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1. Introduction

Quantum chromodynamics (QCD) is the field theory describing the strong interactions among
quarks and gluons. The lattice formulation of this theory is the only known regularization where
the properties of QCD can be studied non-perturbatively from first principles. In this setup the
inverse of the lattice spacing a provides the ultraviolet cutoff of the theory, and it is removed by
taking the continuum limit a → 0 of lattice-defined quantities. In general, these quantities have
to be properly renormalized in order to recover the correct continuum limit. For example, if we
consider a conserved quantity related to a symmetry of continuum QCD, its discretized counterpart
may not be conserved because the lattice may break that symmetry and recover it in the continuum
limit. Given a lattice operator O, we define its renormalized counterpart as

OR = ZO

[
O +

∑
k

ck
ad−dk

Ok

]
, d = dim(O) (1.1)

which is a linear combination of the original (bare) operator and eventually of some other lattice
operators with the same symmetries and lower or equal mass dimension. The operator OR is
determined non-perturbatively once the coefficients appearing in its definition (1.1), which we call
renormalization constants, are computed non-perturbatively on the lattice.

Several different renormalization schemes have been proposed to accomplish this task: the
Schrödinger Functional scheme [1], the RI-MOM scheme [2], and the Wilson flow scheme [3].
We present here the results of the application of a non-perturbative renormalization scheme based
on considering the Euclidean formulation of QCD at finite temperature with shifted boundary
conditions for the link field, and shifted and twisted boundary conditions for the quark fields. This
setup was first proposed in [4, 5], where it was shown that the partition function of a relativistic
thermal field theory can be represented as a Euclidean path integral with shifted and twisted
boundary conditions on the fields. In the particular case of lattice QCD at finite temperature these
boundary conditions are [5]

Uµ(x0 + L0, x) = Uµ(x0, x − L0ξ)

ψ(x0 + L0, x) = −eiθ0 ψ(x0, x − L0ξ) (1.2)

ψ̄(x0 + L0, x) = −e−iθ0 ψ̄(x0, x − L0ξ)

where L0 is the temporal extension of the lattice, ξ is the shift vector and θ0 is the twist phase.
They are equivalent to consider the thermal theory in a moving frame with Euclidean boost ξ ,

at the temperature T = γ/L0 where γ = 1/
√

1 + ξ2, and with an imaginary chemical potential
µI = −θ0/L0. In [5–7] this description was further explored with the derivation of some Ward
Identities which are non-trivial in presence of shifted boundary conditions and which allow the
determination of many thermodynamic properties of the system. In those papers it was also
observed that these Ward Identities could be used to determine in a non-perturbative way the
renormalization constants of the energy-momentum (EM) tensor of lattice QCD.

This renormalization scheme was successfully employed for the non-perturbative renormaliza-
tion of the EM tensor in the SU(3)Yang-Mills theory [8], and for the non-perturbative determination
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of the Equation of State of the same theory [9]. We have applied this new strategy for the first
time in full QCD for the non-perturbative renormalization of the flavor-singlet local vector cur-
rent [10], as presented in Section 2. This is a new result since no non-perturbative determination
of this renormalization constant has been carried out so far with Wilson fermions (some results
with staggered quarks can be found in [11]). Moreover, the renormalization of the flavor-singlet
local vector current allowed us to experiment in QCD our renormalization scheme in a simple but
non-trivial exercise, without worrying about all the technicalities involved in the renormalization
of the QCD energy-momentum tensor. We are currently working on the latter by exploiting all the
properties of thermal QCD with shifted and twisted boundary conditions. In Section 3 we describe
our strategy, whose effectiveness is confirmed by the numerical values we are obtaining from the
lattice calculations.

