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Topological Data Analysis (TDA) is a field that leverages tools and ideas from algebraic topology
to provide robust methods for analysing geometric and topological aspects of data. One of the
principal tools of TDA, persistent homology, produces a quantitative description of how the
connectivity and structure of data changes when viewed over a sequence of scales. We propose
that this presents a means to directly probe topological objects in gauge theories. We present
recent work on using persistent homology to detect center vortices in SU(2) lattice gauge theory
configurations in a gauge-invariant manner. We introduce the basics of persistence, describe
our construction, and demonstrate that the result is sensitive to vortices. Moreover we discuss
how, with simple machine learning, one can use the resulting persistence to quantitatively analyse
the deconfinement transition via finite-size scaling, providing evidence on the role of vortices in
relation to confinement in Yang-Mills theories.
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1. Introduction

Center vortices are topological defects that are observed in lattice quantum chromodynamics
(QCD) simulations [2]. They provide a potential explanation for the mechanism of confinement
in QCD and the deconfinement phase transition [4, 17, 19], but existing methods to study them in
configurations rely on gauge fixing and projection [9] which suffers from the Gribov copies problem
[10, 16]. In this project we leverage persistent homology [6], a tool from topological data analysis
(TDA), to study center vortices in a gauge invariant manner. Rather than working with lattice QCD,
we consider the SU(2) lattice gauge theory as a toy model since this also exhibits center vortices
and a deconfinement phase transition.

2. Lattice Model and Center Vortices

The 4D SU(2) lattice gauge theory is specified by SU(2)-valued variables 𝑈` (𝑥), taking the
form of a 2 × 2 complex matrix, located on each link (𝑥, `) of an 𝑁𝑡 × 𝑁3

𝑠 lattice Λ with periodic
boundary conditions, where ` ∈ {0, 1, 2, 3} describes the direction in which the link emanates
from the lattice site 𝑥 ∈ Λ. Gauge invariant observables are obtained as traces of products of the
link variables along closed paths 𝐶, also known as Wilson loops 𝑊 (𝐶). The simplest non-trivial
example is the Wilson loop around a 1 × 1 plaquette (𝑥, `, a) of the lattice:

𝑊`,a (𝑥) =
1
2
𝑡𝑟

[
𝑈` (𝑥)𝑈a (𝑥 + ˆ̀)𝑈†

` (𝑥 + â)𝑈†
a (𝑥)

]
.

We use this to define the Wilson action given a configuration U = {𝑈` (𝑥)} (𝑥,`) as

𝑆(U) = − 𝛽

4

∑︁
𝑥,`<a

𝑊`,a (𝑥) (1)

where 𝛽 = 4/𝑔2 and 𝑔 is the gauge coupling parameter. This in turn allows us to define the vacuum
expectation value of any given observable 𝐴(U) as

⟨𝐴⟩ =
∫
𝑑U 𝐴(U) 𝑒−𝑆 (U)∫

𝑑U 𝑒−𝑆 (U)
(2)

where 𝑑U =
∏

𝑥,` 𝑑𝑈` (𝑥) is a product of Haar measures over SU(2) for each link variable. In
practice we estimate expectations using Monte Carlo methods, where Eq. (2) becomes a simple
mean of the observed values.

We introduce center vortices following [17]. Fix a time slice at time 𝑡. Given two closed
oriented curves 𝐶 and 𝐶′ in that 3-dimensional slice with linking number 𝑚, a loop operator
𝐵(𝐶′, 𝑡) can be defined that has the following commutation algebra with the Wilson loop 𝑊 (𝐶, 𝑡):

𝑊 (𝐶, 𝑡)𝐵(𝐶′, 𝑡) − (−1)𝑚𝐵(𝐶′, 𝑡)𝑊 (𝐶, 𝑡) = 0. (3)

The operator 𝐵(𝐶′, 𝑡) is called the ’t Hooft loop which, when acting on a gauge configuration,
creates a magnetic flux with the resulting observable effect of multiplication of all Wilson loops
around curves 𝐶 with linking number 1 with 𝐶′ by −1. The ’t Hooft loop is therefore said to be a
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vortex creation operator. Since the center of the group 𝑍 (SU(2)) = {𝐼,−𝐼} � Z2 plays a role (as
exposed by the factor (−1)𝑚), the vortices are called center vortices. Allowing the curve 𝐶′ to vary
continuously over time slices, we see that a vortex traces out a surface in 4-space, closed by the
periodic boundary conditions.

