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When designing lattice actions, gauge field smearing is frequently used to define the lattice Dirac
operator. Since the smearing procedure removes effects of ultraviolet fluctuations, the fermions
effectively see a larger lattice spacing than the gauge fields. Creutz ratios, formed from ratios of
rectangular Wilson loops, based on smeared gauge fields are adequate observables to investigate
the effect of smearing since they do not need renormalisation and provide a measure of the physical
forces felt by the fermions. We study their behaviour at various smearing radii (fixed in lattice
units) and in particular how the smearing influences the scaling towards the continuum limit.
Since we employ the Wilson gradient flow as smearing, the same Creutz ratios have another, well
defined continuum limit, when the flow time is fixed in physical units. That continuum limit is
reached with smaller corrections at finite a.
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1. Introduction

Four-dimensional smearing is a common method used in lattice gauge theories to smooth a
gauge field. During the years, several smearing algorithms have been developed, e.g. HYP [1],
Stout [2], HEX [3] and gradient flow [4, 5] smearing. Considering a smearing transformation
S : U 7→ S[U] there are two main types of application: Observable smearing

〈OS[U]〉 = 〈O[S[U]]〉, (1)

where a new observable is defined by evaluating a given observable on the smeared gauge field, and
smearing in the lattice fermion action

S[U] = Sg[U] + ψ D[S[U]]ψ, (2)

where the Dirac operator is evaluated on the smeared gauge field. Concerning observable smearing
the main motivation is noise reduction, whereas smearing in the fermion action improves the
algorithmic stability, e.g. with regard to exceptional configurations. In Ref. [6] even at very coarse
lattice spacings theWilson Dirac operator defined with nHYP gauge links could be shown to exhibit
a spectrum with a well-defined spectral gap. The same was shown for stout smearing in Ref. [7].

In this work we are going to focus on two questions: How does the smearing strength influence
lattice artefacts? What smearing strengths allow for a controlled continuum extrapolation? We
will discuss these issues using the example of Creutz ratios, which provide a measure of the
physical1 forces felt by the fermions caused by the gauge field. A somewhat related discussion for
thermal correlation functions and the energy-momentum tensor can be found in [8]. Creutz ratios
in combination with APE smearing and the Wilson flow were also studied in a determination of the
string tension in [9].

2. The gradient flow formalism, gradient flow smearing and physical gradient flow

We make use of the continuum four-dimensional Yang-Mills action which is defined as SYM =

− 1
2g2

0

∫
d4x tr(Fµν(x)Fµν(x)), where Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] denotes the field strength tensor

and Aµ(x) the corresponding gauge field. In the Yang-Mills continuum gradient flow formalism [5]
a gauge field Bµ(x, tfl) is introduced, which is defined on R4 × [0,∞) and where tfl is the so called
gradient flow time. At tfl = 0 the usual four-dimensional gauge field is an initial condition in the
flow time evolution, i.e.

Bµ(x,0) = Aµ(x). (3)

The dynamics in the flow time direction is driven by the gauge-covariant flow equation

∂

∂tfl
Bµ(x, tfl) = −

δSYM[B]
δBµ(x, tfl)

= DνGνµ(x, tfl), (4)

where Gµν = ∂µBν − ∂νBµ + [Bµ,Bν] denotes the generalised field strength tensor on R4 × [0,∞)
and Dµ = ∂µ+ [Bµ, ·] the generalised covariant derivative. The gradient flow possesses a smoothing

1As opposed to the forces present in the molecular dynamics evolution of the HMC.
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property in the direction of positive flow time: From a leading-order perturbative expansion onemay
deduce that the gauge field Bµ(x, tfl) is a spherically smoothed version of Aµ(x) with mean-square
radius rsm =

√
8tfl [5]. In [10] it has been shown perturbatively to all loop orders that any functional

of the flowed fields Bµ(x, tfl) at strictly positive tfl is finite, i.e. no additional renormalisation is
required, assuming that the four-dimensional theory has been renormalised.