2. Renormalization of the flavor-singlet local vector current

In the continuum, the flavor-singlet vector current

Vµ(x) = ψ̄(x)γµψ(x) (2.1)

is a conserved quantity related to the invariance of QCD under the vector subgroup U(1)V of the
chiral symmetry. This subgroup is respected by the lattice regularization too, and the flavor-singlet
conserved vector current can be derived through Noether’s theorem applied to the discretized QCD
action. In case of Wilson fermions its expression is the following:

Vc
µ (x) =

1
2

[
ψ̄(x + a µ̂)U†µ(x)

(
γµ + 1

)
ψ(x) + ψ̄(x)Uµ(x)

(
γµ − 1

)
ψ(x + a µ̂)

]
(2.2)

Despite the exact continuum behavior of Vc
µ , the computation of this current requires the evaluation

of the quark fields in two neighboring points of the lattice, which may result in noisy measurements
of this lattice operator and larger discretization effects. It is therefore worthwhile to consider the
so-called flavor-singlet local vector currentV l

µ, obtained by the naive discretization of the continuum
current (2.1). This lattice current has no point-split problem, but it must be renormalized. We can
determine its renormalization constant ZV by comparing the one-point functions of the conserved
and of the local currents:

ZV (g
2
0) = lim

a/L0→0

〈Vc
µ 〉ξ, θ0

〈V l
µ〉ξ, θ0

�����
g2

0,L0/a

(2.3)

The ratio on the right is taken at given bare coupling g0, so at given lattice spacing a, and in the
thermodynamic limit. We introduce a shift of value ξ = (1, 0, 0): this is not strictly required but it
turns out that, compared to periodic boundary conditions, discretization effects are much reduced,
as we can see from the tree-level values of ZV plotted in Figure 1. The same figure shows that
the dependence on the twist phase θ0 is very mild. The Euclidean QCD partition function with
an imaginary chemical potential enjoys an effective 2π/3 periodicity in θ0 [12], and we choose
θ0 = π/6 which is in the middle of the range [0, π/3]. The presence of the twist phase is mandatory
because otherwise the expectation values of the vector currents appearing in (2.3) would be zero.

The use of the O(a)-improved Wilson action, together with the O(a)-improved fields [13]

V̂c,l
µ (x) = Vc,l

µ (x) −
a
4

cc,lV (∂ν + ∂
∗
ν )

(
ψ̄(x) [γµ, γν]ψ(x)

)
(2.4)
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Figure 1: Tree-level ZV as a function of the twist phase θ0, at zero shift and ξ = (1, 0, 0).

L0/a Z (0)V Z (1)V

4 1.112904 -0.057954
6 1.021530 -0.051313
8 1.005285 -0.049255
10 1.001882 -0.048787

Table 1: Perturbative values of ZV at given L0/a, in the thermodynamic limit, at θ0 = π/6 and ξ = (1, 0, 0).

guarantees that the the matrix elements 〈Vc,l
µ 〉 are O(a)-improved. The coefficients cc,lV can be

determined so that O(a) lattice artifacts are removed from some convenient n-point function of
the improved fields (2.4); then any correlator of these fields will be improved because the cc,lV are
independent on the particular correlator. Actually, since we are interested in one-point functions
of the currents, the contributions from the improving terms vanish for translation invariance and
therefore the 〈Vc,l

µ 〉 are automatically O(a)-improved.
As a technical tool to make the extrapolations milder, we can further improve our definition

(2.3) for ZV by subtracting the difference between the 1-loop perturbative ZV in the a/L0 → 0 limit
with the same quantity at fixed temporal extension. At given a/L0 we get

ZV

(
g2

0,
a
L0

)
=
〈Vc
µ 〉ξ, θ0

〈V l
µ〉ξ, θ0

�����
g2

0,L0/a

+

[
1 + c1g

2
0 − Z (0)V

(
a
L0

) (
1 + g2

0
8
3

Z (1)V

(
a
L0

))]
(2.5)

The 1-loop coefficient c1 is [14]

c1 =
1

12π2

[
−20.617798655(6) + 4.745564682(3) csw + 0.543168028(5) c2

sw
]

(2.6)

and, at the relevant order, csw = 1 + 0.26590(7)g2
0 [15]. The values of Z (0)V , Z (1)V in 1-loop lattice

perturbation theory can be found in Table 1.
In the a/L0 → 0 limit we can parameterize the dependence of ZV on the lattice artifacts as

follows:

ZV

(
g2

0,
a
L0

)
= ZV (g

2
0) + C1 ·

(
a
L0

)2
+ C2 · (aΛQCD)

(
a
L0

)
+ C3 · (aΛQCD)

2 + ... (2.7)
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Figure 2: Left: extrapolations of numerical data in the limit a/L0 → 0. Right: comparison of extrapolated
numbers with perturbation theory up to 2 loops.

were the dots stand for higher order terms in the lattice spacing. The (a/L0)
2 term is the dominant

one thanks to the O(a) improvement and to the fact that aΛQCD is a small factor in our finite
temperature setup. The (aΛQCD)

2 term is part of the definition of ZV , and it vanishes quadratically
in the lattice spacing when a renormalized correlator involving the flavor-singlet vector current is
extrapolated to the continuum limit.

