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functional forms, making difficult in practice the extrapolation to the continuum limit. Simulations
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1. Introduction

Lattice QCD provides a non perturbative regulator to the underlying field theory. For any
given field theory we can construct many different discretizations. Only after renormalization and
the continuum extrapolation all discretizations should give the same predictions for dimensionless
observables.

This concept, usually referred as universality, is well understood in the framework of Symanzik
efective field theory [1]: Any lattice action has a description through an effective continuum theory

𝑆latt
𝑎→0∼ 𝑆cont + 𝑎2𝑆2 + . . . (1)

By symmetry arguments the leading term (𝑆cont) in this effective description is independent of the
chosen discretization.

The Symanzik continuum effective theory is an important tool for lattice field theory: it is
the basis of the improvement program for clover Wilson fermions[2], and is behind the arguments
of automatic 𝑂 (𝑎) improvement[3]. Recent works [4–6] have also investigated cutoff effects for
different discretizations of Yang Mills and QCD. Their results for a dimensionless function of
expectation values

P(𝑎) = P(0) + 𝑎2
∑︁
𝑘

𝑐𝑘MRGI
P,𝑘 [𝛼(1/𝑎)]

𝛾𝑘 , (2)

includes the computation of the anomalous dimensions 𝛾𝑘 for Yang-Mills and QCD. The sum in
Eq. (2) runs over the possible dimension 6 local operators present in 𝑆2, The interested reader
should consult the original works [4–6] for a more detailed explanation. Here we just point that the
asymptotic behavior Eq. (2) can be quite complicated, leading to difficult continuum extrapolations.
From a practical point of view it is also not clear at which values of the lattice spacing 𝑎, this
asymptotic behavior starts to set in. Given the poor convergence of lattice bare perturbation theory,
one might be worried that in fact all lattice simulations are performed in a region where asymptotic
scaling is broken.

These points suggests that a check of universality is more important than ever. We think that
in order to claim results with 0.1% precision it is necessary to show that this precision can be
reproduced with different discretizations. Using scales derived from the gradient flow [7, 8], we
test for universality in the pure gauge theory. We aim at a sub-percent precision1 by using ranges
of lattice spacings usually simulated in large volume simulations (i.e. 0.15 fm & 𝑎 & 0.05 fm).

Although flow scales are ideal in many respect (high statistical precision, and negligible
systematics), the description of their cutoff effects in terms of the local Symanzik effective theory
is not straightforward [9]. In section 2 we make precise how we plan to test the scaling properties
of different actions. Section 3 presents our main preliminary results, still with limited statistics.
Finally we conclude in section 4.

1Note however that in this proceeding contribution we only have preliminary results with much less precision
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2. Flow scales as a probe for scaling violations

The gradient flow [7, 10] is nowadays a standard tool in lattice QCD (see [11] for a review). In
the continuum the flow equation reads

𝑑𝐵𝜇 (𝑥, 𝑡)
𝑑𝑡

= 𝐷𝜈𝐺𝜈𝜇 (𝑥, 𝑡) , (3)

with initial condition 𝐵𝜇 (𝑥, 𝑡 = 0) = 𝐴𝜇 (𝑥), and 𝐺𝜇𝜈 (𝑥, 𝑡) being the field strength

𝐺𝜈𝜇 (𝑥, 𝑡) = 𝜕𝜈𝐵𝜇 (𝑥, 𝑡) − 𝜕𝜈𝐵𝜇 (𝑥, 𝑡) + [𝐵𝜈 (𝑥, 𝑡), 𝐵𝜇 (𝑥, 𝑡)] . (4)

Gauge invariant composite operators at positive flow time are automatically renormalized [12]. In
particular the action density in units of the flow time 𝑡

𝑡2〈𝐸 (𝑥, 𝑡)〉 , 𝐸 (𝑥, 𝑡) = tr{𝐺𝜇𝜈 (𝑥, 𝑡)𝐺𝜇𝜈 (𝑥, 𝑡)}) . (5)

is dimensionless but depends on the scale 𝜇 = 1/
√

8𝑡. This makes it an ideal candidate to define a
renormalized coupling or as a scale setting tool. In particular 𝑡-like [7] scales are defined by the
condition

𝑡2〈𝐸 (𝑡)〉
���
𝑡=𝑡𝑐

= 𝑐 . (6)

Different values of 𝑐 define different scales 𝑡𝑐 . In particular the choice 𝑐 = 0.3 leads to the definition
of the scale 𝑡0[7].

