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1. Introduction

Since the rediscovery of the Ginsparg-Wilson (GW) relation[1–6], it has become possible to
discuss the gauge interaction of Weyl fermions on the lattice in well-defined manners. As for the
Abelian lattice chiral gauge theories with anomaly-free set of Weyl fermions, Lüshcer has shown
that the gauge-invariant path-integral measure of lattice Weyl fermions can be constructed locally,
uniquely and smoothly[7]. Lüshcer has also examined the gauge anomaly in non-Abelian lattice
chiral gauge theories and formulated an integrability condition of the chiral determinant of lattice
Weyl fermions[8]. This integrability condition was also formulated as the relation between 4-dim.
overlap Weyl fermion and 5-dim lattice domain wall fermion[9–14].

Our research aims to reformulate the integrability condition of the chiral determinant of
Weyl fermions on the lattice in a more parallel manner with the modern theory of ’t Hooft (gauge)
anomalies, and derive the necessary and sufficient condition to construct lattice chiral gauge theories.
Our discussion parallels the modern theory of anomalies. The current understanding of ’t Hooft
anomaly implies that the d-dim anomalous theory emerges as a boundary theory of (d+1)-dim
SPT theory. This non-trivial relation between a d-dim anomaly and a (d+1)-theory has been
known as the anomaly-inflow mechanism[15]. Recent works[16–18] succeeded in reinterpreting
the relation based on the Dai-Freed theorem[19] and sophisticating it. Furthermore, the (co)bordism
classification of SPT phases enables us to classify anomalies systematically and serves as a powerful
tool for examining ’t Hooft anomalies in gauge theories.

In this paper, we first consider the 5-dim lattice domain-wall fermion and emerging 4-dim
boundary overlap Weyl fermion. Calculating the partition function of the system, we reformulate
the anomaly-inflow based on the Dai-Freed theorem on the lattice. Next, observing the 6-dim
lattice domain-wall fermion and the boundary 5-dim overlap Dirac fermion, we derive the Atiyah-
Patodi-Singer(APS) index theorem on the lattice. Those discussions of 5- and 6-dim domain-wall
fermions lead us to define 𝜂-invariant on the lattice and its “bordism” invariance the triviality of
which indicates the integrability of the lattice Weyl fermion determinant. In conclusion, we present
two statements as the necessary and sufficient conditions to construct generic anomaly-free lattice
chiral gauge theories.

1.1 Weyl fermions on the lattice and the gauge anomaly

Given a gauge-covariant lattice Dirac operator satisfying the GW relation[1],

𝐷𝛾5 + 𝛾5𝐷 = 2𝑎𝐷𝛾5𝐷, (1)

Weyl fermion 𝜓− (𝑥), 𝜓− (𝑥) can be defined by constraining Dirac fermion 𝜓(𝑥), 𝜓(𝑥) with the
modified projection operator and the usual one :

𝜓− (𝑥) = �̂�−𝜓− (𝑥), 𝜓− (𝑥) = 𝜓− (𝑥)𝑃+, (2)

where

�̂�5 = 𝛾5(1 − 2𝑎𝐷), �̂�± =
1
2
(1 ± �̂�5) , 𝑃± =

1
2
(1 ± 𝛾5) . (3)

The action of the Weyl fermion is written as:

𝑆 = 𝑎4
∑

𝜓− (𝑥)𝐷𝜓− (𝑥). (4)
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The path-integral measure on the Weyl fermion can be defined with the coefficients of mode
expansion of fermions. First, let us introduce chiral basis {𝑣𝑖}, {𝑣𝑖} and expand 𝜓− (𝑥), 𝜓− (𝑥) with
them:

𝜓− (𝑥) =
∑

𝑣𝑖 (𝑥)𝑐𝑖 , �̂�−𝑣𝑖 (𝑥) = 𝑣𝑖 (𝑥), (5)

𝜓− (𝑥) =
∑

𝑐𝑘𝑣𝑘 (𝑥) , 𝑣𝑘 (𝑥)𝑃+ = 𝑣𝑘 (𝑥). (6)

Then, the path-integral measure can be defined as:

D[𝜓]D[𝜓] =
∏
𝑗

𝑑𝑐 𝑗

∏
𝑘

𝑑𝑐𝑘 . (7)

As a result, the partition function of lattice Weyl fermion can be calculated as follows and takes the
form of a chiral determinant:

𝑍 =
∫

D [𝜓−] D
[
�̄�−

]
e−𝑎

4 ∑
𝑥 �̄�− (𝑥 )𝐷𝜓− (𝑥 ) (8)

=
∫ ∏

𝑖

𝑑𝑐𝑖
∏
𝑖

𝑑𝑐 𝑗e−
∑

𝑖 𝑗 �̄� 𝑗𝑀 𝑗𝑖𝑐𝑖 = det 𝑀 𝑗𝑖 , (9)

where 𝑀 𝑗𝑖 = 𝑎4 ∑
𝑥 �̄� 𝑗𝐷𝑣𝑖 (𝑥).

