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The emergence of expanding space-time in the Lorentzian type IIB matrix model Mitsuaki Hirasawa

1. Introduction

Superstring theory is a promising candidate for the quantum gravity. The theory is con-
sistently defined in 10-dimensional space-time, although we have observed that our universe is
4-dimensional space-time. The compactification is a mechanism to describe how to effectively
realize 4-dimensional space-times at a low-energy regime in superstring theory. In the mechanism,
there are innumerable number of possible ways to compactify the extra 6-dimensional space per-
turbatively. Therefore it is difficult to choose a unique vacuum that corresponds to our universe
perturbatively.

The type IIB matrix model [1] is a promising candidate for a non-perturbative formulation of
superstring theory. This model is formally obtained by the dimensional reduction [2] of N = 1
supersymmetric SU(𝑁) Yang-Mills theory from 10D to 0D. The model consists of 𝑁 ×𝑁 Hermitian
matrices. Space-time does not exist a priori, but it emerges from the matrix degrees of freedom.

The Euclidean version of the model was studied analytically using the Gaussian expansion
method in [3–6], and the results predict a spontaneous symmetry breaking (SSB) of the spatial
symmetry from SO(10) to SO(3). This prediction was confirmed by the first principles calculations
using the complex Langevin method (CLM) to avoid a notorious sign problem in [7–10]. On the
other hand, the Lorentzian version of the model was studied numerically using an approximation to
avoid the sign problem. The results show an emergence of (3+1)-dimensional space-time [11–15],
however, the structure of the space is not a continuous one due to the approximation [16].

Quite recently, we studied a fermion quenched version of the Lorentzian type IIB matrix
model without the approximation using the CLM [17, 18]. We found that the Lorentzian model is
equivalent to the Euclidean one under the Wick rotation as it is [19]. In this work, to obtain results
inequivalent to the Euclidean one, we use a Lorentz invariant “mass” term. In addition, we study
the SUSY model and add a fermionic mass term to avoid the singular drift problem in the CLM
[20]. We found that the SSB of SO(9) spatial symmetry occurs, however, a 1-dimensional space
expands exponentially when the mass of the fermions is large. We expect that a 3-dimensional
expanding space appears when the fermionic mass term is sufficiently small.

2. Definition of the type IIB matrix model

The partition function of the Lorentzian type IIB matrix model is written as

𝑍 =

∫
𝑑𝐴𝑑Ψ𝑑Ψ̄ 𝑒𝑖 (𝑆b+𝑆f ) , (1)

𝑆b = −𝑁

4
Tr

{
−2[𝐴0, 𝐴𝑖]2 + [𝐴𝑖 , 𝐴 𝑗]2} , (2)

𝑆f = −𝑁

2
Tr

{
Ψ̄𝛼 (𝐶Γ𝜇)𝛼𝛽 [𝐴𝜇,Ψ𝛽]

}
, (3)

where 𝐴𝜇 and Ψ𝛼 are 𝑁 × 𝑁 Hermitian matrices, 𝜇 runs from 0 to 9, and 𝛼 runs from 1 to 16. Γ𝜇

are 10-dimensional gamma matrices after the Weyl projection, and C is a charge conjugate matrix.
This model has N = 2 supersymmetry (SUSY), and the SUSY algebra realizes translations by a
shift of the matrices 𝐴𝜇 → 𝐴𝜇 + 𝛼𝜇 𝐼, where 𝐼 is the unit matrix. Therefore, the eigenvalues of
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Figure 1: Tr(𝐴0)2 (Left) and Tr(𝐴𝑖)2 (Right) obtained by simulations of a fermion quenched model. “E”
and “L” correspond to the Euclidean and Lorentzian versions of the model.

the matrices 𝐴𝜇 can be interpreted as the space-time coordinates. After the integration over the
fermionic matrices Ψ𝛼, we obtain the following partition function:

𝑍 =

∫
𝑑𝐴 𝑒𝑖𝑆bPfM(𝐴0, 𝐴𝑖), (4)

where M is the Dirac operator, and “Pf” stands for Pfaffian.
We perform a Wick rotation defined by

𝑆b → 𝑆b = 𝑁 𝑒𝑖
𝜋
2 𝑢 Tr

{
1
2
𝑒−𝑖 𝜋𝑢 [ 𝐴̃0, 𝐴̃𝑖]2 − 1

4
[ 𝐴̃𝑖 , 𝐴̃ 𝑗]2

}
, (5)