𝑤-like scales [13] use instead the logarithmic derivative of 𝑡2〈𝐸 (𝑡)〉

𝑡
d
d𝑡
𝑡2〈𝐸 (𝑡)〉

���
𝑡=𝑤2

𝑐

= 𝑐 , (7)

with the usual scale 𝑤0 being defined by using again 𝑐 = 0.3.
In this work we will make use of two different 𝑡-like scales (𝑡0 and 𝑡1) and two different 𝑤-like

scales (𝑤𝐴 and 𝑤𝐵). They are defined by:

𝑡2〈𝐸 (𝑡)〉 =

{
0.300 (𝑡 = 𝑡0)
0.500 (𝑡 = 𝑡1)

, (8)

𝑡
d
d𝑡
𝑡2〈𝐸 (𝑡)〉 =

{
0.285 (𝑡 = 𝑤2

𝐴
)

0.550 (𝑡 = 𝑤2
𝐵
) . (9)

The apparently “weird” choices for 𝑤𝐴, 𝑤𝐵 are chosen so that, in the pure gauge theory, 𝑡0 ≈ 𝑤2
𝐴

and 𝑡1 ≈ 𝑤2
𝐵

.

2.1 Checking for scaling violations using flow quantities

In order to motivate how to check for scaling violations using flow scales, we will first show
how this should not be done. There are several choices to solve the flow equation Eq. (3) and
compute the energy density Eq. (5) on the lattice. They differ by cutoff effects. Typical choices for
solving the flow equation are the Wilson flow [7] or the Zeuthen flow [9], while typical choices for
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Figure 1: Ratios of plaquette/clover discretizations show similar scaling violations when computed with
different gauge actions. On the other hand 𝑡-like scales show larger cutoff effects than 𝑤-like scales. See text
for more details.

evaluating the action density use the clover or the plaquette definition of 𝐺𝜇𝜈 (see [11] for a more
detailed discussion). All these different choices differ just by cutoff effects.

One might think that measuring a flow scale (i.e. 𝑡0) with different discretizations, for example
using the clover (𝑡cl

0 ) and plaquette (𝑡pl
0 ) discretizations for 𝐸 (𝑡), is an ideal probe for scaling

violations. For example, the ratio 𝑡cl
0 /𝑡

pl
0 is on one hand statistically very precise (numerator and

demoninator are very correlated), and on the other hand the continuum limit is known

lim
𝑎→0

𝑡cl
0

𝑡
pl
0

= 1 , (10)

since numerator/denominator are just different discretizations of the same observable.
Figure 1 shows the ratios 𝑡cl

0 /𝑡
pl
0 , (𝑤cl

𝐴
/𝑤pl

𝐴
)2 computed for the Wilson [14], Iwasaki [15], tree-

level improved Luscher-Weisz [16] and DBW2 [17] gauge actions. A naive interpretation of these
figures might lead to the following wrong conclusions

1. All four considered gauge actions show similar scaling violations.

2. 𝑤-like scales have significantly smaller scaling violations.

In order to understand why this conclusions are worng, it is crucial to understand the Symanzik
expansion for flow quantities.

2.2 The Symanzik effective theory for flow scales

Flow observables are non-local from the 4d perspective, avoiding the naive use of the
Symanzink effective theory Eq. (1). The Symanzik effective theory for flow scales [9] uses the 5d
local formulation of the gradient flow [12] (see figure 2). One adds a fifth dimension to the usual
4d space time with the flow time 𝑡 as coordinate. The theory lives only in the region of space 𝑡 ≥ 0.
At 𝑡 = 0 the action is the usual 4d action, but in the bulk (𝑡 > 0) the action consists on a Lagrange

4
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Sfl =
∫ t
0 ds

∫
d4xLaµ(x, t)

{
∂tB

a
µ −DνG

a
µν

}

Sb =
∫
d4x 1

4g2
Ga
µνG

a
µν

0

t
Lagrange multiplier

4d space-time

Figure 2: The analysis of flow observables using the Symanzik effective field theory description has to be
done using the local 5d formulation of the flow [9].