The left plot in Figure 2 shows the numerical values we obtained from simulations of lattice
QCD with spatial extension L/a = 96 and Nf = 3 flavors of massless O(a)-improved Wilson
fermions. We performed two extrapolations to the a/L0 → 0 limit, considering first both the C1,C2

terms of equation (2.7), and then the C1 term only. The extrapolated values are compatible, and
this confirms that the residual linear dependence in a/L0 in equation (2.7) is negligible for all the
values of β = 6/g2

0 we considered. To be the most conservative, we average the two extrapolations
at each β, and we take the largest error as the final uncertainty. The errors we obtain are less than
1% and they are fully dominated by statistics.

The plot on the right in Figure 2 compares the numerical values of ZV with the perturbative
prediction for the renormalization constant up to 2 loops [14]. The final result of this study is the
polynomial interpolation

Zfit
V (g

2
0) = 1 − 0.129g2

0 − 0.047g4
0 + c3 g

6
0 (2.8)

where the coefficients up to g4
0 come from perturbation theory (after checking that they were

compatible with the fit) while c3 = −0.016(3) comes from the numerical data and it is responsible
of the mild bending of the non-perturbative points with respect to 2-loop perturbation theory at the
larger values of bare coupling.

3. Renormalization of the QCD energy-momentum tensor

In the continuum the EM tensor of QCD is the quantity associated to the Poincaré symmetry and
scale invariance of the theory. Because of the breaking of the translation and rotation symmetries
by the lattice regularization, the 9-dimensional symmetric component of the continuum EM tensor
splits in two bare lattice operators transforming in the triplet and sextet representations of the
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hypercubic group SW4 [16]. Each representation further splits in two contributions, one from the
gluons and one from the fermions, and since there are no other lattice operators with the same
symmetries and mass dimension ≤ 4 we end up with four renormalization constants:

TR, {i }
µν = Z {i }

G
TG, {i }
µν + Z {i }F TF, {i }

µν , i = 3, 6 (3.1)

These renormalization constants are functions of the bare coupling g0 only and they approach 1 as
g0 → 0 (that is, in the continuum limit). We constrain their values by imposing the renormalized
lattice EM tensor (3.1) to satisfy a set of Ward Identities holding for the target operator in the
continuum, up to cutoff effects.

Concerning the renormalization constants of the sextet representation, we consider the contin-
uum relation [5]

〈T0k〉ξ, θ0 = −
∂

∂ξk
f (L0, L, ξ, θ0) (3.2)

between the EM tensor and the derivative with respect to the shift of the free energy density of the
thermal system

f (L0, L, ξ, θ0) = −
1

L0L3 ln Z , Z [L0, L, ξ, θ0] =

∫
DUDψ̄Dψ e−S[U,ψ̄,ψ] (3.3)

and we impose (3.2) on the renormalized lattice sextet EM tensor up to discretization errors. Note
that this relation is non-trivial in presence of shifted boundary conditions only. Moreover, we
evaluate the very same relation at two twist phases θA0 and θB0 for the fermions on the temporal
boundary, so that we obtain the two constraints needed for solving the mixing between the gluonic
and fermionic components:

Z {6}
G
〈TG, {6}

0k 〉ξ,θA
0
+ Z {6}F 〈T

F, {6}
0k 〉ξ,θA

0
= −
∆ f (L0, L, ξ, θA0 )

∆ξk
+ O(a2)

Z {6}
G
〈TG, {6}

0k 〉ξ,θB0
+ Z {6}F 〈T

F, {6}
0k 〉ξ,θB0

= −
∆ f (L0, L, ξ, θB0 )

∆ξk
+ O(a2)

(3.4)

The renormalization constants of the triplet EM tensor can be computed similarly thanks to the
Ward Identity [5]

〈TR, {6}
0k 〉ξ,θ0 = ξk 〈T

R, {3}
0j 〉ξ,θ0 ( j , k, ξj = 0) (3.5)

Again, this Ward Identity is non-trivial in a shifted frame only. The unknown variables of the linear
system in equation (3.4) are the renormalization constants Z {6}

G
, Z {6}F . The one-point functions of

the bare lattice EM tensor, as well as the discrete derivatives of the free energy density, must be
determined from lattice simulations. In the following we give some results for the former ones,
while the derivatives of the free energy are work in progress.