In the above discussion, the constraint condition (5) depends on 𝐷 through �̂�−, and we foist
the gauge field dependency of 𝜓− (𝑥) on the basis {𝑣𝑖}. Therefore, it is not trivial if the choice of
the basis {𝑣𝑖} exists so that the partition function is uniquely determined as a function of the gauge
field 𝑈 (𝑥, 𝜇). In fact, under the unitary transformation Q of the basis,

�̃�𝑖 (𝑥) = 𝑣𝑙 (𝑥)
(
Q−1

)
𝑙𝑖
, 𝑐 𝑗 =

∑
𝑙

Q 𝑗𝑙𝑐𝑙, (10)

the partition function transforms as

det 𝑀 𝑗𝑖 → det 𝑀 𝑗𝑖 detQ. (11)

Consequently, the partition function now has a gauge-dependent phase ambiguity, namely, the gauge
anomaly.

Overlap Weyl fermions are defined with a gauge-covariant and local solution of GW relation
given as follows[2, 3]:

𝐷ov ≡ 1
2𝑎

©«1 + 𝑋w
1√

𝑋†
w𝑋w

ª®®¬ , 𝑋w = 𝐷w − 𝑚0

𝑎
(0 < 𝑚0 < 2), (12)

where𝐷w is a Dirac operator of the massless Wilson fermion:

𝐷w = −𝛾𝜇
1
2

(
∇𝜇 − ∇†

𝜇

)
+ 𝑎

2
∇𝜇∇†

𝜇 . (13)

Throughout this paper, let us impose the admissibility condition:1 − 𝑃𝜇𝜈 (𝑥)
 <

2
5𝑑 (𝑑 − 1) , (14)

where 𝑃𝜇𝜈 (𝑥) is the plaquette variable and d denotes the dimension. This condition guarantees the
locality and the topological structure of the overlap Dirac operator[6].
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2. Reformulation of the inegrablity condition in lattice chiral gauge theories

2.1 5-dim DW fermion

We adopt Shamir’s definition of the lattice domain-wall fermion[10]. That is, we define it by
Wilson-Dirac fermion with the negative mass −𝑚0

𝑎 (0 < 𝑚0 < 2) on the 5-dim lattice with a finite
fifth extent 𝑡 ∈ [−𝑁 + 1, 𝑁] and impose the Dirichlet(Dir) boundary condition:

𝜓− (𝑥, 𝑡) |𝑡=−𝑁,𝑁+1 = 0, (15)
𝜓− (𝑥, 𝑡)

��
𝑡=−𝑁,𝑁+1 = 0, (16)

where 𝑡 denotes the coordinate of 5th axis. This definition naturally introduces the Weyl fermion
with the positive and the negative chirality on the 𝑡 = −𝑁 + 1 boundary and 𝑡 = 𝑁 boundary,
respectively.

In order to define chiral fermions, we need to assign different 4-dim link fields on two bound-
aries. Therefore, let 𝑈0(𝑥; 𝜇) and 𝑈1(𝑥; 𝜇) be the 4-dim gauge fields such that couple to 𝜓+ and
𝜓−, respectively:

𝑈 (𝑥, 𝑡; 𝜇) |𝑡=−𝑁+1 = 𝑈0(𝑥; 𝜇), (17)
𝑈 (𝑥, 𝑡; 𝜇) |𝑡=𝑁 = 𝑈1(𝑥; 𝜇). (18)

In addition, we must define the 5-dim link fields consistent with the boundary link fields. Thus
we take the 5-dim path 𝑐 to smoothly interpolate𝑈0(𝑥, 𝜇) and𝑈1(𝑥, 𝜇) along the 5th axis. Note that
it has to satisfy the 5-dim version of the admissibility condition.For a practical purpose, we suppose
that 5-dim link fields vary in a finite interval along the path 𝑐, namely the interval 𝑡 ∈ [−Δ + 1,Δ]
with a fixed Δ, sufficiently small compared to 𝑁 .