multiplier term that enforces the flow equation. The total action of the theory consists in the sum
of the two pieces

𝑆5d = 𝑆fl + 𝑆b . (11)

It is to this total local action that the Symanzik expansion can be applied. On a typical lattice
computation one is using a 5d action in a rather indirect way: the boundary (𝑆b) part is given by the
gauge action simulated (i.e. Wilson/Iwasaki/. . . ), while 𝑆fl is implicitly defined when one solves
the flow equation. For example, by using he Wilson flow versus the Zeuthen flow one is effectively
using a different lattice discretization of 𝑆fl. The Symanzik expansion should be derived using the
5d action

𝑆5d
latt

𝑎→0∼ 𝑆5d
cont + 𝑎2𝑆2,b + 𝑎2𝑆2,fl + . . . . (12)

Note the following points:

• 𝑆2,b represents the usual term that appears in the Symanzik expansion Eq. (1). It enters in the
cutoff effects of all quantities (i.e. when we determine the proton mass, or the muon 𝑔 − 2).

• 𝑆2,fl only enter in the scaling violations of flow quantities. It comes from the discretization
effects of the lattice flow equation.

From this expression and the classical expansion of a lattice discretization of the action density

𝐸latt(𝑡) 𝑎→0∼ 𝐸 (𝑡) + 𝑎2𝐸2(𝑡) , (13)

one obtains the Symanzik expansion for flow scales. For the case of 𝑡0 (similar expressions can be
derived for 𝑤-like scales) we have

𝑡
pl
0

𝑎→0∼ 𝑡0 −
𝑎2

𝐷0

{
𝑡20 〈𝐸 (𝑡0)𝑆2,b〉 + 𝑡20 〈𝐸 (𝑡0)𝑆2,fl〉 + 𝑡20 〈𝐸

pl
2 (𝑡0)〉

}
𝑡cl
0

𝑎→0∼ 𝑡0 −
𝑎2

𝐷0

{
𝑡20 〈𝐸 (𝑡0)𝑆2,b〉 + 𝑡20 〈𝐸 (𝑡0)𝑆2,fl〉 + 𝑡20 〈𝐸

cl
2 (𝑡0)〉

}
5
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where 𝐷0 = d/d𝑡 |𝑡=𝑡0 𝑡2〈𝐸 (𝑡)〉. It is now clear that the ratio

𝑡
pl
0

𝑡cl
0

𝑎→0∼ 1 − 𝑎2

𝐷0

{
𝑡20 〈𝐸

pl
2 (𝑡0)〉 − 𝑡20 〈𝐸

cl
2 (𝑡0)〉

}
(14)

only shows “trivial” classical cutoff effects. One does not learn anything about the potential 𝑎2

scaling violations in any other quantity: to order 𝑎2 this ratio does not depend on the choice of
gauge action, since both 𝑆2,b drops in the ratio. This explains the plots in Fig. 1.

3. Testing for universality with improved observables

It is clear that if we want to test universality or say something about the scaling properties of
some action, we have to get rid of the scaling violations that depend on the discretization of the
flow equation/observable. Fortunately it is possible to completely eliminate these sources of cutoff
effects [9]. The key idea is that the theory at 𝑡 > 0 is basically classical, and therefore classical 𝑎2

improvement removes all 𝑎2 cutoff effects [9]. In particular, if one uses the Zeuthen flow.

𝑎2 𝑑

𝑑𝑡
𝑉𝜇 (𝑥, 𝑡) = −𝑔2

0

(
1 + 𝑎2

12
𝐷𝜇𝐷

∗
𝜇

)
𝛿𝑆LW [𝑉]
𝛿𝑉𝜇 (𝑥, 𝑡)

𝑉𝜇 (𝑥, 𝑡) ,
(
𝑉𝜇 (𝑥, 0) = 𝑈𝜇 (𝑥)

)
(15)

then 𝑆2,fl = 0. Also the clasically improved observable 𝐸 imp(𝑡) = 4
3𝐸

pl(𝑡) − 1
3𝐸

cl(𝑡) has 𝐸 imp
2 = 0.

