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1. Introduction

The Standard Model of Particle Physics has proven to be one of the most promising and successful
physical theories ever developed, yet it shows inconsistencies that might lead to new physics beyond.
A promising landscapes to pursuit these searches is the hadronic flavour sector, where processes
involving heavy quarks play a crucial role. The investigation of these phenomena requires a non-
perturbative framework such as Lattice Field Theory to perform those computations from first
principles.

We introduced [1] a mixed-action setup that targets the control of systematics in heavy quark
computations. Our approach employs CLS ensembles [2, 3] with open boundary conditions in the
time directions, combined with a Wilson twisted mass action in the valence sector to compute𝑂 (𝑎)-
improved observables without improvement coefficients [5, 15]. In [17] we review the scale-setting
procedure of our setup, while in [18] we present preliminary results for the light quark masses.
Here we focus on the study of charm physics observables, and we discuss an update from [4, 7] for
the charm quark mass and for charmed mesons decay constants, presenting final results with the
first generation of CLS ensembles at four values of the lattice spacing.

2. tmQCD mixed action

The set of gauge ensembles used in our study were produced within the CLS initiative [2, 3]. The
gauge action employed in CLS ensembles is the so-called tree-level improved Lüscher-Weisz gauge
action [8], while on the fermionic sector the action involves a Wilson Dirac operator for 𝑁 𝑓 = 2 + 1
flavours [9], where the Sheikholeslami-Wolhert 𝑐sw coefficient is computed non-perturbatively [12].
In particular, this work is performed with the first generation of CLS 𝑁 𝑓 = 2 + 1 ensemble, listed
in Tab. 1, at four values of the lattice spacing ranging from 0.087 fm down to 0.050 fm.

The ensembles lie along an approximate line of constant trace of the bare quark mass matrix,

tr
(
𝑀𝑞

)
= 2𝑚𝑞,𝑢 + 𝑚𝑞,𝑠 = const, (1)

where 𝑚𝑞, 𝑓 = 𝑚0, 𝑓 − 𝑚cr. As a result, changes in the sea quark masses keep constant the cutoff
effects of 𝑂 (𝑎 tr 𝑀𝑞) appearing in the Symanzik expansion of the bare coupling.

While approaching the physical point it is beneficial to consider a renormalised chiral trajectory
in terms of the pion and kaon masses. Specifically, the following dimensionless quantities

𝜙4 ≡ 8𝑡0
(
1
2
𝑚2
𝜋 + 𝑚2

𝐾

)
, 𝜙2 ≡ 8𝑡0𝑚2

𝜋 , (2)

depending on the gradient flow observable 𝑡0, are used to establish the chiral trajectory [2]. In this
setup, the value of 𝜙4 has to be fixed to its physical value𝜙phys

4 = 1.110(13) on each ensemble,
where we have used the physical values of pion and kaon masses and the physical value of the
gradient flow 𝑡

phys
0 as determined in [11]. The light quark mass dependence of physical quantities is

then encoded in the 𝜙2 hadronic combination and the physical point is reached via an extrapolation
to 𝜙

phys
2 = 0.0796(19). In practice, deviations from 𝜙

phys
4 have been observed to be non negligible.

Therefore, in order to restore 𝜙4 = 𝜙
phys
4 on each ensemble, we apply small corrections to the

simulated bare quark masses. This mass shift is then applied to any observable by mean of a Taylor
expansion as pioneered in [11].

The mixed action setup in the valence sector contains 𝑁 𝑓 = 2+1+1 quark flavours regularised
with a Wilson twisted mass Dirac operator at maximal twist to achieve automatic𝑂 (𝑎) improvement
[1]. To achieve full twist and recover the unitarity of the theory we simultaneously impose the bare
standard mass matrix to be equal to the critical mass and we match the sea and valence by imposing
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the light pseudoscalar masses to be equal in both sectors. More details on the full twist regime and
the matching procedure can be found in [15, 16] and the more recent update [17].