Further, we can also define the domain-wall fermion with anti-periodic(AP) boundary condi-
tion. To do so, we first combine two 5-dim lattice spaces and take 𝑡 ∈ [−𝑁 + 1, 3𝑁] and interpolate
5-dim link fields with the path 𝑐 = 𝑐1𝑐

−1
2 .

2.2 5-dim DW fermion and the Dai-Freed theorem

In this section, let us consider the 5-dim domain-wall fermion with Dir. boundary condition
and reformulate the anomaly inflow on the lattice based on the Dai-Freed theorem. Let Y|Dir/AP
be the 5-dim lattice space with Dir/AP boundary condition and X0,1 denotes the two boundaries of
Y|Dir .

The partition function of the domain-wall fermion and emerging boundary Weyl fermion can
be calculated as follows[13]:

lim
𝑁→∞

det 𝑋 (5)
w

���𝑐
Dir����det 𝑋 (5)

w

���𝑐·𝑐−1

AP

����1/2 = det
(
𝑣𝐷ov𝑣

1
)

det
(
𝑣𝐷ov𝑣

0
)∗ det

(
𝑣1† ∏

𝑡∈ �̃� 𝑇𝑡𝑣
0)��det

(
𝑣1† ∏

𝑡∈ �̃� 𝑇𝑡𝑣0) �� . (19)

where 𝑇 in the 3rd term is a transfer matrix and defined as 𝑇𝑡 = 1−𝑎𝐻𝑡/2
1+𝑎𝐻𝑡/2 . Here are some remarks

about the equation(19). First, at the LHS, we calculate the partition function of the 5-dim domain-
wall fermion with the Dir boundary condition, divided by the same with the AP boundary condition.
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It is because we would like to focus on the contribution of the boundary Weyl fermions. As a virtue
of this procedure, the bulk term, the 3rd term in the RHS, becomes only a pure phase. We denote
this phase with 𝑖 2𝜋𝜂DF

(
Y|Dir

)
:

exp (𝑖2𝜋𝜂DF (Y|Dir)) :=
det

(
𝑣1† ∏

𝑡∈ �̃� 𝑇𝑡𝑣
0)��det

(
𝑣1† ∏

𝑡∈ �̃� 𝑇𝑡𝑣0) �� . (20)

Second, the 1st and 2nd terms specify the boundary contributions, namely the effective action of
4-dim Weyl fermions. As mentioned in section1.1, it takes the form of the chiral determinant and
breaks the gauge symmetry through the chiral bases {𝑣1

𝑖 }, {𝑣0
𝑖 }. We denote these effective actions

with Γ
(
X1 ∪ X0

)
. Consequently, the equation (19) can be written in a simpler form:

lim
𝑁→∞

det 𝑋 (5)
w

���𝑐
Dir����det 𝑋 (5)

w

���𝑐·𝑐−1

AP

����1/2 = exp
(
Γ
(
X1 ∪ X0

) )
exp

(
𝑖2𝜋𝜂DF

(
Y|Dir

) )
. (21)

A closer look at this equation shows that each term in RHS is anomalous, but by combining them,
we get LHS, which is anomaly-free. Actually, the boundary effective action and the bulk term have
the same {𝑣𝑖} dependency and give the exact same U(1) bundle. This relation reformulates the
anomaly inflow on the lattice based on the Dai-Freed theorem.

Let us emphasize that the amount exp (𝑖2𝜋𝜂DF (Y|Dir)) indicates the bulk dependency of the
gauge configuration, precisely speaking, the dependence of the interpolation path 𝑐. Based on
the above discussion, we can always cancel the gauge anomaly of the 4-dim lattice Weyl fermion
with the 5-dim object exp (𝑖2𝜋𝜂DF (Y|Dir)); thus, we no longer have the problem with the anomaly.
Instead, it now comes down to the new situation of 5-dim dependency.