With these choices of discretizations, the scaling violations on a flow scale read

𝑡
imp
0

𝑎→0∼ 𝑡0 −
𝑎2

𝐷0
𝑡20 〈𝐸 (𝑡0)𝑆2,b〉 , (16)

i.e. only cutoff effects originating from the action chosen for the simulation 𝑆2,b enter in the scaling
violations. This improvement puts flow scales on a similar footing to other spectral quantities, that
have as only source of cutoff effects the choice of lattice action.

3.1 A comment on the shift in the initial condition

In principle flow quantities generate an additional 𝑎2 counterterm. This is related with a shift
in the initial condition: in Eq. (15) one could use as initial condition

𝑉𝜇 (𝑡, 𝑥)
���
𝑡=0

= exp{𝑐𝑏 (𝑔2
0)𝑔

2
0𝜕𝑥,𝜇𝑆𝑔 [𝑈]}𝑈𝜇 (𝑥) (17)

where the parameter 𝑐𝑏 (𝑔2
0) has to be tuned in order to remove the extra counterterm 2. Note

however that these cutoff effects can be understood as a classical cutoff effect. Since the flow
equation is a first order ODE in 𝑡, the shift at 𝑡 = 0, can be understood as a shift at a later time
𝑡𝑠 > 0. In particular, for flow scales one is interested in the quantity

𝑡2〈𝐸 imp(𝑡 + 𝑐𝑏 (𝑔2
0)𝑎

2)〉 , (18)

that has an effect in 𝑡0

𝑡0(𝑐𝑏) 𝑎→0∼ 𝑡0 −
𝑎2

𝐷0

{
𝑡20 〈𝐸 (𝑡0)𝑆2,𝑏〉 + 𝑐𝑏𝑡

2
0

d
d𝑡

���
𝑡0
𝐸 (𝑡)

}
, (19)

i.e. this effect is a pure classical 𝑎2 effect. Different values of 𝑐𝑏 produce an 𝑎2 effect, with
corrections being 𝑎4 but no logarithmic corrections.

2This shift in the initial condition is similar to the 𝜏-shift introduced in [18].
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Figure 3: The ratio 𝑡1/𝑡0 computed with different gauge actions. We see good agreement in the continuum
values with about a 1% precision.

3.2 Results

All in all, these observations suggests using ratios of improved flow quantities measured at
different flow times as probes for scaling violation. For example using

𝑡
imp
1

𝑡
imp
0

𝑡→0∼
𝑡1
𝑡0

− 𝑎2

{
𝑡21
𝐷1

〈𝐸 (𝑡1)𝑆2,b〉 −
𝑡20
𝐷0

〈𝐸 (𝑡0)𝑆2,b〉
}

(20)

we see that the scaling violations enter only with 𝑆2,b.
Figure 3 and 4 show that this ratios display a reasonable agreement after the continuum limit

is taken. Of course the precision is still poor, and more work is required.

4. Conclusions

• The asymptotic scaling of different gauge actions [4, 5] show complicated functional forms
in the approach to the continuum limit. A strong test of universality is needed in order to gain
confidence in lattice QCD results.

• The lack of systematic effects in the determination of flow scales make them ideal can-
didates to test for scaling. We have all used different discretizations for the observable
(clover/plaquette/. . . ), flow (Wilson/Symanzik) or shift in the initial condition to test our
continuum extrapolations. Now it is time to stop doing it. The Symanzik expansion shows
that these tests can be very misleading: finding an agreement in the continuum extrapolation
is relatively easy since we are only probing the classical 𝑎2 effects present at 𝑡 > 0.

• We propose to use ratios of improved flow scales to test universality and the scaling of
different actions. It has to be noted that it is possible that this ratio suffer from accidental

7
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Figure 4: The ratio (𝑤𝐴/𝑤𝐵)2 computed with different gauge actions. We see reasonable agreement in the
continuum values with about a 2% precision.

cancelations (see Eq. (20)). Still an agreement at the sub-percent level using this approach
would be very comforting.

We have shown preliminary results for ratios of flow scales using different gauge actions
(Wilson, Iwasaki, tree-level Symanzik improved and DBW2). Our precision is still low, but sub-
percent results will follow. We believe that such tests should be performed for different lattice QCD
actions.
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