Id 𝛽 𝑁𝑠 𝑁𝑡 𝑚𝜋 [MeV] 𝑚𝐾 [MeV] 𝑀𝜋𝐿

H101 3.4 32 96 420 420 5.8
H102 3.4 32 96 350 440 5.9
H105 3.4 32 96 280 460 3.9
H400 3.46 32 96 420 420 5.2
N200 3.55 48 128 280 460 4.4
N202 3.55 48 128 420 420 6.5
N203 3.55 48 128 340 440 5.4
D200 3.55 64 128 200 480 4.2
N300 3.70 48 128 420 420 5.1
J303 3.70 64 196 260 470 4.1

Table 1: List of CLS 𝑁 𝑓 = 2 + 1 ensembles used in the present study [2]. 𝑁𝑠 and 𝑁𝑡 refer to the spatial and
temporal extent of the lattice. Approximate values of the pion and kaon masses are provided.

2.1 Matching to the physical charm quark mass
In our setup, the charm quark is not a dynamical fermion, hence its matching procedure requires
a different strategy. For this reason, we simulate at three values around the charm quark mass and
the matching can be performed by imposing that some charm observable 𝜙

(𝑖)
𝑐 =

√
8𝑡0𝑀 (𝑖)

𝐻
in terms

of the reference scale 𝑡0 matches to its physical value for each ensemble. We studied three tuning
strategies based on flavour-averaged, spin-flavour averaged combinations of meson masses and on
the connected contributions of the 𝜂𝑐 mass:

𝑀
(1)
𝐻

=
1
3
(
2𝑀𝐷 + 𝑀𝐷𝑠

)
,

𝑀
(2)
𝐻

= 𝑀𝜂𝑐 ,

𝑀
(2)
𝐻

=
1
4
(
𝑀

(1)
𝐻

+ 2𝑀∗
𝐷 + 𝑀∗

𝐷𝑠

)
. (3)

However this method present some drawbacks, since it introduces the dependence on the
physical scale 𝑡

phys
0 at finite lattice spacing. Moreover, meson masses in each ensembles are

computed at unphysical values of 𝜙2 and they contains 𝑂 (𝑎2) cutoff effects. Therefore, we prefer to
perform the charm quark matching jointly with the continuum-chiral extrapolation. We eventually
parametrize the charm quark mass dependence of a given observable O𝑐 (𝑎, 𝜙2, 𝜙

(𝑖)
𝑐 ) and perform

a combine fit to its physical value O𝑐 (0, 𝜙2 |phys, 𝜙
(𝑖)
𝑐 |phys). In sections 3.1 and 3.2 we will describe

the functional forms that we used for the charm quark mass and the 𝐷 (𝑠) meson decay constants
respectively.

3. Computational details of the observables

We have measured two-point correlation functions at zero-momentum to extract ground-state meson
masses and decay constants from the CLS 𝑁 𝑓 = 2 + 1 ensembles listed in Tab. 1.

The open boundary conditions in the Euclidean time direction modify the spectrum of the
theory in the neighbourhood of the boundaries. To address the boundary effects, the sources of the

3
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two-point functions are set in the bulk, precisely in the middle of the lattice at 𝑦0 = 𝑇/2. In more
detail, the two-point correlation functions are defined as

𝑓
𝑞𝑠

OO′ =
𝑎6

𝐿3

∑︁
®𝑥, ®𝑦

〈
O𝑞𝑠 (𝑥0, ®𝑥)O

′𝑞𝑠 (𝑦0, ®𝑦)
〉
, (4)

where 𝑦0 and 𝑥0 are the source and sink time coordinates respectively while 𝑞 and 𝑠 are flavour
indices. The quark bilinear operators O𝑟𝑠 are defined in terms of the of the Euclidean gamma
matrices combinations Γ as

O𝑞𝑠 (𝑥) = 𝜓
𝑞 (𝑥)Γ𝜓𝑠 (𝑥), (5)

where we use Γ = 𝛾5 for the pseudoscalar density 𝑃. The automatic 𝑂 (𝑎)-improvement of the
twisted mass formulation allows us to extract meson decay constants from pseudoscalar matrix
elements as discussed later in more detail. In this work we rely on the generalized eigenvalue
problem (GEVP) variational method to compute the spectrum and matrix elements of charmed
mesons [20, 21]. We refer to [7] for further details on the extraction of the observables from the
GEVP.