M(𝐴0, 𝐴𝑖) → M(𝑒−𝑖 𝜋2 𝑢𝐴0, 𝐴𝑖), (6)

where 𝑢 = 0 and 𝑢 = 1 correspond to the Lorentzian and Euclidean model respectively, and we
omit an irrelevant overall phase factor for M because it can be absorbed by a redefinition of the
fermionic matrices. This Wick rotation is equivalent to the following contour deformation:

𝐴0 → 𝑒−𝑖
𝜋
2 𝑢𝑒𝑖

𝜋
8 𝑢𝐴0 = 𝑒−𝑖

3
8 𝜋𝑢𝐴0, 𝐴𝑖 → 𝑒𝑖

𝜋
8 𝑢 𝐴̃𝑖 . (7)

The Cauchy’s theorem says that ⟨O(𝑒−𝑖 3
8 𝜋𝑢𝐴0, 𝑒

𝑖 𝜋8 𝑢 𝐴̃𝑖)⟩𝑢 is independent of 𝑢. This fact means
that the Lorentzian version of this model is equivalent to the Euclidean one under the above Wick
rotation. We confirmed this fact using the complex Langevin simulation of the fermion quenched
model in [19] (See Fig.1).

In order to obtain a large-𝑁 limit which is inequivalent to the Euclidean model, we add a
Lorentz invariant “mass” term to the action given by

𝑆𝛾 = −1
2
𝑁𝛾Tr(𝐴𝜇)2 =

1
2
𝑁𝛾

{
Tr(𝐴0)2 − Tr(𝐴𝑖)2} , (8)

where 𝛾 is the Lorentz invariant “mass” parameter. This term was introduced for the first time in
[21] as an IR regulator, and has been studied at the perturbative level in [22–34]. Especially in
[28], the authors found that for 𝛾 > 0, typical classical solutions of fixed dimensionality describe
the emergence of an expanding (3+1)-dimensional space-time. In this work, we perform a first
principles calculation of this model to study whether such a vacuum appears dynamically.

3
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3. Complex Langevin method

In this section, we explain the complex Langevin method [35, 36], which is a method used
to overcome the notorious sign problem. Since the method is an extended version of the (real)
Langevin method, we start by a brief review of it.

Here we consider a lattice theory that is described by a real dynamical variable 𝜙𝑛, where 𝑛 is
a label for the lattice points, and we assume that the action 𝑆(𝜙) takes real values. The partition
function is given by

𝑍 =

∫ ∏
𝑛

𝑑𝜙𝑛𝑒
−𝑆 (𝜙𝑛 ) . (9)

In the real Langevin method, the dynamical variable is a solution of the Langevin equation

𝑑𝜙𝑛

𝑑𝑡L
= − 𝜕𝑆

𝜕𝜙𝑛

+ 𝜂𝑛 (𝑡L), (10)

where 𝜕𝑆/𝜕𝜙𝑛 is called the drift term, 𝑡L is a fictitious time, the so-called Langevin time, and
𝜂𝑛 (𝑡L) is a real Gaussian noise with zero mean, and variance 𝜎2 = 2. By solving the Fokker-Planck
equation, one can confirm that the equilibrium probability distribution for 𝜙 is proportional to
𝑒−𝑆 (𝜙) .

If the action takes a complex value, then also the drift term takes complex values, and the real
variable 𝜙𝑛 must be complexified. We denote the complexified variable by 𝜑𝑛, and it is a solution
of the complex Langevin equation as

𝑑𝜑𝑛

𝑑𝑡L
= − 𝜕𝑆

𝜕𝜑𝑛

+ 𝜂𝑛 (𝑡L), (11)

where 𝜂𝑛 (𝑡L) is a real Gaussian noise with zero mean and variance 𝜎2 = 2. It is known that
the complex Langevin method does not always yield correct results. A criterion for the correct
convergence was discovered in [37]. Its implementation requires to check that the drift histogram
falls off exponentially or faster with the magnitude of the drift term, which is easy to implement in
the simulations.

We apply the CLM to the Lorentzian type IIB matrix model. In the simulations we fix a gauge
in which 𝐴0 is diagonal

𝐴0 = diag(𝛼1, 𝛼2, . . . , 𝛼𝑁 ), 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑁 . (12)

In order to realize this ordering, we use a change of variables suggested in [17]

𝛼1 = 0, and 𝛼𝑖 =

𝑖−1∑︁
𝑎=1

𝑒𝜏𝑎 (2 ≤ 𝑖 ≤ 𝑁), (13)

where the 𝜏𝑎 are new variables, which we treat as dynamical variables. It is obvious that the
ordering (12) is automatically realized.