We discretise the Yang-Mills gradient flow by means of the Wilson gradient flow [5] and
integrate the flow equation numerically by means of an explicit 3rd-order Runge-Kutta integration
scheme with a step size ∆tfl

a2 ≤ which never exceeds 0.01.
We consider two scenarios in which we apply the gradient flow to the gauge field: For gradient

flow smearing the gradient flow time is fixed in lattice units when varying the lattice spacing,
8tfl
a2 = const, i.e. in physical units it shrinks when the lattice spacing is reduced and therefore
vanishes in the continuum limit. Hence, the continuum theory is unaltered. Smearing strengths up
to 8tfl

a2 = 8 have been used in practice, e.g. in [11]. The second scenario we refer to as a physical
gradient flow. In this case the gradient flow time is fixed in physical units, i.e. tfl/t0 = const, where
t0 may be any physical length scale of the theory, in particular the scale defined in [5]. Consequently,
the flow time in lattice units grows with shrinking lattice spacing 8tfl

a2 ∝
8t0
a2 and hence the continuum

theory / observables are altered. One motivation for a physical gradient flow is the possibility to
define and access new observables.

3. Lattice setup

ensemble β T/a L/a a [fm] L [fm] t0/a2

sft1 6.0662 80 24 0.0834(4) 2.00(1) 3.990(9)
sft2 6.2556 96 32 0.0624(4) 2.00(1) 7.070(17)
sft3 6.5619 96 48 0.0411(2) 1.97(1) 16.52(6)
sft4 6.7859 192 64 0.0312(2) 2.00(1) 29.60(10)
sft5 7.1146 320 96 0.0206(2) 1.98(2) 67.94(23)

Table 1: Parameters of the SU(3) gauge ensembles [12] and computed reference flow time t0/a2 in lattice
units.

We make use of SU(3) Yang Mills theory gauge ensembles [12] based on the Wilson plaquette
action. Temporal open boundary conditions [13] are imposed to alleviate topology freezing. The
scale is set by means of the force parameter r0 [14], where for illustration a value of r0 = 0.5 fm is
used. An overview of the gauge ensembles is given in table 1. The lattice spacing varies between
0.08 fm and 0.02 fm and the spatial extent is kept constant at L = 2 fm.

Instead of the force parameter r0 we will in the following use the already mentioned reference
flow time t0 [5] to construct dimensionless quantities. To define t0 we make use of the action
density E(x, tfl) = −1

2
∑
µ,ν tr

(
Gclv
µν(x, tfl)G

clv
µν(x, tfl)

)
, where Gclv denotes the field strength tensor in

the clover discretisation [15]. The reference flow time t0 is then implicitly defined by t2
0 〈E(x, t0)〉 =

0.3 [5]. Numerical values are listed in table 1.
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In our measurements we implement the two scenarios for scaling the flow time via

8tfl
a2 =

{
0, 0.25, 0.5, . . . , 2, 2.5, . . . , 3.5, 4, 5, 6, 7, 8 smearing
8t0
a2 × 0.0146 × j , j ∈ {0, 1, . . . , 4} physical flow

(5)

4. Creutz ratios and gradient flow

In this work we study the influence of smearing on the continuum extrapolation of Creutz
ratios. In order to define the latter we introduce planar rectangular Wilson loops of size r × t,

W(r, t) ≡
〈

tr
(
P exp

( ∮
γ(r ,t)

dxµAµ(x)
))〉

, (6)

which are obtained from the gauge field by a path-ordered integral along a rectangular closed path
γ(r, t). The Creutz ratios are then obtained from dual logarithmic derivatives:

χ(r, t) ≡ −
∂

∂t
∂

∂r
ln(W(r, t)). (7)

It can be shown that in the limit of an infinite time extent the static quark anti-quark force can be
extracted, i.e. χ(r, t) → Fqq(r) for t → ∞ [9]. In order to define Creutz ratios on the lattice [16]
we construct planar rectangular Wilson loops from closed paths of gauge links:

W lat(r, t) ≡
〈

tr
( ∏
(x,µ)∈γ(r ,t)