The above describes a ’thin’ vortex. In practice center vortices have some finite thickness, so
that only larger Wilson loops may fully link with them and obtain the full center charge. Loops that
partially link may still obtain a partial charge, being multiplied by some matrix lying between 𝐼 and
−𝐼 in SU(2).

To explicitly insert a thin vortex into the system to study we will make use of the trick of
imposing twisted boundary conditions [18]. The idea is that we negate the contribution to the
action of the co-closed collection of plaquettes

𝑇 = {((0, 0, 𝑦, 𝑧), 0, 1) | 0 ≤ 𝑦, 𝑧 < 𝑁𝑠}

corresponding to a surface wrapping round the latter two spatial dimensions of the lattice. The
action with twisted boundary conditions becomes

𝑆𝑇 (U) = − 𝛽

4

[ ∑︁
𝑥,`<a

(𝑥,`,a)∉𝑇

𝑊𝑥,`,a −
∑︁

𝑥,`<a
(𝑥,`,a) ∈𝑇

𝑊𝑥,`,a

]
(4)

which we refer to as the twisted action. This modification of the action allows the lattice to support
an odd number of center vortices wrapping in the 𝑦𝑧 plane, which is not allowed by the usual
periodic boundary conditions of the Wilson action. We can think of this twisted action as explicitly
inserting a thin vortex into the system on the surface defined by 𝑇 , so that the system is forced to
generate a (thick) vortex to cancel it out. We shall denote expectations calculated with respect to
this twisted action by ⟨𝐴⟩twist, where 𝐴 is a generic observable.

3. Persistent Homology

Persistent homology takes a nested sequence of topological spaces and produces a topological
summary called a barcode or persistence diagram [6] (see [3, 7, 8, 13] for useful references).
In this case we assign a filtered cubical complex 𝐹𝑼 : R → CubicalComplex (such that 𝑠 ≤ 𝑡

implies 𝐹 (𝑠) ⊆ 𝐹 (𝑡)) to each configuration 𝑼 = {𝑈𝜎 (𝑥)} and compute the persistent homology
of this filtered cubical complex. Our construction is based on Wilson loops and therefore yields
gauge-invariant persistence diagrams.

The idea is to explicitly construct a cubical model of vortex surfaces, under the assumption that
vortices are thin. Vortex sheets live on the dual lattice Λ∗. We therefore consider a decomposition
of the spacetime manifold into a cubical complex 𝑌 given by Λ∗ in which there is a vertex for each
dual lattice site, an edge for each link in the dual lattice, a 2-cube for each dual plaquette, etc. Note
that there is a bĳection between the 2-cubes of this cubical complex (i.e. dual plaquettes) with the
plaquettes of the original lattice Λ, pairing a plaquette with the dual plaquette that intersects it at
a single point. We will construct a filtration of 𝑌 by letting each 2-cube enter at a filtration index
given by the value of the Wilson loop around the plaquette it is paired with in the bĳection.

3
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To define the filtered complex we give a filtration index 𝑓 (𝑐) ∈ R for each cube 𝑐 in𝑌 specifying
when it appears. Then 𝐹𝑼 (𝑠) is the subcomplex of 𝑌 consisting of all cubes 𝑐 for which 𝑓 (𝑐) ≤ 𝑠.
That is,

𝐹𝑼 (𝑠) = 𝑓 −1(−∞, 𝑠] .
Since we are attempting to model vortex surfaces, we will initially specify when the 2-cubes are to
enter the filtered complex and then introduce the cubes of other dimensions based on these.

Our construction of the function 𝑓 is the following:

1. For each 2-cube 𝑐, i.e. dual plaquette, we set 𝑓 (𝑐) equal to the value of the Wilson loop
around the plaquette paired with it by the bĳection.

2. Since a 2-cube is not allowed to be included before its constituent 1-cubes and 0-cubes in a
cubical complex, setting 𝑓 (𝑐) for these to be the smallest value of 𝑓 of any of the 2-cubes
they are incident to.