3.1 Charm quark mass

As metioned in the previous section, to achieve the maximal twist regime we have to set the
standard bare quark mass to its critical value. As a consequence, PCAC quark masses entering
the Ward identites vanish and all the physical information is encoded in the twisted mass matrix
𝝁0 = diag(+𝜇0,𝑙,−𝜇0,𝑙,−𝜇0,𝑠, +𝜇0,𝑐). Therefore we define the renormalised charm quark mass in
the twisted mass mixed action formulation as

𝜇𝑅𝑐 = 𝑍−1
𝑃 (𝑔2

0, 𝑎𝜇ℎ𝑎𝑑)𝜇𝑐 (1 + 𝑎𝑏̄𝜇 tr 𝑀𝑞) +𝑂 (𝑎2), (6)

where 𝑏̄𝜇 = 𝑂 (𝑔4
0) start at two-loop in perturbation theory [5]. At full twist, the definition in Eq.

6 is free from cutoff effects proportional to 𝑂 (𝑎𝜇) coming from the valence, while cutoff effects
coming from the sea light quark matrix can contribute but are highly suppressed by the fourth
power of the coupling. In what follows we neglect these 𝑂 (𝑎 tr 𝑀𝑞) effects and our assumption
is supported by continuum limit extrapolation, where we observe behaviour consistent with 𝑂 (𝑎)
improved quantities.

The charm quark mass estimator in Eq. 6 is then combined with the flavour independent
running factor

𝑀

𝑚(𝜇had)
= 0.9148(88) (7)

computed in [22] using the Schrödinger Functional scheme for 𝑁 𝑓 = 3 massless flavours to defined
the Renormalisation Group Invariant (RGI) charm quark mass

𝑀RGI
𝑐 =

𝑀

𝑚(𝜇had)
𝑍−1
𝑃 (𝑔2

0, 𝑎𝜇ℎ𝑎𝑑)𝜇𝑐 . (8)

3.2 𝐷 (𝑠) meson decays

Together with the charm quark mass, in this work we focus on a precise determination of the 𝐷

and 𝐷𝑠 meson decay constants, relevant for electroweak leptonic decays. The matrix element that
mediate the weak interaction transition defines the decay constant 𝑓𝑞𝑟 as��⟨0| A𝑞𝑟

0 |𝑃𝑞𝑟 (p = 0)⟩
�� = 𝑓𝑞𝑟𝑀𝑞𝑟√︁

2𝑀𝑞𝑟𝐿
3
, (9)
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where the factor 1/
√︁

2𝑀𝑞𝑟𝐿
3 is the relativistic normalization of a single particle state, while

��𝑃𝑞𝑟 〉
denotes the ground state for a pseudoscalar meson.

At full twist the symmetries of the Wilson twisted mass formulation relate the physical axial
current to the vector current in the twisted basis for non-diagonal flavours that mixes up-type and
down-type quarks,

V𝑞𝑟
𝜇 = −𝑖A𝑞𝑟

𝜇 , 𝜇𝑞 > 0 > 𝜇𝑟 . (10)

Moreover, the conservation of the Ward identity on the lattice

⟨0| 𝜕∗0𝑉
𝑞𝑟

0 |𝑃𝑞𝑟 (p = 0)⟩ = 𝑖(𝜇𝑞 − 𝜇𝑟 ) ⟨0| 𝑃𝑞𝑟 |𝑃𝑞𝑟 (p = 0)⟩ , (11)

implies that the point-split current 𝑉̃𝑞𝑟𝜇 renormalizes as in the continuum with a trivial factor 𝑍𝑉̃ = 1.
As a result, the renormalization constants 𝑍𝜇 and 𝑍𝑃 for the twisted mass and pseudoscalar density
respectively fulfil the condition

𝑍𝜇 = 𝑍−1
𝑃 . (12)

Therefore the pseudoscalar decay constants in the Wtm formulation at full twist renormalize triv-
ially, and we are able to compute decay constants just with pseudoscalar-pseudoscalar correlators.
Eventually, we define the 𝑓𝐷 and 𝑓𝐷𝑠

decay constants as

𝑓𝐷(𝑠) =

√︄
2

𝐿3𝑚3
𝐷(𝑠)

(𝜇𝑐 + 𝜇𝑙 (𝑠) ) ⟨0| 𝑃𝑐,𝑙 (𝑠)
��𝐷 (𝑠)

〉
, (13)

were we extract the relevant matrix elements from the eigenvectors of the GEVP at large distances
where the exponential decay is dominated by the ground state, as explained in [7].