Uµ(x)
)〉
. (8)

We discretise eq. (7) making use of central differences [9],

χ
(
t +

a
2
,r +

a
2

)
≡

1
a2 ln

(W(t + a,r) ·W(t,r + a)
W(t,r) ·W(t + a,r + a)

)
, (9)

such that only O(a2) lattice artefacts remain. Note that Creutz ratios renormalise trivially, i.e. no
extra renormalisation factors are required to obtain a renormalised χ(r, t). This important property
entails that the small flow time limit is smooth, as opposed to e.g. the one of 〈E(x, tfl)〉. For our
observables, we can interchange continuum limit and small flow time limit. The two scenarios
eq. (5) therefore have a common limit where both a = 0 and tfl = 0.

In the following discussion, we will only focus on diagonal Creutz ratios χ(r, t) with r = t,
which we abbreviate as χ(r) ≡ χ(r,r). We compute the latter in lattice units (χ · a2)( ra ) for various
half integer distances r

a = 1.5,2.5, . . . on gauge configurations on which the gradient flow was
applied. We use t0 to define dimensionless Creutz ratios, i.e. we analyse χ̂ ≡ χ ·8t0 as a function of
r̂ ≡ r√

8t0
. The computation is based on the openQCD [17] package and utilizes B. Leder’s program

for measuring Wilson loops [18, 19]. For the data analysis the python3 package pyobs [20] is used,
which implements the Γ-method [21] for Monte Carlo error estimation.

In fig. 1 the dimensionless diagonal Creutz ratio χ̂ is displayed as a function of the distance
r̂ evaluated on the five gauge ensembles. For larger distances the statistical signal deteriorates.
Comparing both figures, which only differ in the size of the applied gradient flow time 8tfl

a2 , we
confirm that the gradient flow reduces statistical errors drastically [9]. The ∼ 1

r2 short distance
behaviour is smoothed at distances r /

√
8tfl. Already from this qualitative picture we see that

in the smearing scenario the path to continuum and hence lattice artefacts are altered. This effect
becomes smaller at larger distances which is coherent with the finiteness of the smearing radius.
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Figure 1: Dimensionless Creutz ratios χ̂ ≡ χ ·8t0 as functions of the distance r̂ ≡ r√
8t0

on different ensembles
and for different gradient flow times 8tfl

a2 .

5. Interpolation of Creutz ratios

Wewant to extrapolate χ̂(r̂) to the continuum at a fixed value of r̂ . This requires the knowledge
of (χ · a2)

(
r
a

)
at arbitrary values of r

a , i.e. also at locations r
a , 1.5,2.5, . . ., where the values are

not determined by the measurements. We therefore interpolate χ · a2 as a function of r
a . A first

class of considered interpolation models is constructed from linear combinations of m monomials(
r
a

)n j , where nj ∈ Z, with coefficients cn j ∈ R: The function Poln1,...,nm

(
r
a

)
=

∑m
j=1 cn j

(
r
a

)n j

is then used to locally interpolate between m adjacent nodes. For m > 2 several locally defined
interpolation functions possess overlapping regions. In order to obtain a smoothing effect for the
global interpolation and to resolve the interpolation ambiguity we average over all contributing
interpolations in an overlapping region between two adjacent nodes. In particular, we make use of
the interpolation models Pol2,1,0 and Pol0,−2,−4. In addition, we use a cubic natural spline CSpl,
which is defined as a piecewise cubic polynomial with continuous second derivative and vanishing
second derivative at the boundaries, as well as the combination CSpl · Pol−2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r̂

0

1

2

3

4
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6

7

8

χ̂

sft3, 8tfl
a2 = 4 Average

CSpl · Pol−2

CSpl
Pol0,−2,−4

Pol2,1,0

Figure 2: Dimensionless Creutz ratio χ̂ ≡ χ · 8t0 as a function of the distance r̂ ≡ r√
8t0

on the ensemble sft3
with a gradient flow time 8tfl

a2 = 4 for various interpolation models.
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In order to account for the interpolationmodel ambiguities we average over all n = 4 considered
interpolation models (χ · a2)av