2.3 Lattice 𝜂-invariant and integrability condition

In this section, we discuss the relation between the amount exp (𝑖2𝜋𝜂DF (Y|Dir)) and the lattice
𝜂-invariant and formulate the integrability condition of lattice Weyl fermion with the lattice 𝜂

invariant. First, we define the lattice 𝜂-invariant with the phase of the determinant of the 5-dim
overlap Dirac operator, following a precedented work[14]:

exp
(
𝑖2𝜋𝜂

(
Y|Dir/AP

) )
:= lim

𝑁→∞


det 𝐷 (5)

ov

���
Dir/AP����det 𝐷 (5)

ov

���
Dir/AP

����


2

(22)

= lim
𝑁→∞

det 𝑋 (5)
w

���
Dir/AP����det 𝑋 (5)

w

���
Dir/AP

���� . (23)

This definition coincides with the usual definition of the 𝜂 invariant under the classical continuum
limit. Then, by definition, the equation (21) reads

e𝑖2𝜋𝜂 (Y |Dir ) = e𝑖2𝜋𝜂DF (Y |Dir )e𝑖 Im Γ(X1∪X0) (24)

5
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and, with the equation (20), this in turn implies

e𝑖2𝜋𝜂DF(Y |𝑐1
Dir)

e𝑖2𝜋𝜂DF(Y |𝑐2
Dir)

= e
𝑖2𝜋𝜂

(
Y |

𝑐1𝑐
−1
2

AP

)
. (25)

Now, let us come back to our problem of the 5-dim dependency of the partition function of
the 4-dim lattice Weyl fermion. Reminding that exp (𝑖2𝜋𝜂DF (Y|Dir)) is the bulk contribution of
the partition function and the ratio e𝑖2𝜋𝜂DF(Y |𝑐1

Dir)/e𝑖2𝜋𝜂DF(Y |𝑐2
Dir) measures the bulk dependency of

the interpolation paths. Accordingly, the integrability condition is now formulated by the following
statement:

“𝑒𝑖2𝜋𝜂 (Y |AP ) = 1 for arbitrary gauge configurations satisfying the admissibility condition.′′ (26)

However, it is practically impossible to compute 𝑒𝑖2𝜋𝜂 (Y |AP ) for any gauge configurations.
Then it is essential to introduce the “bordism” invariance on the lattice, as we will see in later, to
reduce the computation.

2.4 6-dim DW fermions and APS index theorem

In this section, we formulate the APS index theorem on the lattice, considering the 6-dim
latticedomain-wall fermion and boundary 5-dim overlap Dirac fermion[20]. Let Z|Dir/AP be the
5-dim lattice space with Dir/AP boundary condition and Y0,1 denotes the two boundaries of Z|Dir.
We use 𝑠 to indicate the coordinate of 6th axis.

The partition function of the 6-dim domain-wall fermion with the Dir boundary condition can
be evaluated in the same manner as the section 2.2, and we get:

lim
𝑁→∞

det 𝑋 (6)
w

���𝑐
Dir���det 𝑋 (6)

w

���𝑐−1

AP

����1/2 = det
(
�̄�𝐷ov𝑣

1
)

det
(
�̄�𝐷ov𝑣

0
)∗ det

(
𝑣1† ∏

𝑡∈ �̃� 𝑇𝑡𝑣
0)��det

(
𝑣1† ∏

𝑡∈ �̄� 𝑇𝑡𝑣0) �� . (27)

In the 6-dim case, we can choose the basis {𝑣𝑖} as follows:

𝑣𝑖 (𝑥) =
1
√

2

(
𝑋 (5) 1√

𝑋 (5)†𝑋 (5)

1

)
𝜙𝑖 (𝑥), (28)

where (
𝑋 (5)†𝑋 (5)

)
𝜙𝑖 (𝑥) = (𝜆𝑖)2 𝜙𝑖 (𝑥),

∑
𝜙𝑖 (𝑥)𝜙𝑖 (𝑦)† = 𝐼4×4𝛿𝑥,𝑦 . (29)

As a result, unlike the 5-dim case, we can factorize the boundary and the bulk terms so that neither
is independent on the basis {𝑣𝑖}, meaning anomaly-free. This choice of chiral basis corresponds to
taking the APS boundary condition. Therefore, based on our choice of the basis, we can rewrite the
equation (27) as follows:

lim
𝑁→∞

det 𝑋 (6)
w

���𝑐
Dir����det 𝑋 (6)

w

���𝑐𝑐−1

AP

����1/2 = det 𝐷 (5)
ov

���
Y1

{
det 𝐷 (5)

ov

���
Y0

}∗
e𝑖 𝜋𝑃 ( Z |𝑐 ) , (30)
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where we define the amount 𝑃 so that the 3rd term denotes the bulk contribution:

e𝑖 𝜋𝑃
(
Z |𝑐

)
=

detT�� detT
�� , (31)

