadron correlation functions involving baryons is the (single-site) baryon function defined per time
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slice of the simulation volume,

𝐵
( ®𝑝,Λ,𝜇,𝜂)
𝑑1𝑑2𝑑3

= 𝑐
( ®𝑝,Λ,𝜇)
𝛼𝛽𝛾

∑︁
®𝑥

e−i ®𝑝 ®𝑥𝜖𝑎𝑏𝑐𝑞
(𝜂1,𝑑1 )
𝛼𝑎 ®𝑥 𝑞

′(𝜂2,𝑑2 )
𝛽𝑏 ®𝑥 𝑞

′′(𝜂3,𝑑3 )
𝛾𝑐 ®𝑥 , (1)

with color indices 𝑎, 𝑏, 𝑐, and the summation runs over the sites of a three-dimensional time slice
of the lattice. The relevant combinations of spin indices 𝛼, 𝛽, 𝛾 are selected according to the
group-theoretical projection coefficients 𝑐 ( ®𝑝,Λ,𝜇)

𝛼𝛽𝛾
for a given hadron momentum ®𝑝, irrep Λ and irrep

row 𝜇 [25]. The quark fields 𝑞, 𝑞′, 𝑞′′, which have been projected into the LapH subspace, are
obtained by repeatedly solving the Dirac equation with diluted stochastic sources identified by a
noise label 𝜂 and dilution index 𝑑1 = 1, . . . , 𝑁dil. Crucially, those solutions of the Dirac equation
for a given noise need only be computed once, and can then be cheaply stored on disk and used for
various multi-hadron projects by reconstructing the smeared quark fields from their coefficients 𝑄
in the basis of eigenvectors of the three-dimensional gauge-covariant Laplacian 𝜙 (𝑙) , 𝑙 = 1, . . . , 𝑁ev,
which is used to define the LapH subspace,

𝑞
(𝜂,𝑑)
𝛼𝑎 ®𝑥 =

𝑁ev∑︁
𝑙=1

𝑄
(𝜂,𝑑)
𝛼𝑙

𝜙
(𝑙)
𝑎 ®𝑥 , (2)

and similarly for 𝑞′ and 𝑞′′, which differ only in their coefficients𝑄, but with the same eigenvectors
𝜙.

Both the group-theoretical projection involving the spin indices and the bookkeeping of noise
indices in (1) are handled by the calling application, leaving

𝐵
( ®𝑝)
𝑑1𝑑2𝑑3

=
∑︁
®𝑥

e−i ®𝑝 ®𝑥𝜖𝑎𝑏𝑐𝑄
(1)
𝑑1𝑙1
𝑄
(2)
𝑑2𝑙2
𝑄
(3)
𝑑3𝑙3

𝜙
(𝑙1 )
𝑎 ®𝑥 𝜙

(𝑙2 )
𝑏 ®𝑥 𝜙

(𝑙3 )
𝑐 ®𝑥 , (3)

where summation over the eigenvector indices 𝑙1, 𝑙2 and 𝑙3 is implied, as the computational kernel,
which is called many times for different noise and spin combinations, i.e. different quark field
coefficients, but with the same momentum set and Laplacian eigenvectors.

Depending on the sizes of 𝑁ev and 𝑁dil, as well as how many times the kernel (3) is called per
time slice, one of the following two different approaches is preferable.

For moderate values of 𝑁ev, (3) can be efficiently computed using a two-step procedure: During
the setup stage, the mode-triplets

𝑇
®𝑝
𝑙1𝑙2𝑙3

=
∑︁
®𝑥

e−i ®𝑝 ®𝑥𝜖𝑎𝑏𝑐𝜙
(𝑙1 )
𝑎 ®𝑥 𝜙

(𝑙2 )
𝑏 ®𝑥 𝜙

(𝑙3 )
𝑐 ®𝑥 , (4)

which are spin-, noise- and flavor-blind, are computed and kept in memory. All lattice-sized objects
in (3) have then been consumed, and the baryon function for a given set of quark-field coefficients
can be computed by tensor-contracting them onto the precomputed mode-triplet. Those tensor
contractions can be performed with high performance, so the majority of the runtime tends to be
associated with the initial setup phase, which needs to be amortized over many kernel invocations.
The major drawback of this mode-triplet approach is the need to keep one 𝑁3

ev-sized object per
momentum in memory1.