(
r
a

)
≡ 1

n

∑n
i=1(χ · a

2)i
(
r
a

)
and add a systematic error, which is given

by half the spread of all interpolation models: ∆sys(χ · a2)av
(
r
a

)
≡ 1

2
(
maxi=1,...,n

{
(χ · a2)i

(
r
a

)}
−

mini=1,...,n
{
(χ · a2)i

(
r
a

)})
. In fig. 2 several interpolation models are shown for a given value of

the smearing strength on one ensemble. The interpolations begin to differ at short distances in the
region where the Creutz ratios vary rapidly between nodes. In the following we are going to focus
on the region 0.3 ≤ r̂ ≤ 0.6, in which lattice artefacts are not uncontrollably large and the statistical
signal is sufficiently good.

6. Continuum extrapolation

At fixed distance r̂ we perform a global continuum extrapolation making use of the Symanzik
expansion2 and the small flow time expansion of χ̂. For this purpose we define the dimensionless
lattice spacing parameter â ≡ a√

8t0
and the flow time parameter ε = tfl

t0
. The double expansion is

then given by

χ̂ =

n∑
i=0

ci âi +O(ân+1), ci =
m∑
i=0

ci jε j +O(ym+1). (10)

To define the fit ansatz for the extrapolation we truncate the latter expansion, obtaining

χ̂tr(â, y) = c00 + c20â2 + c40â4 + c01ε + c21â2ε + c02ε
2. (11)

In order to demonstrate that this fit ansatz also describes the a-dependence for fixed smearing, we
observe that the smearing strength is parametrised by ε

â2 =
8tfl
a2 and

χ̂tr = d0 + d2â2 + d4â4 (12)

with coefficients

d0 = c00, d2 = c20

(
1 +

c01
c20

8tfl
a2

)
, d4 = c40

(
1 +

c21
c40

8tfl
a2 +

c02
c40

64t2
fl

a4

)
. (13)

In fig. 3 the continuum extrapolations for the distances r̂ = 0.3 and 0.4 are shown. We
consider both smearing and the physical gradient flow, c.f. eq. (5). An inclusion of data from too
large smearing strengths 8tfl

a2 and too large physical gradient flow strengths t0
tfl
led to fits with a bad

p-value, which is an indication of the breakdown of the Symanzik expansion and the small flow
time expansion. This depends however on the r̂: at larger distances larger values of 8tfl

a2 and t0
tfl

can be fitted with the low-order expansion. By construction of the fit model the continuum limit
is independent of the smearing strength 8tfl

a2 as in the limit â → 0 only the fit coefficient d0 = c00

in eq. (12) contributes. In the figures all continuum extrapolations depicted by solid lines, which
differ in their smearing strengths, therefore share a common continuum limit.

In contrast, the physical gradient flow, constant ε = tfl
t0
, leads to a flow time dependent

continuum limit c00 + c01ε + c02ε
2 which turns out to be below the c00 attained with the smearing.

2Our investigation has an intermediate precision. At this level we neglect logarithmic effects both in the lattice spacing
[22] and in the flow time [5].
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Figure 3: Dimensionless Creutz ratio χ̂ ≡ χ · 8t0 as a function of the lattice spacing â ≡ a√
8t0

at a distance of
r̂ ≡ r√

8t0
= 0.3 (top) and 0.4 (bottom). Extrapolations for several gradient flow smearing strengths 8tfl

a2 (solid)
and for several physical gradient flows tfl

t0
(dashed). Solid lines and circles belong to gradient flow smearing,

whereas dashed lines and squares represent a physical gradient flow. Data points have been shifted for better
visibility.

This dependence is more pronounced at shorter distances. In contrast to the rather steep bending
smearing curves, we observe rather flat extrapolations with the physical flow at constant tfl/t0
(dashed). Since the raw data is the same in both cases, the flat behaviour for the physical flow
and the increasing difference between the continuum limits for shorter distances directly lead to the
non-monotonic and relatively strong dependence of the smearing curves on the lattice spacing.