3. For the 3-cubes and 4-cubes we follow a clique-like rule, setting 𝑓 (𝑐) for these to be the
largest value of 𝑓 of any of the 2-cubes contained in their boundary.

Thus for 𝑠 < −1, 𝐹𝑼 (𝑠) is the empty complex and for 𝑠 ≥ 1, 𝐹𝑼 (𝑠) is the filled in tiling of spacetime,
homeomorphic to a 4-torus due to the periodic boundary conditions. Going between these values,
the first cubes to enter 𝐹𝑼 are surfaces made up of plaquettes in bĳection with Wilson loops that
are close to −1. The idea therefore is that thin vortex surfaces will enter the filtered complex early.
Moreover, since small Wilson loops like those considered here still pick up a partial charge from
thick vortices, surfaces representing those thick vortices ought to enter the filtered complex earlier
than they otherwise would have. We expect to detect these closed surfaces in persistent 𝐻2. We
may also see other topological features such as the presence of handles or holes in 𝐻1, as well as
the transient low-persistence points in persistent 𝐻0 and 𝐻1 that arise as the surface forms near the
start of the filtration.

4. Detecting Vortices with Twisted Boundary Conditions

We first test if the persistent homology can distinguish between configurations generated using
the Wilson action and configurations generated using the twisted action. That is, if it detects an
inserted vortex.

For𝑁𝑠 ∈ {12, 16, 20}, fixing𝑁𝑡 = 4, we generate 200 configurations using the Wilson action (1)
and 200 configurations using the twisted action (4) for each 𝛽 ∈ {1.5, 1.6, . . . 2.9}. Configurations
are generated using the HiRep software [5] with 1 heatbath step and 4 overelaxation steps for each
Monte Carlo step and a sample taken every 100 Monte Carlo steps.

Figure 1 shows example persistence diagrams obtained using the two different actions and in
the two phases of the model.

In the deconfined phase, one of the infinite death points in 𝐻2 is born much earlier for the
twisted action. This represents a surface which wraps the periodic boundary conditions of the lattice
entering our filtration early: i.e. the inserted vortex. We therefore define the following observable
based on the persistence diagram of a configuration

𝑚2 = min
{
𝑏
�� (𝑏,∞) ∈ 𝑃𝐻2

}
.
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Figure 1: Sample persistence diagrams of individual configurations obtained using the following actions
and values of 𝛽: (a) Wilson, 𝛽 = 1.5 (b) twisted, 𝛽 = 1.5 (c) Wilson, 𝛽 = 2.9 (d) twisted, 𝛽 = 2.9. The arrow
in (d) indicates the point (𝑏,∞) ∈ 𝑃𝐻2 with the smallest birth index 𝑏. Note the distance between it and the
others.

The expected value of 𝑚2 for different lattice sizes with the Wilson action and twisted action are
shown in Figure 2a. Note that there is no difference between the expectations estimated using the
different actions well into the confined phase, but in the deconfined phase the curves separate. As
the lattice size increases, the point at which the curves diverge approaches the critical 𝛽 of the phase
transition from below. These observations motivate measuring the difference between the expected
values using different actions

𝑂𝑚2 = ⟨𝑚2⟩ − ⟨𝑚2⟩twist

as a phase indicator which will be zero in the confined phase and non-zero in the deconfined phase,
similar to the definition of an order parameter but without the requirement to detect any symmetry
breaking. A finite-size scaling analysis of this quantity yields the curve collapse in Figure 2b,
computed numerically using the Nelder-Mead method following [1]. The resulting estimates of 𝛽𝑐
and a,

𝛽𝑐 = 2.291 ± 0.019
a = 0.614 ± 0.079,

5
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Figure 2: (a) The expected value of the observable 𝑚2 as a function of 𝛽 plotted for different values of 𝑁𝑠

and with the Wilson and twisted actions. (b) The curve collapse of 𝑂𝑚2 using 𝛽𝑐 = 2.291 and a = 0.614.
Error bars are not shown for clarity but are comparable to those in (a).

are in agreement with our reference estimate 𝛽𝑐 = 2.2986(6) from [12] and a = 0.629971(4) from
[11]. Error estimates are obtained by performing 2000 bootstraps.

