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Integrated time-slice correlation functions G(t) with weights K(t) appear, e.g., in the moments
method to determine αs from heavy quark correlators, in the muon g-2 determination or in the
determination of smoothed spectral functions.
For the (leading-order-)normalised moment R4 of the pseudo-scalar correlator we have non-
perturbative results down to a = 10−2 fm and for masses, m, of the order of the charm mass in
the quenched approximation. A significant bending of R4 as a function of a2 is observed at small
lattice spacings.
Starting from the Symanzik expansion of the integrand we derive the asymptotic convergence of
the integral at small lattice spacing in the free theory and prove that the short distance part of
the integral leads to log(a)-enhanced discretisation errors when G(t)K(t) t→0∼ t for small t. In the
interacting theory an unknown, function K(aΛ) appears.
For the R4-case, we modify the observable to improve the short distance behavior and demonstrate
that it results in a very smooth continuum limit. The strong coupling and the Λ-parameter can
then be extracted. In general, and in particular for g − 2, the short distance part of the integral
should be determined by perturbation theory. The (dominating) rest can then be obtained by the
controlled continuum limit of the lattice computation.
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1. Introduction

We consider a p = 0 (spatial momentum zero) correlator

G(t,M, a) = a3
∑

x
〈PRGI(x)PRGI(0)〉 = G(t,M, 0) + ∆G(t,M, a) , (1)

of a renormalization group invariant (RGI) local field PRGI of dimension three with non-trivial
quantum numbers such that the vacuum does not contribute as intermediate state. The RGI mass of
the theory (or the set of masses) is denoted by M and∆O denotes the lattice artefact of an observable
O. Weighted integrals

∫
G(t,M, 0)K(t) dt , such as moments, need a weight K(t) t→0∼ tn , n > 2 to

ensure convergence at small t.1 Specializing to moments with n > 2, one can then also consider

Mn(M, a) = a
∑
t

tn G(t,M, a) =Mn(M, 0) + ∆Mn(M, a) , (2)

with a finite continuum limit Mn(M, 0). The case n = 4 will be discussed in detail since it is
of particular interest for computing αs, when P is a heavy-quark bilinear [1] and furthermore the
hadronic vacuum polarization contribution to g − 2 of the muon has the form above in the time-
momentum representation [2] with a K(t) t→0∼ t4. We will comment on other moments as we go
along. In the following we assume mass-degenerate quarks to simplify the notation.

Note that in the heavy quarks moments method for determining αs one typically considers the
dimensionless

M4(M, a) = M2M4(M, a) , (3)

with M the RGI-mass, such that also M4 is scale invariant. Specifically one chooses PRGI =

ZRGIPbare, Pbare = c̄γ5c′ and for discretizations with enough chiral symmetry the renormalization
factor ZRGI is not needed due to MPRGI = mbarePbare. The correlator G, eq. (1), is even under
time-refections, G(t,M, 0) = G(−t,M, 0). Thus moments for odd n vanish and only moments with
n ≥ 4 are finite.

In an O(a)-improved theory, the Symanzik effective theory prediction (SymEFT) [3–5] is

∆G a→0∼ a2[αs(1/a)]γ̂lead . (4)

Naively one may expect that this also leads to ∆Mn
a→0∼ a2[αs(1/a)]γ̂lead . Here we discuss that this

is not the case and show that a safe continuum limit cannot even be taken with lattice spacings down
to a = 10−2fm (section 2). We derive that already in the free theory an a2 log(aM) term is present
(section 3) and sketch what changes in the SymEFT prediction in the interacting theory (section 4).
Since the general conclusion is that integrals such as the one defining M4 cannot be computed
reliably on the lattice, we then propose a modification for M4 (section 6.1) and demonstrate that it
works very well. Finally we also make a simple and practical proposal which solves the issue for
the HVP contribution to the muon g − 2 (section 6.3).

1Fields of other dimensions or integrals of the type
∫
〈PRGI(x)PRGI(0)〉 K̃(x) d4x lead to trivial changes of our

discussion.
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Log-enhanced discretization errors in integrated correlation functions Rainer Sommer

Figure 1: Lattice dependence of R4 =M4/[M4]g=0, where the normalization is performed with [M4]g=0
at finite a (“lattice norm”) or at a = 0 (“continuum norm”). The quark mass is around the charm quark mass.