Our renormalization strategy relies on the possibility of evaluating equation (3.2) at two
different values of θ0. It is therefore important to check that we can resolve with sufficient precision
the relevant one-point functions of the EM tensor at two imaginary chemical potentials, and Table 2
tells us that this is the case. In the latter we collect some preliminary numerical results for the lowest
and highest values of β we are considering. We simulate Nf = 3 massless flavors of O(a)-improved

6
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θ0 β L0/a Ntraj 〈TG, {6}
µν 〉/T4 〈TF, {6}

µν 〉/T4 〈TG, {3}
µν 〉/T4 〈TF, {3}

µν 〉/T4

0
6.0433

4 50 -2.325(8) -6.335(3) -2.760(11) -7.081(5)
6 100 -2.314(19) -5.772(8) -2.63(3) -6.303(15)

8.8727
4 50 -2.842(8) -6.982(3) -3.223(12) -7.692(4)
6 100 -2.822(24) -6.343(9) -3.13(4) -6.846(11)

π/6
6.0433

4 50 -2.247(5) -5.5939(21) -2.642(7) -6.2617(29)
6 100 -2.198(19) -5.115(9) -2.59(4) -5.587(15)

8.8727
4 50 -2.784(7) -6.1605(29) -3.164(12) -6.783(4)
6 100 -2.753(26) -5.615(7) -3.00(4) -6.077(13)

Table 2: Numerical values of the relevant one-point functions for the renormalization of the energy-
momentum tensor.

Wilson fermions, on a lattice of spatial extension L/a = 288 and temporal one L0/a = 4, 6 but we
are planning simulations at L0/a = 8, 10 too, in order to perform the a/L0 → 0 extrapolation. We
see that the one-point functions have a relative error of about 1%, and they are remarkably different
at the two values θA0 = 0, θB0 = π/6 even for the gluonic components, which depend on the chemical
potential as a 1-loop effect.

4. Conclusions

Thermal QCD in a moving frame and with an imaginary chemical potential revealed to be an
effective framework for the non-perturbative renormalization of the flavor-singlet local vector current
[10]. Taking advantage of all the properties of this new renormalization schemewe are nowworking
on the non-perturbative renormalization of the energy-momentum tensor of QCD. This result will
allow the study from first principles of many fundamental properties of QCD at finite temperature,
such as the Equation of State of QCD or the transport coefficients in a Quark-Gluon Plasma [17].
The Equation of State has been non-perturbatively determined in the past with staggered quarks
[18, 19] through the numerical computation of the trace anomaly ε(T) − 3p(T), whose integral
in the temperature gives access to the pressure density p(T). Then the energy density ε(T) and
the entropy density s(T) come from standard thermodynamic relations. However this approach,
known as integral method, becomes numerically very challenging at high temperatures since the
trace anomaly, having a quartic divergence in the continuum limit, must be subtracted for instance
by its value at zero temperature. For this reason the available numerical results reach temperatures
of the order of 1 GeV at most. This calls for a change of strategy, also because perturbation theory
is known to be unreliable at higher temperatures at least in the SU(3) Yang-Mills theory [9].

We are planning to determine the QCD Equation of State from first principles with O(a)-
improved Wilson fermions using the equation

s
T3 = −L4

0
(1 + ξ2)3

ξk
〈TR

0k〉 , T =
1

L0

√
1 + ξ2

(4.1)
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which directly relates the entropy density s of the Quark-Gluon Plasma at temperatureT in a moving
reference frame with Euclidean speed ξ with a one-point function of the spacetime components of
the renormalized energy-momentum tensor [5]. Crucially these components do not need any zero
point subtraction, and this opens the way to the determination of the QCD Equation of State in the
unexplored temperature range from 1 GeV up to the electroweak scale.
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