3.3 Chiral-continuum extrapolations

Once we have determined the ground state meson masses and decay constants from the GEVP, we
eventually go ahead with a combined chiral-continuum extrapolation. The approach to the physical
light quark mass dependence is controlled by the hadronic quantity 𝜙2 = 8𝑡0𝑚2

𝜋 only, as we already
fixed the strange quark by taking tr 𝑀𝑞 = const (see Sec. 2), while the interpolation to the physical
charm quark mass is monitored by 𝜙

(𝑖)
𝑐 =

√
8𝑡0𝑚 (𝑖)

𝐻
. As discussed in Sec. 2.1, we studied three

different matching conditions based on the meson masses combinations reported in Eq. 3.
We perform the extrapolations for the renormalised charm quark mass of Eq. 6 and the charm-

light meson decay constants defined in Eq. 13. All the observables are made dimensionless through
the factor

√
8𝑡0 and the physical units are restored after the extrapolation to the physical point by

dividing for
√︃

8𝑡phys
0 . In the analysis we include all the ensembles listed in Tab. 1.

For the lattice spacing dependence of the observables we assume the leading cutoff effects to be
of𝑂 (𝑎2) as the mixed action at full twist ensures the absence of𝑂 (𝑎) cutoff effects1 and the relevant
𝑂 (𝑎) improved renormalization constant are know non-perturbatively from [22]. Eventually our
general ansatz for the lattice spacing dependence is parametrised by

𝑐O (𝜙2, 𝜙𝐻 , 𝑎) =
𝑎2

8𝑡0
(
𝑐1 + 𝑐2𝜙2 + 𝑐3𝜙

2
𝐻

)
+ 𝑎4

(8𝑡0)2
(
𝑐4 + 𝑐5𝜙

4
𝐻

)
. (14)

Here we allow for cutoff terms describing the higher𝑂 (𝑎4) effects and we also consider cutoff effects
proportional to the light quark masses. In the twisted mass formulation of LQCD at maximal twist,

1Apart from residual lattice artifacts proportional to the sea light quark masses. As explained in [5] these effects are
negligible at the current precision.

5
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all the odd powers of the lattice spacing are suppressed.
The continuum behaviour is governed by the quantity

√
8𝑡0Ocont, whose definition is observable-

dependent. More details on this quantity for the charm quark mass and the 𝑓𝐷𝑠
decay constants

are given in the following. Finally to arrive at a combined model we follow a similar strategy as
proposed in [23] by either adding linearly or multiplying non-linearly the continuum and the lattice
spacing dependencies√︁

8𝑡0Olinear(𝜙2, 𝜙𝐻 , 𝑎) =
√︁

8𝑡0Ocont(𝜙2, 𝜙𝐻 , 0) + 𝑐O (𝜙2, 𝜙𝐻 , 𝑎), (15)√︁
8𝑡0Onon-lin(𝜙2, 𝜙𝐻 , 𝑎) =

√︁
8𝑡0Ocont(𝜙2, 𝜙𝐻 , 0)

(
1 + 𝑐O (𝜙2, 𝜙𝐻 , 𝑎)

)
.

In order to estimate the systematic effects arising from the model selection, we study all the
possible combinations of the coefficients 𝑐𝑖 in Eq. (14), for a total of 64 different models for
each matching condition. To estimate the fit parameters of all the possible models we use a 𝜒2

minimization scheme. Since we are dealing with highly correlated data the uncorrelated 𝜒2 does
not yield reliable estimates of the fit paramaters. In practice we bypass this problem by employing
the so-called 𝜒2 expected, 𝜒2

exp, as estimator for the goodness of a fit [24]. Eventually, to extract a
final result within each category, we employ a weighted model average by mean of an Information
Criteria (IC) à la Akaike as proposed in [23, 25]. We therefore introduce the IC coefficient for each
functional form as [23]

IC =
𝜒2

𝜒2
exp

(𝑁 − 𝑘) + 2𝑘 + 2𝑘2 + 2𝑘
𝑁 − 𝑘 − 1

, (16)

where N is the number of data points and k the number of parameters in the model. More details
on the model selection procedure we employ are given in [7], while in [19] we study continuum
scaling with a detailed comparison between Wilson and twisted mass valence quarks.