1Based on the symmetries of (4), only
(𝑁ev

3
)

elements of a mode-triplet are independent. Exploting that symmetry
with a sparse storage scheme however complicates the subsequent tensor contractions of quark-field coefficients onto the
mode-triplet.
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For large number of eigenvectors 𝑁ev, a more economical approach is to first reconstruct
the quark fields from the coefficients as per (2), and subsequently perform the reduction (3) over
sets of lattice-sized objects. The quark-field reconstruction can be efficiently implemented using
matrix-matrix multiplication and reduces the complexity of subsequent lattice-sized reductions to
𝑁3

dil (rather than 𝑁3
ev for the mode-triplet approach), which however must be performed for every

kernel invocation.
In view of the requirements of baryon calculations in large volumes – such as the E250

ensemble [26] generated by the CLS effort [27, 28], where employing the mode-triplet approach is
not feasible2 – the goal of this work is to provide an efficient implementation of (3), which utilizes
the great compute capabilities of modern hardware by exploiting the 𝑁3

dil compute complexity with
only linear-in-𝑁dil memory traffic.

3. Implementation details

The quark-field reconstruction can be performed efficiently using matrix-matrix multiplication,
for which highly optimized implementations are available for all hardware architectures. Hence, in
the following section, we focus on optimizing the baryon-block calculation given the reconstructed
quark fields 𝑞1, 𝑞2, 𝑞3.

The optimized algorithm is shown in Algorithm 1. Typically, the number of requested hadron
momenta 𝑁mom is much smaller than the number of allowed momenta (e.g. 33 ≪ 643); therefore
using a fast Fourier transform is not beneficial. Hence, the phase factor 𝑒−i ®𝑝 ®𝑥 for the momentum
projection in (3) can be precomputed and re-used for several kernel invocations.

Cache blocking techniques are employed in conjunction with an appropriate data layout to
optimize data locality. Blocking is implemented both in the spatial indices 𝑥 and the three dilution
indices 𝑑1, 𝑑2, 𝑑3. The blocking in 𝑥 allows the kernel to exploit the available inherent input
reuse. For example, each block of 𝑞1 input can be kept in the cache and re-used for different 𝑑𝑖𝑞
calculations with different 𝑞2 since the input size is small enough to stay in the cache (ll. 8-14).
The blocking in 𝑑1, 𝑑2, 𝑑3 enables the kernel to keep the intermediate data (diq, singlet, tmpBuf )
in cache and use it for subsequent calculations (ll. 16-22). A suitable data memory layout is (in
row-major convention) 𝑁dil×𝑁BlockX×𝑁color×𝑁BsizeX for the input 𝑞1, 𝑞2, 𝑞3, ensuring that the data
is accessed contiguously in 𝑥 for each each color component. Furthermore, this data layout stores
the BlockX-sized chunks for the three colors of 𝑞1, 𝑞2, 𝑞3 adjacently, enhancing spatial locality in
the calculations of diq and singlet.

The small matrix-matrix multiplication in l. 23 to compute tmpBuf(:)+ = 𝑠𝑖𝑛𝑔𝑙𝑒𝑡 × 𝑝ℎ𝑎𝑠𝑒(:),
utilizes the Intel® Math Kernel Library (Intel® MKL) with just-in-time (JIT) code generation for
small matrices with𝑚 = BsizeD1×BsizeD2×BsizeD3, 𝑛 = 𝑁mom and 𝑘 = BsizeX. These matrices
– 𝑠𝑖𝑛𝑔𝑙𝑒𝑡 and tmpBuf – should be sufficiently small to remain in the cache. General-purpose
GEMM implementations are typically optimized targeting larger matrix sizes. Thus, for the small
matrix-matrix multiplication required here, the Intel® Math Kernel Library (Intel® MKL) with JIT

2First results in the mesonic sector presented in [29] used the analogous mode-doublet approach for meson construc-
tion, which is still affordable due to its slightly weaker 𝑁2

ev scaling. For the 𝑁ev = 1536 employed in that work, the mode
triplet on the other hand occupies 1.8 TB of memory already for the moderate number of momenta 𝑁mom = 33, clearly
making this approach impractical.
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Algorithm 1 Cache blocking algorithm with pseudo code
Input: 𝑞1, 𝑞2, 𝑞3, 𝑝ℎ𝑎𝑠𝑒
Output: 𝑏𝑎𝑟𝑦𝑜𝑛