T =
1
2

(
1

√
𝑋†𝑋

𝑋† 1
)����
Y1

∏
𝑡∈ �̃�

𝑇 (5)
𝑡

(
𝑋 1√

𝑋†𝑋
1

)�����
Y0

. (32)

This choice of chiral basis corresponds to taking the APS boundary condition. The amount e𝑖 𝜋𝑃 ( Z |𝑐 )

indicates the interpolation dependency of the 6-dim gauge configuration, and it can be expressed
with the phase of the domain-wall fermion with the AP boundary condition:

e𝑖 𝜋𝑃 ( Z |𝑐1 )e−𝑖 𝜋𝑃 ( Z |𝑐2 ) = lim
𝑁→∞

det 𝑋 (6)
w

���𝑐1𝑐
−1
2

AP���det 𝑋 (6)
w

���𝑐1 ·𝑐−1
2

AP

(33)

:= lim
𝑁→∞

e𝑖 𝜋𝑄
(6)

(
Z |𝑐1 ·𝑐−1

2
)
. (34)

We can specifically exhibit the amount of 𝑄 (6) ( Z|𝑐1 ·𝑐−1
2

)
as a lattice sum of a local topological

field 𝑞 (6) (𝑧):

𝑄 (6) =
∑

𝑦,𝑠∈𝑐1𝑐
−1
2

𝑞 (6) (𝑧), (35)

𝑞 (6) (𝑧) := −1
2

tr

{
𝐻w√
𝐻2

w

�����
AP

}
(𝑧, 𝑧), 𝐻w = 𝛾7𝑋

(6)
w , (36)

where 𝑧 denotes the 6-dim coordinate. Although 𝑄 (6) ( Z|𝑐1 ·𝑐−1
2

)
originally depended on a loop

𝑐1𝑐
−1
2 , we can use the locality of 𝑞 (6) (𝑧) to decouple the contributions from 𝑐1 and 𝑐−1

2 . Thus we
can write:

𝑃 (Z|𝑐) = lim
𝑁→∞

∑
𝑦,𝑠∈𝑐

𝑞 (6) (𝑧). (37)

Now, let us focus on the phase of the equation (30) this time. First, for the phase of the LHS,
one can define an index 𝐼 on the lattice as follows:

𝐼
(
Z|Dir

)
= −

∑
𝑧

1
2

tr

{
𝐻w√
𝐻2

w

�����
Dir

}
(𝑧, 𝑧). (38)

It has been proved that this index coincides with the APS index in the continuum theory[21–23];
hence we get the lattice APS index from the phase of the LHS.

Next, it follows from the definition of the lattice 𝜂 invariant (22) that the phase of the boundary
terms in the RHS, 1st and 2nd terms, give the lattice 𝜂 invariants. Besides, the bulk term in the
LHS has already been just a phase. Therefore, from the phase of the equation (30), we get:

𝐼
(
Z|Dir

)
= 𝑃 (Z|𝑐) + 𝜂 (Y1 |AP) − 𝜂 (Y0 |AP) . (39)

This result exactly reproduces the APS index theorem on the lattice1.

1Strictly speaking, it only holds with modulo 2𝜋, but it has been shown that the leftover term vanishes when
perturbative anomaly cancels out, and thus, we can simplify the equation. [14]
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2.5 The cohomological problem and “Bordism” invariance of lattice eta invariant

Now, let us look closely at the amount 𝑃(Z|𝑐). As mentioned above, 𝑃(Z|𝑐) can be expressed
with the lattice sum of a lattice topological field 𝑞, which thus satisfies the relation:∑

𝑦,𝑠∈𝑐
𝛿𝜂𝑞

(6) (𝑧) = 0. (40)

Such a local topological field 𝑞(𝑧) is expected to be classified cohomologically[8], as well as the
case in the continuum theory. Thereby assuming this cohomological problem, we can rewrite 𝑞(𝑧)
with a lattice Chern class 𝑐(𝑧) and local gauge-invariant currents 𝑘 as follows:

𝑞 (6) (𝑧) = 𝑐3(𝑧) + 𝜕∗𝜇𝑘𝜇 (𝑧). (41)