4. Results

4.1 Charm quark mass

We model the continuum dependence of the dimensionless renormalised charm quark mass with
the functional form √︁

8𝑡0𝑀cont
𝑐 (𝜙2, 𝜙𝐻 , 0) = 𝑝0 + 𝑝1𝜙2 + 𝑝2𝜙𝐻 , (17)

where the chiral extrapolation and the matching to the physical charm are governed again by 𝜙2 and
𝜙𝐻 respectively. Cutoff effects are described by Eq. 14 and we eventually arrive at a combine model
as in Eq. 15. We recall that our data are classified in three categories, according to whether the
charm is fixed to its physical value via the flavour-averaged, the spin flavour-averaged combinations
or the 𝜂𝑐 mass. We stress out that the light quark mass dependence is dominated by the sea pion
mass 𝜙2 only, since the mass shift corrections to the chiral trajectory ensure the kaon masses to be
fixed by the condition tr

(
𝑀𝑅
𝑞

)
= const.

We observe that results coming from the flavour-averaged and the 𝜂𝑐 matching conditions are
compatible, while the spin flavour-averaged combination is not well under control. In particular it
exhibits a higher value of the 𝜒2/𝜒2

exp, which is presumably a reflection of a poor control of the
vector states. Therefore we chose to exclude it from the weighted average, although it would be
automatically suppressed by the information criteria.

In Fig. 1 we show some of the best fits for the chiral-continuum extrapolation according to the
IC for the renormalised charm quark mass in unit of

√
8𝑡0. We notice that 𝑂 (𝑎4) cutoff effects have

to be taken into account in both the flavour-averaged and the 𝜂𝑐 matching prescriptions for a good
description of the data, especially for coarsest values of the lattice spacing.

6
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Figure 1: Comparison of some of the best fits according to the IC. Left: chiral approach to the physical
point of the charm quark mass for the flavour-averaged matching condition. The dashed lines corresponds
to the chiral trajectories at finite lattice spacing, while the blue shaded band is a projection to the continuum
limit fit. The red point represent the fit result at the physical point. Right: continuum limit behaviour of the
charm quark mass for the flavour-averaged (blue) and the 𝜂𝑐 (yellow) matching conditions. Data points are
projected to the physical pion mass and the physical charm quark mass.

In Fig. 2 we summarise the model average procedure showing all the fit results coming from
different models. We observe that they are mildly scattered around the model averaged value.
Therefore our charm quark mass determination is dominated by the statistical error. Eventually,
to extract the RGI mass we employ Eq. 8. Following the analysis procedure described above, we
quote as a final result for the RGI charm quark mass

𝑀RGI
𝑐 = 1494(17) (3) MeV, (18)

where the first error is statistical and second accounts for the systematic arising from de model
selection. The dominant contribution to the error comes from the non-perturbative renormalization
group running factor of Eq. 8 that connects renormalised quark masses to their RGI counterpart.
Moreover, the second most dominant contribution comes from the scale setting procedure and the
physical value of 𝑡phys

0 . This tells us that the major error sources actually come from external inputs,
while the statistical uncertainty arising from the correlation functions is by far subleading. In the
first pie-chart in Fig. 4 we report the error budget in our 𝑀RGI

𝑐 computation.