1: ! 𝐵𝑙𝑜𝑐𝑘𝐷𝑖 ← 𝑁𝐷𝑖
/ 𝐵𝑠𝑖𝑧𝑒𝐷𝑖 (𝑖 = 1, 2, 3)

2: ! 𝐵𝑙𝑜𝑐𝑘𝑋 ← 𝑁𝑋 / 𝐵𝑠𝑖𝑧𝑒𝑋
3: function BaryonConstruct(𝑞1, 𝑞2, 𝑞3, 𝑝ℎ𝑎𝑠𝑒)
4: for 𝐵𝑙𝑜𝑐𝑘𝐷1 do in parallel
5: for 𝐵𝑙𝑜𝑐𝑘𝐷2 do in parallel
6: tmpBuf ← 0.
7: for each 𝐵𝑙𝑜𝑐𝑘𝑋 do
8: for 𝑑1 ← 1 to 𝐵𝑠𝑖𝑧𝑒𝐷1 do
9: for 𝑑2 ← 1 to 𝐵𝑠𝑖𝑧𝑒𝐷2 do

10: for 𝑥 ← 1 to 𝐵𝑠𝑖𝑧𝑒𝑋 do
11: 𝑑𝑖𝑞(𝑑1, 𝑑2, :, 𝑥) ← 𝑞1 (𝑑1, :, 𝑥) × 𝑞2 (𝑑2, :, 𝑥)
12: end for
13: end for
14: end for
15: for each 𝐵𝑙𝑜𝑐𝑘𝐷3 do
16: for 𝑑3 ← 1 to 𝐵𝑠𝑖𝑧𝑒𝐷3 do
17: for each 𝑑𝑖𝑞𝑖 in 𝑑𝑖𝑞 do
18: for 𝑥 ← 1 to 𝐵𝑠𝑖𝑧𝑒𝑋 do
19: 𝑠𝑖𝑛𝑔𝑙𝑒𝑡 (𝑑1, 𝑑2, 𝑑3, 𝑥) ← 𝑑𝑖𝑞𝑖 × 𝑞3 (𝑑3, :, 𝑥)space
20: end for
21: end for
22: end for
23: tmpBuf(:) ← tmpBuf(:) + 𝑠𝑖𝑛𝑔𝑙𝑒𝑡 × 𝑝ℎ𝑎𝑠𝑒(:) ⊲ Intel® MKL JIT GEMM
24: end for
25: end for
26: 𝑏𝑎𝑟𝑦𝑜𝑛← tmpBuf
27: end for parallel
28: end for parallel
29: return 𝑏𝑎𝑟𝑦𝑜𝑛
30: end function

Cache Blocking in
𝑁𝐷1 , 𝑁𝐷2 , 𝑁𝐷3 , 𝑁𝑋

compilation is used to generate target microarchitecture code for the kernel which is optimized
for small-sized complex-valued matrix multiplication problems. As the matrix sizes are fixed, the
kernel can be produced once and then called many times, amortizing the JIT compilation overhead.

Parallelization for multiple threads is achieved by distributing the work in the loops over
dilution-index blocks, (ll. 4-5) . In practice, the loops over BlockD1 and BlockD2 are collapsed into
a joint iteration space and parallelized for multiple threads with OpenMP. In this approach, there
are no data dependencies since computations of each thread are fully independent. Furthermore, as
each block works on an identical amount of data, the load is expected to be well-balanced between
threads. Lastly, parallelization is implemented at an outer level, encompassing plenty of work per
loop trip to amortize the OpenMP runtime overhead for instance for thread scheduling.
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Figure 1: Performance of the previous and optimized kernel normalized to the single-thread performance of
the previous implementation. The optimized kernel outperforms the baseline by up to 6.8x for the test with
fixed frequency (left) and by up to 7.2x for the test when turbo boost is enabled (right).

4. Performance results

The implementation of Algorithm 1 is evaluated on a test system with two Intel® Xeon® Plat-
inum 8358 processors @ 2.60 GHz for a moderately large problem size of 𝐿 = 64 with 𝑁dil = 64
dilution indices per quark field and number of requested momenta 𝑛mom = 33. Figure 1 shows the
performance of the optimized kernel compared to the previous implementation using 1 to 64 cores.

