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1. Introduction

The static energy E(r) of a quark-antiquark pair is one of the first quantities computed in
lattice QCD; the static force is its derivative. At short distances it can be compared to perturbative
calculations, and therefore, it can be used for extracting the strong coupling constant. Furthermore,
it can be used to set the scale on the lattice.

The static energy is perturbatively known up to N3LL [1–5] and, hence, so it is the force F(r).
However, the perturbative static energy in dimensional regularization has a renormalon ambiguity
of order ΛQCD, which corresponds to a linear UV divergence (∝ 1/a) on the lattice. This ambiguity
and divergence vanish if we take the derivative for obtaining the static force, and all the physical
information, like the coupling, is encoded in the slope of the static energy.

Recently, the force has been measured on the lattice directly [6], and perturbatively calculated
at NLO in continuum inMSwith gradient flow [7]. The present work is based on both developments
and presents updates with respect to previous results [8]. We find it useful to use the derivative of
the static energy as a benchmark to assess discretization effects and systematics. This work is also
instrumental to set best strategies to calculate on the lattice chromoelectric and chromomagnetic
field correlators arising in the nonrelativistic effective field theories low energy factorization. The
study is sufficiently innovative to grant interest even if quenched.

The proceedings are organized as follows. In Sec. 2 we introduce the definition of the force in
terms of a chromolectric insertion in a static Wilson loop, the gradient flow, the flowed force and
the lattice setup. In Sec. 3, we present the analysis of the lattice data, the continuum limit and the
comparison to the perturbative results in the short range.

2. Physical setup

2.1 The static force

The static energy E(r) is related to a Wilson loop Wr×T with temporal extent from 0 to T and
spatial extent r [9] by

E(r) = − lim
T→∞

ln〈Tr(Wr×T )〉

T
= −

1
a

lim
T→∞

〈Tr(Wr×(T+a))〉

〈Tr(Wr×T )〉
, (1)

Wr×T = P
{
exp

(
i
∮
r×T

dzµgAµ

)}
, (2)

where a is the lattice spacing, and P is the path ordering operator. The static force F(r) is defined
as the derivative of the static energy:

F(r) = ∂rE(r). (3)

Often, this derivative is evaluated from the static energy data either with interpolations or with finite
differences. However, this leads to increased systematic errors. Alternatively, we can measure the
force on the lattice directly via the formula [10–12]

F(r) = − lim
T→∞

i
〈Tr(Wr×T 〉

〈
Tr

(
P

{
exp

(
i
∮
r×T

dzµgAµ

)
r̂ · gE(r, t∗)

})〉
(4)

= − lim
T→∞

i
〈Tr{PWr×TgEj(r, t∗}〉

〈Tr(Wr×T 〉
, (5)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
5
3

Static force with gradient flow Julian Mayer-Steudte

where the expression in the numerator consists of a static Wilson loop with a chromoelectric field
insertion on the temporal Wilson line at position t∗, and r̂ is the spatial direction. In general, t∗

is arbitrary. Nevertheless, we choose t∗ = T/2 for even-spaced separations, and an average over
t∗ = T/2 ± a/2 for odd-spaced separations. This reduces the interactions between the E-field and
the corners of the Wilson loop.

2.2 Gradient flow

TheYang-Mills gradient flow flows the gauge fieldsUµ towards theminimum of the Yang-Mills
gauge action along a fictitious dimension called flow time τF . The transformation is determined by
solving the ordinary differential equation for flowed link variables with the original configuration
as initial condition [13–15]:

ÛVτF (x, µ) = −g
2
0
[
∂x,µS(VτF )

]
VτF (x, µ) , (6)

VτF (x, µ)|τF=0 = Uµ(x) , (7)

where ∂x,µS(VτF ) is the derivative of a gauge action according to the flowed link variable VτF (x, µ).
It is known that gradient flow acts like smearing characterized by the flow radius

√
8τF , which

improves the signal to noise ratio and renormalizes gauge invariant operators. This is especially
useful for operators with field strength component insertions, which would normally require an
extra renormalization on the lattice.

The flowed link variable depends only on the initial configuration, therefore, we can write it as
a function of the non-flowed field as VτF = VτF [U]. Flowed observables are obtained by replacing
the original gauge links with the flowed ones, the resulting path integral is represented as

〈O(τF )〉 =
1
Z

∫
D[U]e−SE [U]O[VτF ] , (8)

which states that the underlying theory remains unchanged. However, to connect to the physical
observable, we have to perform the limit τF → 0.