2. Demonstration of the deviations from simple a2 scaling

We computed M4 (and other moments [6]) in the quenched approximation on ensembles sft7
- sft4 [7] and q_b649 - q_b616 [6] with lattice spacings a = 0.01 fm × 2n/2, n = 0 . . . 6, i.e.
0.01 fm ≤ a ≤ 0.08 fm. The property MPRGI = mbarePbare is guaranteed by using the twisted mass
formulation at maximal twist and double insertions of the Pauli term in SymEFT are avoided by
including the Sheikholeslami-Wohlert term [8] with non-perturbative improvement coefficient [9].
Further details are given in [10].

In fig. 1 we show the lattice spacing dependence of

R4 =
M4

[M4]g=0,a>0
. (5)

The normalization by the lattice leading perturbative order (finite a > 0) is crucial as seen by
the points with continuum norm, M4/[M4]g=0,a=0. Again we refer to [6, 10] for more details.
However, despite the strong reduction of discretisation errors by the lattice norm, a continuum
extrapolation with data in the range a ∈ [0.02, 0.04] fm (linear fit in fig. 1) where R4 seemingly
scales with a2 corrections, clearly leads to a wrong result. This is seen by the a = 0.01 fm data
point and corroborated by our method sketched in section 6.1. Such a behavior is the nightmare of
numerical analysis. Note that the mass M ≈ Mcharm is not that high.
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3. Derivation of the a2 log(aM) term in the free theory

In this and the following section we study the small t behavior where mass-effects can be
neglected and we first consider the contribution to M4 from a range t1 ≤ t ≤ t2 ≪ 1/M ,

∆I(t1, t2) = 2a
t2∑

t=t1

wT(t) t4 G(t,M, a) − Icont(t1, t2) , t1M ≪ 1, t2M ≪ 1 , (6)

Icont(t1, t2) = 2
∫ t2

t1

dt t4 G(t,M, 0) , t1M ≪ 1, t2M ≪ 1 . (7)

The weight wT(t) implements the trapezoidal rule: it is 1/2 at the boundaries and 1 otherwise.
In order to gain understanding, we start with the free theory, g = 0. This case is illuminating

and at the same time we can get the relevant result by dimensional reasoning alone.
We split

∆I(0, t) = ∆I(0, t1) + ∆I(t1, t) , (8)

discuss the second term and then add the first one. The SymEFT prediction for the cutoff effects of
G are

∆G = kL
a2

t5 + O(a4) + O(M2t2) , (9)

with a constant kL which depends on the fermion discretization.2 Performing an explicit leading
order computation, expanded in a/t in the Wilson regularization we find kL = 1. Since mass-effects
are irrelevant, kL = 1 holds irrespective of whether we choose a twisted mass term or a standard
one. Not indicating the higher order corrections in a and M any further we get

∆I(t1, t)
a≪t1∼ kL a2

∫ t

t1

ds s−1 + ∆IT(t1, t) (10)

= kLa2 log(t/t1) + ∆IT(t1, t) = kLa2 [log(t/a) − log(t1/a)] + ∆IT(t1, t) . (11)

Here, ∆IT ∼ a2 is the error in using the trapezoidal rule for the integral. We drop it because it does
not play a role in the following; it is regular as t → 0 and does not introduce a log. We then obtain

∆I(0, t) = ∆I(0, t1) − kLa2 log(t1/a)︸!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
=k a2

+kL a2 log(t/a) = a2 [k + kL log(t/a)] , (12)

with another dimensionless constant k depending on the regularization. The first term, ka2, has
this form because it neither depends on t1 nor on t and a is the only dimensionful parameter.

For the full moment, t gets replaced by the only physics scale of the integral, namely 1/M . We
thus arrive at

∆M4(M, a)
M4(M, 0)

= a2M2 [k ′ − kL log(M a)] + O(M4a4) . (13)

2This form is simply due to dimensional counting. G(t) has mass dimension −3 and therefore behaves like ∼ t−3 for
small t in the free theory. In the interacting theory there are log-corrections to that functional form due to anomalous
dimensions of P and the SymEFT operators. Relative cutoff effects are ∼ a2/t2, again because for tM ≪ 1 the only
dimensionful parameter apart from a is t.
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We note that [11] have argued for the presence of a log(t/a) term in the same discretised
integral (in the context of HVP). In contrast to their argumentation, we never work with divergent
integrals or with the Symanzik expansion for a/t = O(1).