The block sizes are tunable parameters which generally depend on the target architecture and
should be tuned experimentally. For our test node, the block sizes yielding the best performance
are BsizeX = 32, BsizeD1 = 4, BsizeD2 = 8, BsizeD3 = 16. This can be understood as aligning the
memory footprint of each single intermediate object with the available cache hierarchy. For instance,
the 𝑑𝑖𝑞 array stores BsizeD1×BsizeD2×𝑁colors×BsizeX = 3072 complex double-precision values,
occupying 48 kB of memory, thus fitting perfectly into the L1 cache. Similarly, the 𝑠𝑖𝑛𝑔𝑙𝑒𝑡 has a
size of 256 kB which fits into the L2 cache.

When run on a single core, the optimized kernel is 1.8x and 2.5x faster than the baseline in tests
with and without turbo boost, respectively. With in-depth profiling, the superior performance of the
optimized implementation can be traced back to better use of the memory system, as expected. The
optimized kernel operates at 1.6x and 3x higher arithmetic intensity in Read and Write, respectively.
In addition, the memory access patterns are also significantly improved such that fewer cycles are
spent on load and store operations in the optimized kernel in comparison to the baseline (42%
reduction in loads and 70% reduction in stores). The optimized kernel is indicated to be L1-bound
instead of DRAM-bound. As a result, with a performance of 37.7 DP GFlops/s, the kernel reaches
54% of the theoretical peak performance.

The improvement of the optimized kernel becomes particularly apparent in multithreaded runs,
where it outperforms the baseline by 1.8x to 6.8x at fixed frequency and 2.5x to 7.2x for tests with
turbo boost on (Figure 1). This boost in performance can be understood as being due to improved
temporal locality. As long as threads progress at a comparable rate, adjacent threads working on a

6
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Figure 2: Strong-scaling behavior of the optimized kernel. Left: With fixed frequency, the kernel achieves
almost perfect parallel efficiency for a 62.5x speedup with 64 threads. Right: With turbo enabled, the kernel
scales well up to eight cores. Beyond eight cores, the variable frequency gets throttled and the decrease in
parallel efficiency matches the decrease in frequency, implying that the optimized kernel is compute-bound.

different BlockD2 but sharing the same BlockD1 access the same input data, which may be served
from the cache hierarchy.

Figure 2 shows the strong-scaling behavior of the optimized kernel at fixed clock frequency,
achieving almost perfect parallel efficiency at a speedup of 62.5x when using 64 cores. In addition,
the parallel efficiency is above 0.98 for all tests, implying that the kernel scales almost perfectly
within a node.

For production runs with turbo boost enabled the clock frequency can increase up to the boost
frequency (3.6 GHz on our test system). While performance in absolute terms is slightly better than
at fixed frequency, the strong-scaling parallel efficiency deteriorates, showing a 39.6x speedup with
64 cores (Figure 2). The loss in parallel efficiency is due to frequency throttling. While for one
thread the average frequency is 3.285 GHz, it drops to 2.219 GHz when running with 32 threads.
The frequency ratio 0.67 matches the parallel efficiency, indicating that the optimized kernel is
compute-bound and indeed limited by the frequency throttling.

The scalability of the optimized kernel with respect to the problem size, of importance in
view of ever-increasing simulation volumes, is shown in Figure 3. As is evident from (3), the
computational cost scales as O(𝐿3) and O(𝑁3

dil) with the spatial volume and number of dilution
indices, respectively. The optimized kernel scales as expected to within a few percent as a function
of the problem size both with the spatial volume as well as the number of dilution indices.

5. Summary

We have presented an optimized implementation of the kernel computing baryon blocks in
the stochastic LapH method, achieving an up to 7.2x speedup over the previos implementation.
Exploiting the high arithmetic intensity of (3) by blocking in dilution and spatial indices, and
performing the momentum projection with a JIT-compiled microkernel provided by the Intel®

7
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Figure 3: Scaling performance of the optimized kernel with respect to the problem size. The kernel scales
as expected to within a few percent both with the spatial volume and the number of dilution indices.

Math Kernel Library (Intel® MKL), we achieve good single-core performance on a test system
with Intel® Xeon® Platinum 8358 processors. Parallelizing over blocks of dilution indices using
multithreading, we also observe good scalability all the way to the maximum number of cores per
socket3.

This optimized implementation has been upstreamed into the chroma_laphmeasurement suite
and is ready for use in production runs on large lattice volumes.
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