Additionally, let us suppose the perturbative anomaly cancellation conditionΣ𝑅 Tr𝑅
[
𝑇𝑎

{
𝑇𝑏, 𝑇𝑐

}]
=

0. As it means 𝑐(𝑧) = 0, 𝑞(𝑧) becomes cohomologically trivial:

𝑞 (6) (𝑧) = 𝜕∗𝜇𝑘𝜇 (𝑧). (42)

under the condition. Now 𝑞(𝑧) is a mere total derivative term, and hence 𝑃, the lattice sum of 𝑞(𝑧),
can be represented with only the boundary contributions:

𝑃 (Z|𝑐) =
∑
𝑦

𝑘𝑠 (𝑧) |Y1 −
∑
𝑦

𝑘𝑠 (𝑧) |Y0 (43)

This description leads us to define a new amount, adding the boundary contribution from 𝑃(Z|𝑐)
to 𝜂, which is originally a boundary object. Namely, we define a new amount as follows:

𝜂
(
Y1,0

��
AP

)
= 𝜂

(
Y1,0

��
AP

)
+

∑
𝑦

𝑘𝑠 (𝑦, 𝑠) |Y1,0 . (44)

As a result, the following identity follows from the APS index theorem (39):

exp(𝜋𝑖𝐼 (Z|Dir)) = exp(𝜋𝑖𝜂 (Y1 |AP)) exp(−𝜋𝑖𝜂 (Y0 |AP)), (45)
1 = exp(2𝜋𝑖𝐼 (Z|Dir)) = exp(2𝜋𝑖𝜂 (Y1 |AP)) exp(−2𝜋𝑖𝜂 (Y0 |AP)). (46)

The last relation tells us that exp(2𝜋𝑖𝜂 (Y1 |AP)) and exp(2𝜋𝑖𝜂 (Y0 |AP)) give the same amount if
there exists a 6-dim lattice space such that 𝜕Z = Y0 ⊔Y1. This property is the lattice analog for the
notion of bordism invariance.

2.6 The triviality of exp(2𝜋𝑖𝜂 (Y0 |AP)) and the integrability condition

As mentioned in sec2.3, the integrability condition has come down to the statement “𝑒𝑖2𝜋𝜂 (Y |AP ) =
1 for arbitrary gauge configurations satisfying the admissibility condition”. Now we can amend it
using 𝜂:

“𝑒𝑖2𝜋 �̌� (Y |AP ) = 1 for arbitrary gauge configurations satisfying the admissibility condition.′′ (47)

Due to the powerful property of the ’bordism’ invariance of 𝑒𝑖2𝜋 �̌� (Y |AP ) , we only need to calculate
if with a finite number of ’bordism’ equivalent gauge configurations. In conclusion, the original
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issue of the anomaly cancellation condition, namely the integrability condition of the 4-dim lattice
Weyl fermion, eventuated the calculation task of the amount 𝑒𝑖2𝜋 �̌� (Y |AP ) . After confirming that
𝑒𝑖2𝜋𝜂 (Y |AP ) = 1, we can define the partition function of the 4-dim Weyl fermion as follows:

eΓ (X1 ) = det
(
�̄�𝐷ov𝑣

1
)

e𝑖2𝜋 �̌�DF(Y |𝑐Dir) . (48)

Our discussion above guarantees that this partition function is uniquely determined up to a constant
(gauge-independent) phase.

3. Summary

With the above discussion, we have formulated the construction of generic lattice chiral gauge
theories. As a first step towards this formulation, we first focused on the 5-dim lattice domain-wall
fermion. We defined an amount 𝜂DF

(
Y|𝑐Dir

)
, which has been shown to coincide with the section

of the determinant line bundle of the 4-dim boundary lattice chiral fermions. This mechanism is a
lattice analog of the anomaly inflow based on the Dai-Freed theorem.
Next, we focused on the 6-dim lattice domain-wall fermion and produced the APS index theorem
on the lattice. In addition, we introduced an amount 𝑒𝑖2𝜋 �̌� (Y |AP ) , assuming the cohomological
problem. In conclusion, the necessary and sufficient conditions to construct lattice chiral gauge
theories can be summarized in two statements:

1. (The cohomological problem) local lattice topological fields become cohomologically trivial
under the perturbative anomaly cancellation condition.

2. (The integrability condition) 𝑒𝑖2𝜋 �̌� (Y |AP ) = 1 for representative gauge configuration of “bor-
dism” equivalence
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