4.2 𝐷 (𝑠) meson decays

The decay constants 𝑓𝐷 and 𝑓𝐷𝑠
are computed similarly to the charm quark mass. The continuum

behaviour of the dimensionless renormalized decay constants can be inferred from Chiral Pertur-
bation Theory with heavy quarks [26, 27]. Therefore we perform global fits for both 𝑓𝐷 and 𝑓𝐷𝑠

including chiral logarithm corrections

𝑓𝐷 = 𝑝0 + 𝑝1𝜙2 +
𝑝2√
𝜙𝐻

+ 𝑝3

(
3𝜇𝜋 + 2𝜇𝐾 + 1

3
𝜇𝜂

)
,

𝑓𝐷𝑠
= 𝑝0 + 2𝑝1(𝜙4 − 𝜙2) +

𝑝2√
𝜙𝐻

+ 𝑝3

(
4𝜇𝐾 + 4

3
𝜇𝜂

)
, (19)
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Figure 2: Model average procedure for 𝑀RGI
𝑐 (𝑁 𝑓 = 3). Left: summary of all the results coming from

different fit models. Results on the left side of the red vertical line correspond to the flavour-averaged
matching conditions, while the one on the right refers to the 𝜂𝑐 matching. The opacity of each point is
associated to its weight on the model average. The blue shaded band represent the systematic error and the
blue point the final result coming from the model average. Right: weighted histogram collecting all results
from the two different matching procedure. The yellow band represents the systematic error arising from the
model selection.
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Figure 3: Chiral behaviour of some of the best fits according to the IC. Left: 𝑓𝐷 decay constant. Right: 𝑓𝐷𝑠

decay constant. Here the dashed lines show the chiral trajectories at finite lattice spacing, while the blue
shaded bands are the projections to the continuum limit. Finally, the red points denote results at the physical
point.

where

𝜇𝜋 = 𝜙2 log(𝜙2),

𝜇𝐾 =

(
𝜙4 −

1
2
𝜙2

)
log

(
𝜙4 −

1
2
𝜙2

)
,

𝜇𝜂 =

(
4
3
𝜙4 − 𝜙2

)
log

(
4
3
𝜙4 − 𝜙2

)
.

Here 𝜙2 and 𝜙4 are the usual hadronic combinations defined in Eq. 2. For cutoff effects we consider
a similar parameterization as in Eq. 14. However, we observe that non-linear terms describing
cutoff effects turn out to be highly unstable. Hence, we only consider the linear combination for the
decay constants, ending up with a total of 32 different models for each matching condition.

In Fig. 3 we report the best fits for 𝑓𝐷 and 𝑓𝐷𝑠
respectively as given by the IC for different

matching categories. We observe that in the case of the decay constants the spin-flavoured average
matching condition turns out to be stable with reasonable values of the 𝜒2 such that results coming
from this category are not suppressed by the model average procedure. Therefore, we include this
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Figure 4: Dominant error contributions to the final results for 𝑀RGI
𝑐 (left), 𝑓𝐷 (center) and 𝑓𝐷𝑠

(right).

matching condition in our average. Eventually from the weighted average for different models we
quote as preliminary results for the decay constants

𝑓𝐷 = 208.0(5.7) (1.9) MeV,

𝑓𝐷𝑠
= 244.7(5.2) (0.9) MeV,

𝑓𝐷𝑠
/ 𝑓𝐷 = 1.1709(83). (20)

where for 𝑓𝐷(𝑠) the first error is statistical and the second is the systematic, while for the ratio we
only quote the statistical error. In Fig. 4 we plot the different error contributions to the 𝐷 (𝑠) meson
decay constants. In contrast to 𝑀RGI

𝑐 , the most dominant error source come from the statistical error
of the correlation functions for both 𝑓𝐷 and 𝑓𝐷𝑠

, with the second subleading contribution being the
external input 𝜙phys

4 .

5. Conclusions

We have presented an update on [7] showing our most recent results for the RGI charm quark mass
and the 𝐷 (𝑠) meson decay constants from a tmQCD mixed-action setup at full twist using a subset
of CLS 𝑁 𝑓 = 2 + 1 ensembles. Since our charm quark mass error budget is dominated by external
inputs, there is no room for significant improvement in the precision. On the other hand, 𝑓𝐷(𝑠) decay
constants are dominated by statistical error, hence we expect a substantial improvement as we will
include the new generation of CLS gauge configurations with finest values of the lattice spacing
and more chiral ensembles in the following stage of the project.
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