5. Detecting the Deconfinement Transition Without Twisted Boundary Conditions

Using a machine learning framework inspired by that in [14], we investigate if it is possible
to extract the critical 𝛽 and critical exponent a of the deconfinement transition for 𝑁𝑡 = 4 using
configurations sampled using the Wilson action alone.

For lattices of size 4×𝑁3
𝑠 with 𝑁𝑠 ∈ {12, 16, 20, 24}, we train a 𝑘-nearest neighbours classifier

(𝑘 = 30) on the concatenated 𝑃𝐻0, 𝑃𝐻1, 𝑃𝐻2 and 𝑃𝐻3 persistence images of 200 configurations
sampled at each 𝛽 in the confined and deconfined regions given in Table 1. The classifier is then
used to produce a predicted classification 𝑂𝑘NN for 200 configurations sampled for each value of 𝛽
in the critical region. The resulting curve is shown in Figure 3.

Region 𝛽

Confined 2.2 , 2.21, 2.22, 2.23, 2.24
Deconfined 2.36, 2.37, 2.38, 2.39, 2.4

Critical 2.25, 2.26, 2.27, 2.275, 2.28, 2.285, 2.29,
2.295, 2.298, 2.299, 2.3, 2.301, 2.302, 2.305,

2.31, 2.315, 2.32, 2.325, 2.33, 2.34, 2.35

Table 1: Values of 𝛽 sampled at for the 𝑁𝑡 = 4 phase transition.

Assuming a known value of a = 0.629971, we can do a finite-size scaling analysis by extracting
the pseudo-critical point for each 𝑁𝑠 via the implicit formula ⟨𝑂𝑘NN⟩(𝛽𝑐 (𝑁𝑠)) = 0.5 then fitting
these to the straight line ansatz 𝛽𝑐 (𝑁𝑠) − 𝛽𝑐 (∞) ∝ 𝑁

−1/a
𝑠 to extract 𝛽𝑐 = 𝛽𝑐 (∞). The resulting fit is

6
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Figure 3: Plot showing our phase indicator ⟨𝑂𝑘NN⟩ as a function of 𝛽 for 𝑁𝑡 = 4. The points show the
measured expectations and the curve is the output of histogram reweighting these measurements.
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Figure 4: (a) Estimating 𝛽𝑐 using a linear fit, assuming known a. The pseudo-critical values of 𝛽, obtained as
the points where the curves in Figure 3 cross 0.5, are fitted to a straight line against 𝑁−1/a

𝑠 with a = 0.629971.
Error bars are estimated by bootstrapping. (b) The curve collapse of 𝜒𝑘NN using 𝛽𝑐 = 2.2988 and a = 0.634.

shown in Figure 4a. The intercept yields 𝛽𝑐 = 2.2989 ± 0.0009, supporting our reference estimate
of 𝛽𝑐 = 2.2986(6) from [12].

Alternatively, we can try to estimate both 𝛽𝑐 and a simultaneously via a curve collapse of the
variance curves 𝜒𝑘NN = ⟨𝑂2

𝑘NN⟩ − ⟨𝑂𝑘NN⟩2 using a numerical procedure like that in [1]. The result
of using the Nelder-Mead method is shown in Figure 4b. The obtained estimates of 𝛽𝑐 and a

𝛽𝑐 = 2.2988 ± 0.0007
a = 0.634 ± 0.014

are consistent with previous estimates.
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6. Conclusion

We designed a methodology to use persistent homology to detect center vortices and tested
the efficacy of this by using it to distinguish configurations generated using a twisted action from
configurations generated using the usual Wilson action. We also performed a quantitative analysis
of the deconfinement transition using two different phase indicators derived from the persistent
homology. We argue that, since the methodology summarises center vortices but is also sensitive to
the phase transition, then center vortices must play some role in the phase transition. For a stronger
argument we would need to consider the sensitivity of our methodology to the objects involved in
other pictures of confinement, e.g., monopoles.