It is instructive to add higher order terms, kd (a2/t5) (a/t)d−2 with d > 2 terms in the SymEFT
for ∆G. They yield

∆I(t1, t)
a≪t1∼ kLa2 [log(t/a) − log(t1/a)] + a2

∑
d>2

kd
d − 2

[ (a/t1)d−2 − (a/t)d−2 ] . (14)

and

∆I(0, t) ∼ a2k ′′ + kLa2 log(t/a) − a2
∑
d>2

kd
d − 2

(a/t)d−2 , (15)

where k ′′ now receives contributions also from the d > 2 terms in ∆G. Note that the reasoning
for the term a2k ′ is unchanged. It is simply the dimension of ∆I inherited from the one of I and
the independence on t1. This means that Symanzik improvement does not hold for the integral:
we could improve ∆G such that all ∼ a2 terms are removed, but ∆M4 would remain of order a2

due to the d > 2 terms in (14). "Only" the log-term at order a2 disappears by improvement of the
integrand.

Consider for a moment the moment

N3 = a
∑
t≥0

t3 G(t,M, a) . (16)

In this case, we obtain O(a) effects, irrespective of how the theory was improved. It is relevant to
investigate whether such terms appear in some (sub-)integrals in representations of light-by-light
scattering evaluated on the lattice [12].

4. SymEFT analysis beyond the free theory

It is not difficult to follow the above steps for the interacting theory. One has to write ∆G as
in eq. (4) and also the short distance behavior changes due to anomalous dimension effects. These
modifications introduce powers of αs(1/a) and αs(1/t), respectively, but are not of prime relevance.
More important is that the step analogous to section 3 is modified to

ka2 → K(aΛ) a2 , (17)

with a function K(aΛ) which is not restricted by simple arguments. Without knowing the behavior
of K at the origin, nothing can be concluded about M-independent a-effects of the integral. The
structure of external scale dependent cutoff effects will be discussed in a publication [13]. The basic
reason for the difficulty is of course that the interacting theory has a dynamical scale, Λ, which
makes the dimensional analysis much less restrictive.

5. Higher moments Mn, n > 4

With n > 4, the a2 log(aM) term is absent in the free theory. Still, log(aM) dependences are
present, but they are pushed to a higher order in a,

Mn = . . . + const. × an−2 log(aM) + . . . . (18)
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6. Solutions

Our discussion shows that integrals of the considered type cannot be computed on the lattice
in the straight-forward way. The best solution to this problem is to avoid integrands which have a
behavior ∼ tk , k < 2. First we describe a specific solution for M4 for which we have a complete
numerical demonstration. Then we propose a general solution, which in particular will be useful
for HVP.

6.1 A practical solution for M4

Our simple solution for the moment M4 uses two different masses in the form (dropping the
a-dependence)

ρ(M1,M2) =
2π2

3
(1 − r2)−1 [M4(M1) − r2M4(M2)] (19)

=
2π2

3
(1 − r2)−1M2

1 [M4(M1) −M4(M2)] , r = M1/M2 > 1. (20)

The second line shows that the small t asymptotics of the integrand is improved via,

t4 [G(t,M1) − G(t,M2)] ∼ t4 (t2M2
2 − t2M2

1 ) + O(t8) . (21)

There are log-corrections to this equation in the interacting theory, which are not relevant here.
Due to the extra two powers of t, which come with the mass-effects, the quantity ρ(M1,M2) has no
log-enhanced a2 effects (they will appear only at the level a4).

For the purpose of extracting αs it is now relevant to choose M1 and M2 not too different.
Then the perturbative expansion, which is given in terms of the one of M4, does not contain large
logs of M2/M1. We write the perturbative expansion in terms 3 of αs(m2") with M1 > M2. The
2π2

3 (1 − r2)−1 normalization in eq. (19) ensures

ρ(M1,M2) = 1 + c1αMS(m2") + . . . , (22)

where c1 = 0.74272... is the same expansion coefficient as the one of R4 =
2π2

3 M4 and higher order
ones are easily obtained. We expand in αMS(m2") because the difference is dominated somewhat
more by long distances and M2 is the smaller of the masses.