Then 𝜏𝑎 and 𝐴𝑖 are complexified, and we generate configurations using the complex Langevin
equations

𝑑𝜏𝑎

𝑑𝑡L
= − 𝜕𝑆

𝜕𝜏𝑎
+ 𝜂𝑎 (𝑡L),

𝑑 (𝐴𝑖)𝑎𝑏
𝑑𝑡L

= − 𝜕𝑆

𝜕 (𝐴𝑖)𝑏𝑎
+ (𝜂𝑖)𝑎𝑏 (𝑡L), (14)

4
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Figure 2: Distributions of the 𝛼𝑖 for the Lorentzian model for various values of 𝛾 at 𝑚f = 10. When the
distribution of the 𝛼𝑖 approaches the black line, the model is equivalent to the Euclidean one under a contour
deformation.

where 𝜂𝑎 (𝑡L) is the Gaussian noise, and the matrices (𝜂𝑎)𝑎𝑏 (𝑡L) are Hermitian matrices whose
elements are generated using Gaussian noise. The drift terms 𝜕𝑆

𝜕𝜏𝑎
and 𝜕𝑆

𝜕(𝐴𝑖 )𝑏𝑎 are computed for
real variables 𝜏𝑎 and Hermitian matrices (𝐴𝑖)𝑎𝑏, and then we complexify 𝜏𝑎 and (𝐴𝑖)𝑎𝑏, thereby
doing an analytical continuation to preserve holomorphicity. For all our results we use the above
mentioned criterion to check the correct convergence of the CLM.

When there are fermionic degrees of freedom, near-zero eigenvalues cause large drifts, which
cause the singular drift problem. This problem is one of the causes of the wrong convergence of
the CLM. To avoid this problem, we introduce a fermionic mass term given by

𝑆𝑚f = 𝑖𝑁𝑚fTr[Ψ̄𝛼 (Γ7Γ
†
8Γ9)𝛼𝛽Ψ𝛽] . (15)

This fermionic mass term has been used successfully in the simulations of the Euclidean model
[9, 10] 1, and the original model is recovered after carefully taking the 𝑚f → 0 limit.

We perform the following technique to stabilize the complex Langevin simulation by replacing

𝐴𝑖 →
1

1 + 𝜖

(
𝐴𝑖 + 𝜖 𝐴

†
𝑖

)
(16)

after every update. This procedure is justifiable when the spatial matrices are nearly Hermitian. A
similar procedure, which is called the dynamical stabilization, has been used in the lattice QCD
[39]. In this work, we choose 𝜖 = 0.01.

4. Results

In this paper, all results which we show below are obtained for 𝑁 = 64. In Fig.2, we plot the
eigenvalues of 𝐴0 on the complex plane for various values of 𝛾. If 𝛾 is equal to, or larger than, 2.6,
the eigenvalues are almost real. On the other hand, if 𝛾 is equal to, or smaller than, 1.8, the results
are equivalent to the Euclidean model under a contour deformation. We call the former phase the
real time phase, and the latter phase the Euclidean phase. We expect that there is a phase transition
for 1.8 ≤ 𝛾 ≤ 2.6.

In order to see how the emergence of space from the spatial matrices, we calculate the following
observable:

A𝑝𝑞 =
1
9

9∑︁
𝑖=1

| (𝐴𝑖)𝑝𝑞 |2. (17)

1The authors in [38] have proposed an alternative fermionic mass term that preserves the supersymmetry.
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Figure 3: A𝑝𝑞 against 𝑝 (𝑥-axis) and 𝑞 (𝑦-axis) at 𝛾 = 2.6 and 𝑚f = 10.

Figure 4: 𝜃s (𝑡) for 𝛾 = 2.6 and 𝑚f = 10. The black line corresponds to the Euclidean model.

In Fig.3, we plot this observables against 𝑝 and 𝑞. This figure shows that the A𝑝𝑞 becomes small
as |𝑝 − 𝑞 | increases. Thus, only the elements near the diagonal have important information. We
call this matrix structure the band-diagonal structure, and 𝑛 denotes its bandwidth. In the rest of
the paper, we choose 𝑛 = 12.

Using the bandwidth 𝑛, we define time by

𝑡𝑎 =

𝑎∑︁
𝑖=1

|𝛼̄𝑖 − 𝛼̄𝑖−1 |, where 𝛼̄𝑖 =
1
𝑛

𝑛−1∑︁
𝜈=0

𝛼𝑖+𝜈 . (18)

Then we define the 𝑛 × 𝑛 block matrices 𝐴̄𝑖 (𝑡𝑎) by

( 𝐴̄𝑖)𝑘𝑙 (𝑡𝑎) = (𝐴𝑖) (𝑘+𝑎−1) (𝑙+𝑎−1) . (19)

These block matrices represent the state of the universe at 𝑡𝑎. In the following, we omit the index
𝑎, and we denote time by 𝑡.