2.3 The perturbative force in gradient flow

The static force in gradient flow has been perturbatively determined at 1-loop order in Ref. [7]
for general flow time τF . In the small flow time expansion, it can be expressed as

r2F1−loop(r, τF ) ≈ r2F1−loop(r, τF = 0) +
α2
SCF

2π
[−12β0 − 6CAcL]︸                ︷︷                ︸

8n f

τF

r2 , (9)

with cL = −22/3. We see that, in pure gauge, the static force should be constant for small flow
times, since the flow time dependent term is proportional to n f . Furthermore, the relevant scale
for the force is the dimensionless ratio τF/r2. We note that in the analysis, the flow time τF and
the flow time ratio τF/r2 can be used interchangeably. The whole 1-loop expression can be found
in [7].

Since the static force is known to 3-loop order at zero flow time and the higher loop contributions
are crucial for the extraction of the Λ0 parameter, we choose a hybrid ansatz, where we model the
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NS NT β a[fm] Nconf Label
20 40 6.284 0.060 6000 L20
26 52 6.481 0.046 6000 L26
30 60 6.594 0.040 6000 L30
40 80 6.816 0.030 2700 L40

Table 1: The lattice parameters for the computations.

flow time dependence with the full 1-loop formula and use the higher loop result at zero flow time.
Up to a given order:

r2Forder(r, τF ) ≡ r2Forder(r, τF = 0) + f 1−loop(r, τF ) (10)

f 1−loop(r, τF ) ≡ r2F1−loop(r, τF ) − r2F1−loop(r, τF = 0) . (11)

We work in the pure SU(3) gauge theory (n f = 0), and call Λ0 ≡ Λ
n f =0
MS

. In Ref [7], they

discuss the scale choices of µ = 1/r , µ = 1/
√

r2 + 8τF , and µ = 1/
√

8τF . We will focus on µ = 1/r
and µ = 1/

√
r2 + 8τF here.

2.4 Lattice setup

We generate quenched gauge field configurations with the MILC code. Table 1 shows the
parameters used in our calculations. The scale setting is done through [16]. The configurations are
produced with overrelaxation and heatbath algorithm. For solving the gradient flow equation, we
use the Symanzik improved action, and fixed stepsize algorithm [15] for the lattices L20, L26, and
L30, and adaptive algorithm for L40 [17, 18]. We use blocking with jackknife sampling for the
error propagation.

3. Analysis

3.1 Plateau extraction

In order to extract the ground state of the static force and energy in the T → ∞ limit, we fit a
constant within a suitable range of T . This has to be done for each fixed (r, τF ) or (r, τF/r2) at each
lattice. We automatize the plateau extraction with the Akaike information criterion (AIC) based
model averaging, as described in Ref. [19].

Here, we will briefly summarize the model averaging procedure. We are interested in the model
parameters a ∈ Rk (k being the number of parameters) of a model function f (x, a) for a quantity
xi with i = 1, . . . , N . We have the data D = (xi, yi,Ci j) with yi being the data corresponding to xi,
and Ci j its covariance matrix. We perform the fits using the data only in the range i1 to i2 for all
possible ranges between 1, . . . , N , and i2 − i1 > 3 fixed. Every fit has a set of optimal parameters
a?i1,i2 and an optimal χ2-value which leads us to the information criterion

AICi1,i2 =

i2∑
i, j=i1

[
f (xi, a?i1,i2) − yi

]
C−1
i j

[
f (xj, a?i1,i2) − yj

]
+ 2k + 2(i1 − i2) , (12)
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which defines the model probability

p(i1, i2 |D) ∝ e−
1
2 AICi1, i2 . (13)

Finally, we are interested in a specific component of the parameter vector, and we can determine
the expectation value and the standard deviation as

an = 〈an〉 =
∑
i1,i2

a?n,i1,i2 p(i1, i2 |D), (14)

σ2
n =

〈
(an − an)

2
〉
=

〈
a2
n

〉
− 〈an〉2 . (15)

For the specific case of constant fit, we have one parameter (k = 1), the constant c, the support
points of T correspond to xi, and the model function f is the constant function f (T, c) = c.

For our analysis, we measure the AIC expectation value for each jackknife pseudoensemble
separately, and then use the jackknife errors for the standard deviation. The error given by the
jackknife procedure is comparable to the model uncertainty of Eq. (15).