We show continuum limit extrapolations in fig. 2. They are almost straight in a2 at small a
which makes them quite easy to do. They can be further improved by dividing ρ by the same
function evaluated at leading order, i.e. g = 0. There is a choice which masses to insert into the
leading order formula. A good choice is again m". Precisely we define

RTL
4 (aµ) = R4 |g=0 (23)

with µ the twisted mass and then

ρLatnorm(M1,M2) =
3

2π2 (1 − r2
")

ρ(M1,M2)
RTL

4 (am"1) − r2
"RTL

4 (am"2)
(24)

3We implicitly define m! = mMS(m!). In practice, to evaluate M4(M2) we choose αMS(m2!) as expansion variable
and use the 5-loop running of the coupling and quark mass to relate m2! to M2. One could also obtain expansion
coefficients which depend on r .
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Figure 2: Continuum limit extrapolations of ρ and its TL improved version, ρ(M1,M2)Latnorm. Masses,
specified in units zi = Mi

√
8t0, are z1 = 4.5, z2 = 3 (left) and z1 = 13.5, z2 = 9 (right).

with
r" =

m"1
m"2
. (25)

In principle it is important that r" is given by the ratio of the masses that appear in RTL
4 for the

log-term to cancel. But numerically, replacing r" → r makes only a small difference. Examples
for how the discretization errors are reduced can be seen in fig. 2. For all our values of M1,M2, the
leading order improved ρ(M1,M2)Latnorm has a rather convincing continuum extrapolation.

After the continuum extrapolation, one straight-forwardly extracts the effective Λ-parameter
and arrives at the red circles in fig. 3. These values are computed from three-loop perturbation
theory (i.e. including α3 in R4) at finite α(m"). They then have a residual dependence

Λeff = Λ + O(α2(m")) , (26)

on m" and we call them “effective”. The comparison to the Dalla Brida and Ramos value [14],
extracted at α2 < 0.01 with the help of a finite size step scaling method, shows that Λ computed
from ρ has at most small (on the scale of our uncertainties) corrections at the largest mass. That
mass is given by z = 9 or m" ≈ 2.7 GeV.

6.2 Reconstruction of R4 =
2π2

3 M4(M) from ρ.

From the definition eq. (19) of ρ it is clear that given ρ(M1,M2) and R4(M2) one can determine
R4(M1). This can be exploited by using ρ to go from R4(Mref ≫ Λ), where perturbative uncertainties
are suppressed the most, to smaller masses.4 We insert the known [14] Λ-parameter into the three-
loop (i.e. including α3) perturbative expression for R4 at our highest mass, zref = 13.5 and obtain

Rreconstructed
4 (M) = (1 − r−2) ρ(M,Mref) + r−2 R3−loop

4 (Mref) , (27)

r = M/Mref, zref =
√

8t0Mref = 13.5 . (28)

4In the opposite direction all uncertainties in ρ get enhanced, quickly leading to uncontrolled results.
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Figure 3: ΛMS computed from αMS(m2!), where the latter is obtained from the non-perturbative ρ. The
dotted line is a fit to all points including the Dalla Brida / Ramos one [14]. The reconstructed data points are
described in the text.

Note that perturbative errors are small in R4(Mref) as seen in the analysis of ρ. They get further
suppressed by a factor r−2 ≈ 1/20 when we go to z = 3. This means that we obtain the non-
perturbative dependence ofΛeff (as of now computed from R4 and therefore with somewhat different
O(α2) terms) on α. We remind the reader that a direct computation of R4 was impossible due to the
a2 log(aM) effects.

6.3 Proposal for the HVP contribution to the muon g − 2

The discussion in the previous section is easily transferred to the case of the muon g − 2,
working with differences of the HVP integral for different (artificial) muon masses. Additionally,
we would like to advocate a very simple solution for this and similar cases, where the short distance
contribution to the integral is subdominant. In contrast to the M4-case the goal is not to determine
αs or other short-distance parameters.

It is then advisable to split the integral into a short-distance part evaluated by continuum
perturbation theory and a long-distance one to be computed on the lattice:

∫ ∞

0
dtF(t) =

∫ ∞

0
dt [1 − χ(t)] F(t)

︸!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!︸
continuum PT

+ a
∞∑
t=0
χ(t) F(t)

︸!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!︸
continuum limit of lattice results

, χ(t) ∼
{

O(t2) tΛMS ≪ 1
1 tΛMS ≫ 1

.

(29)
For example the function χ can be taken as

χ(t) = (Mcutt)k
(Mcutt)k + 1

, Mcut ≫ ΛMS (30)

or also as a step-function, χ(t) = θ(tMcut − 1). The smooth version seems advantageous for
perturbation theory as well as for the lattice discretization of the integral. The use of perturbation
theory for the small t-part of the integral has already been anticipated in [2]. Our discussion adds
further motivation and understanding. It suggests a smooth function χ such as eq. (30).
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