7. Influence of the smearing strength on the continuum extrapolation

In order to investigate whether we are able to perform a controlled continuum extrapolation
we consider relative contributions to the Symanzik expansion. We choose an intermediate lattice
spacing (for some contemporary lattice computations this is a small one) of a = 0.062 fm . The
relative total lattice artefacts (d2â2 + d4â4)/d0 and the a4 contributions relative to the a2 ones,
d4â2/d2, are depicted in fig. 4 as functions of the smearing strength 8tfl

a2 for several distances
r̂ . At smaller distances we find larger overall and smearing dependent lattice artefacts whereas

7
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Figure 4: Relative contributions to the Symanzik expansion of χ̂ ≡ χ · 8t0 evaluated at a = 0.062 fm (sft2)
as a function of the smearing strength 8tfl

a2 at various distances r̂ ≡ r√
8t0

.

at larger distances smaller overall lattice artefacts are present. In order to define a maximally
allowed smearing strength we demand that the relative overall lattice artefacts are bounded by
|(d2â2 + d4â4)/d0 | ≤ 0.25 and that the curvature is limited by |d4â2/d2 | ≤ 0.5, i.e. that lattice
artefacts add up to less than 25% and that the a4-contribution is somewhat suppressed by the a2

term. Note that with the signs of the coefficients found for the Creutz ratios, the second condition
means that we are to the left side of the peak of the curves, i.e. in the region where lattice artefacts
are monotonic. Clearly these conditions are not very stringent; one may want to insist on sharper
bounds. From fig. 4 we can deduce that our loose condition means 8tfl

a2 / 1 for r̂ = 0.3 while 8tfl
a2 ≈ 3

is tolerated by the loose criteria at the upper end of the investigated distances, r̂ = 0.6. At such
distances the main restriction comes from the bound on the curvature.
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Figure 5: Location of the maximum of χ̂(â) as a function of the smearing strength 8tfl
a2 for several distances

r̂ ≡ r√
8t0

.

The location of the peak â2
peak is plotted as a function of the smearing radius for various

distances r̂ in fig. 5. Given a certain distance that one wants to cover adequately in the sense that
cutoff-effects are monotonic, one has to be below the plotted curve. E.g. with tfl/a2 = 1 and for
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distances r̂ ≥ 0.4, lattice spacings up to 0.08 fm lead to a monotonic dependence on a. In order to
cover smaller distances one needs either smaller lattice spacings or less smearing.

8. Conclusion and Outlook

We have studied the influence of gradient flow smearing on diagonal Creutz ratios χ(r,r)
evaluated at various distances. We have found that the maximum tolerable smearing radius that still
allows for a controlled continuum extrapolation depends on the distance. As expected, for short
distance observables less smearing is tolerable. The main result of our numerical investigation is
summarised in fig. 5. Each curve yields the upper boundary of the region where discretisation
effects are monotonic, which is a minimum requirement for extrapolating data reliably to the
continuum. Obviously, non-monotonic behaviour would not be an issue if we knew that a simple
form as in eq. (12) was correct. But even the asymptotic small a behaviour is complicated with log-
corrections [12] and higher orders in a, making a simple functional form essential for a controlled
extrapolation.

Of course, we have only considered one specific observable in our study, but it is a measure of
the force between quarks. This observable allows to probe different distances and we expect that
physical observables with propagating quarks will be affected by how close it is to the continuum
limit. We remind the reader that quark propagation with a smeared Dirac operator (smearing in the
action) is related to smeared Wilson loops (smeared observables) through the hopping parameter
expansion. Creutz ratios are just the finite version of Wilson loops.

A further restriction of our study is in principle that we use gradient flow smearing with a
continuous evolution in tfl while in an application one will rather use stout smearing [2], which
corresponds to a very coarse discretisation in tfl. We do not expect the behaviour in fig. 3 to change
much but will check this explicitly in the near future.

Computations for this project have been performed on the HPC cluster PAX at DESY Zeuthen. The
authors gratefully acknowledge the support of DV-Zeuthen.
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