3.2 Impact of the gradient flow

For the static force, the chromoelectric field inserted to a Wilson loop comes with a lattice only
self-energy contribution that needs to be renormalized away in order to attain a proper continuum
limit. The renormalization is multiplicative and independent of the distance r:

Fren
latt (r, τF ) = ZE (τF )Flatt(r, τF ) . (16)

ZE can be non-perturbatively determined by comparing Flatt to a numerical derivative of the static
energy, which does not include field insertions [6]:

ZE (τF ) =
∂rVlatt(r, τF )
Flatt(r, τF )

. (17)

We extract ZE at fixed flow time by performing a constant fit within an intermediate r-range, that
is not affected by finite size or finite volume effects. We use the AIC model averaging for these
fit ranges as described in Sec. 3.1. The left side of Fig. 1 shows ZE for the different lattice sizes,
the x-axis is in units of the flow radius in lattice units. We see that, for flow radii larger than one
lattice spacing (

√
8τF & a), ZE approaches 1, meaning that gradient flow reduces effectively the

discretization artifacts. This allows us to perform reliable continuum limits at finite flow time.
We consider continuum limit data only for flow times satisfying the condition

√
8τF/a & 1. An

example for a continuum limit is shown on the right side of Fig. 1.

3.3 Static force at large r

According to Eq. (9), we expect a constant behavior in the small flow time ratio expansion.
The left side of Fig. 2 shows the force at large fixed r . We see a constant regime within the range
0.01 ≤ τF/r2 ≤ 0.025 and we use AIC as described in Sec. 3.1 to consider all meaningful ranges
to reduce the systematic errors arising from the choice of the fit range. The results of the constant
fit are shown on the right side of Fig. 2. The figure shows the results of three different methods;
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Figure 1: Left: The non-perturbative determination of the flowed renormalization constant ZE . Right: An
example for a continuum limit where ZE ≈ 1.
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Figure 2: Left: The flowed force at fixed r , for large r . The x-axis is the flow time ratio. Right: The results
of the constant fits within a reliable flow time range.

they differ by interpolation functions and whether the continuum limit was performed at fixed flow
time or flow time ratio. All methods should give the same results, however, we see deviations at
larger r indicating the size of the systematic errors. We fit the Cornell ansatz

r2F(r) = A + σr2 (18)

to the result, with σ being the string tension. We obtain σ between 5.18fm−2 and 5.23fm−2 and
A between 0.2853 and 0.2954. We note that the distances achievable with our lattice sizes are too
small for reliable measurement of the string tension.

3.4 Static force at small r

The left side of Fig. 3 shows the force at fixed small r against the flow time ratio. The dimmer
points at smaller flow time ratio belong to the regime where ZE , 1. We fit Eq. (10) treating Λ0 as
the fit parameter to the valid data. For the three cases shown on the left side in Fig. 3, we obtain a
range of Λ0 between 0.238 and 0.256 GeV. The scale choice µ = 1/r fits best to our measured data
in this case.

Instead of fitting to data at fixed r , we can fit to fixed τF along the x-axis. It turns out that this
procedure works better for fixed flow time than for fixed flow time ratio. The right side of Fig. 3

6
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Figure 3: Fitting the perturbative force (dashed lines) to the data (crosses and errorbars) at small r . Left:
Fit for fixed r , the dimmer points represent the points where not enough flow time was applied and therefore,
ZE , 1. Those points are excluded from the fits. Right: Fit for a fixed r-range at three different exemplary
flow times. In all fits, Λ0 is the fit parameter.
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Figure 4: The results for the Λ0 fits at fixed r for different flow times (x-axis). Left: The result at fixed
r-range. Right: The model averaged result for Λ0 with averaging over different r-ranges. The solid lines
show the zero flow time extrapolation.

shows the fit at three different fixed flow times, the left side of Fig. 4 shows the resulting Λ0 at finite
τF for two scale choices. Both choices seem to exhibit a linear flow time behavior in a proper range
of flow time. We can assume a linear ansatz within the linear regime and perform a zero flow time
limit for Λ0 which gives Λ0 = 0.262 GeV and Λ0 = 0.261 GeV respectively. This is close to the
Λ0 from FLAG [20] with ΛFLAG

0 = 261(15)MeV. We should not see any flow time dependence on
Λ0. Therefore, the flow time dependence, we observe in Fig. 4, must arise either from corrections
at higher orders of perturbation theory or from systematic effects in the chosen analysis.

Instead of a fixed r-range, we can use the AIC procedure from Sec. 3.1 to find an optimal range
for the Λ0-fit. The resulting Λ0-values as a function of the flow time are shown on the right side of
Fig. 4 for different orders of perturbation theory used for the zero flow time part of Eq. (10). We
observe, that in the range 0.08 ≤ τF/a2

20 ≤ 0.18, the flow time dependence of Λ0 can be described
by a constant within the error bars. Using a constant fit to extrapolate to the zero flow time limit,
we find the values for Λ0 at 1-, 2-, and 3-loops with ultrasoft logs resummed to be 0.297 GeV,
0.264 GeV, and 0.253 GeV respectively. Our result is consistent with the value 0.251(12)GeV that
was measured from the pure gauge static potential in Ref. [21]. We leave the full error analysis of
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these results to a future publication [22].
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