To study whether space is also real in the real time phase, we define a phase 𝜃s(𝑡) for the spatial
matrices by

tr( 𝐴̄𝑖 (𝑡))2 = 𝑒2𝑖 𝜃s (𝑡 ) |tr( 𝐴̄𝑖 (𝑡))2 |. (20)

This phase becomes 0 when space is real, 𝜋/8 when the model is equivalent to the Euclidean one.
In Fig.4, the 𝜃s(𝑡) is plotted against time. This figure shows that space becomes real at late times.

To study the SSB of the SO(9) rotational symmetry, we define the “momentum of inertia
tensor”

𝑇𝑖 𝑗 (𝑡) =
1
𝑛

tr
(
𝑋𝑖 (𝑡)𝑋 𝑗 (𝑡)

)
, (21)

6
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Figure 5: The eigenvalues of 𝑇𝑖 𝑗 (𝑡) are plotted against time 𝑡. (Left Top) 𝛾 = 4.0 and 𝑚f = 10, (Right Top)
𝛾 = 2.6 and 𝑚f = 10, and (Bottom) 𝛾 = 2.6 and 𝑚f = 5. The dashed lines are obtained by exponential fits
using 𝑡 ≳ 0.5 data points.

where
𝑋𝑖 (𝑡) =

1
2

(
𝐴̄𝑖 (𝑡) + 𝐴̄

†
𝑖
(𝑡)

)
. (22)

This Hermitianization is justifiable at late times because the spatial matrices become Hermitian
there as we saw in Fig.4.

In the SO(9) symmetric case, the eigenvalues of 𝑇𝑖 𝑗 (𝑡) are all equal in the large-𝑁 limit 2,
but in the SO(9) broken case they are not. In Fig.5, we plot the eigenvalues of 𝑇𝑖 𝑗 (𝑡) against the
time 𝑡. These figures show that the eigenvalues become equal around 𝑡 = 0. On the other hand,
we find that the SSB of SO(9) occurs at 𝑡 ∼ 0.5. After the SSB, 1 out of the 9 eigenvalues grows
exponentially. In other words, 1-dimensional space grows exponentially. By comparing Fig.5 (Left
Top) and (Right Top), we can see that the expansion becomes more pronounced as 𝛾 decreases.
Furthermore, by comparing Fig.5 (Right Top) and (Bottom), we see that the expansion becomes
more pronounced as 𝑚f decreases.

5. Summary and discussion

We studied the Lorentzian version of the type IIB matrix model numerically. Since there is a
strong sign problem, we used the complex Langevin method. To avoid the singular drift problem
we add a mass term for the fermionic matrices. We denote this mass parameter by 𝑚f , and the
original model is obtained after an 𝑚f → 0 extrapolation.

The Lorentzian version of the model has been found to be equivalent to the Euclidean one
under a contour deformation. We confirm this point numerically for the fermion quenched model.

2The small differences between them are a finite-𝑁 effect.
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To obtain results inequivalent to the Euclidean model, we use the Lorentz invariant “mass” term
which acts as an IR regulator. We denote its mass parameter by 𝛾. We propose a novel large-𝑁
limit, where one takes the 𝛾 → 0 extrapolation after the large-𝑁 limit is taken for specific 𝛾.

Regarding the mass parameter 𝛾, there are two phases depending on its value. One appears
at small 𝛾, in which the model is found to be equivalent to the Euclidean model after a contour
deformation. The other phase appears at sufficiently large 𝛾, in which time becomes real. We call
this phase the real time phase.

An important feature of the real time phase is that the spatial matrices have a band-diagonal
structure. This structure enables us to define block matrices which represent the state of the universe
at a given time. We studied the time evolution of the universe using these block matrices. We
found that the real space appears at late times. Moreover, a spontaneous symmetry breaking (SSB)
of SO(9) occurs at some time, however, only 1-dimensional space expands exponentially after the
SSB when the fermionic mass term is large (𝑚f ≳ 5).

By focusing on the bosonic part of the action, the quantum fluctuations are suppressed when
Tr[𝐴𝑖 , 𝐴 𝑗] ∼ 0, which happens when only one spatial matrix is large. This is the reason for the
emergence of the 1-dimensional space at sufficiently large 𝑚f . On the other hand, when 𝑚f = 0 and
there are only two large matrices the Pfaffian becomes zero [40, 41]. Therefore, configurations in
which only one or two of matrices are large are strongly suppressed because the Pfaffian becomes
small. Thus, the emergence of expanding 1-dimensional space is suppressed by the presence of
SUSY, and we expect the emergence of an expanding 3-dimensional space for sufficiently small 𝑚f .
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