Acknowledgments

Numerical simulations have been performed on the Swansea SUNBIRD system. This system
is part of the Supercomputing Wales project, which is part-funded by the European Regional De-
velopment Fund (ERDF) via Welsh Government. Configurations of the SU(2) lattice gauge theory
were sampled using the HiRep software [5]. Persistent homology calculations were performed
using giotto-tda [20]. Histogram reweighting calculations were performed using pymbar [15]. NS
has been supported by a Swansea University Research Excellence Scholarship (SURES). JG was
supported by EPSRC grant EP/R018472/1. BL received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 813942. The work of BL was further supported in part by the UKRI
Science and Technology Facilities Council (STFC) Consolidated Grant ST/T000813/1, by the Royal
Society Wolfson Research Merit Award WM170010 and by the Leverhulme Foundation Research
Fellowship RF-2020-461\9.

References

[1] S. M. Bhattacharjee and F. Seno. A measure of data collapse for scaling. Journal of Physics
A, 34:6375–6380, 2001.

[2] James Biddle, Waseem Kamleh, and Derek Leinweber. Static quark potential from centre
vortices in the presence of dynamical fermions, 2022, arXiv:2206.00844.

[3] Gunnar Carlsson. Persistent homology and applied homotopy theory, 2020, arXiv:2004.00738.

[4] John M. Cornwall. Quark confinement and vortices in massive gauge-invariant qcd. Nuclear
Physics B, 157(3):392–412, 1979.

[5] Luigi Del Debbio, Agostino Patella, and Claudio Pica. Higher representations on the lattice:
Numerical simulations, su(2) with adjoint fermions. Phys. Rev. D, 81:094503, 2010.

[6] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.
Discrete & Computational Geometry, 28:511–533, 2002.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
8
7

Persistent homology as a probe for center vortices in SU(2) lattice gauge theory Nicholas Sale

[7] Herbert Edelsbrunner and John Harer. Persistent homology—a survey. Discrete & Computa-
tional Geometry - DCG, 453, 01 2008.

[8] Robert Ghrist. Barcodes: The persistent topology of data. BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY, 45, 02 2008.

[9] Rudolf Golubich and Manfried Faber. A possible resolution to troubles of su(2) center vortex
detection in smooth lattice configurations. Universe, 7(5), 2021.

[10] V.N. Gribov. Quantization of non-abelian gauge theories. Nuclear Physics B, 139(1):1–19,
1978.

[11] Filip Kos, David Poland, David Simmons-Duffin, and Alessandro Vichi. Precision islands in
the ising and 𝑜(𝑛) models. Journal of High Energy Physics, 2016.

[12] Biagio Lucini, Michael Teper, and Urs Wenger. The high temperature phase transition in su(n)
gauge theories. Journal of High Energy Physics, 2004, 07 2003.

[13] Nina Otter, Mason Porter, Ulrike Tillmann, Peter Grindrod, and Heather Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6, 2015.

[14] Nicholas Sale, Jeffrey Giansiracusa, and Biagio Lucini. Quantitative analysis of phase tran-
sitions in two-dimensional 𝑥𝑦 models using persistent homology. Phys. Rev. E, 105:024121,
2022.

[15] Michael R. Shirts and John D. Chodera. Statistically optimal analysis of samples from multiple
equilibrium states. The Journal of chemical physics, 129 12:124105, 2008.

[16] John D. Stack and William W. Tucker. The gribov ambiguity for maximal abelian and
center gauges in su(2) lattice gauge theory. Nuclear Physics B - Proceedings Supplements,
94(1):529–531, 2001. Proceedings of the XVIIIth International Symposium on Lattice Field
Theory.

[17] G. ’t Hooft. On the phase transition towards permanent quark confinement. Nuclear Physics
B, 138(1):1–25, 1978.

[18] G. ’t Hooft. A property of electric and magnetic flux in non-abelian gauge theories. Nuclear
Physics B, 153:141–160, 1979.

[19] Gerard ’t Hooft. A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories.
Nucl. Phys. B, 153:141–160, 1979.

[20] Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal
Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis
toolkit for machine learning and data exploration, 2020, arXiv:2004.02551.

9


	Introduction
	Lattice Model and Center Vortices
	Persistent Homology
	Detecting Vortices with Twisted Boundary Conditions
	Detecting the Deconfinement Transition Without Twisted Boundary Conditions
	Conclusion

