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Real time evolution of scalar fields in semiclassical gravity Lukas Varnhorst

1. Introduction

We study the semiclassical collapse of a spherical symmetric configuration of a free, scalar,
massless, quantum field in general relativity. Classically, provided the initial configuration is
appropriately chosen [1], such a collapse would lead to the formation of a black hole. In his seminal
paper [2], Hawking predicted that such a black hole would radiate Hawking radiation. This lead to
the information paradox. For recent reviews, see [3, 4].

Here we are interested in numerically studying the full time evolution of of such a system,
starting in the collapse phase. We consider initial field configurations that feature an energy density
that is localized on a spherical shell with finite width. The configurations are chosen such that the
majority of the energy density is inmoving at the initial time. The radius of the spherical shell is
chosen large enough such that, at the the same initial time, the system is very far from exhibiting a
horizon. The goal is to be able to evolve the system in time while taking into account the unique
features exhibited by a quantum field theory in a time dependent and curved space time. We also
aim at studying the back reaction induced by quantum effects in the stress energy tensor within a
semiclassical approximation where the metric is assumed to be classical. A similar approach is
used in [5, 6].

At first, we discretize the system in radial and temporal direction and decompose the field in
the angular direction into spherical harmonics. We then introduce the mode decomposition of the
field and discuss a formalism which allows to calculate the real time evolution of the scalar field
in a time independent background metric. Then, we discuss how the metric can be updated as a
function of the Hamiltonian density of the field. We first solve this problem in the limit where only
the l = 0 modes contribue. For related work see [7]. Then, we comment on ongoing research to
include all the l > 0 modes of the scalar field and the additional difficulty created by divergences of
the energy momentum tensor.

2. The formalism

The semicalassical time evolution is governed by the equation

Rµν −
1
2

Rgµν = 〈ψ | T ren
µν | ψ〉. (1)

Here Rµν and R are the Ricci tensor and scalar derived from a classical metric gµν and T ren
µν are the

quantum operators corresponding to the renormalized energy momentum tensor. These operators
are evaluated in a given state | ψ〉 for which the resulting expectation value is spherical symmetric.

We chose the metric to be of the form [1, 8–10]

ds2 = α2(t, r) dt2 − a2(t, r) dr2 − dΩ2. (2)

Here α(t, r) and a(t, r) are functions determined by the semiclassical Einstein equation (1) and dΩ
is the surface element of a two-sphere. This choice of coordinates allows to track the time evolution
of a general spherical symmetric system in a region of space time. Note that this region of space
time might be bounded by coordinate singularities. In the case of a Schwarzschild black hole,
this choice of coordinates leads to the standard parametrization of the Schwarzschild metric where
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Figure 1: The lattice discretizations of the system.
The radial and temporal coordinates are discretized.
The angular modes are described by spherical har-
monics. The tilted cirlces are two dimensional cross
sections through the three dimensional space at two
fixed times. The colors indicate the energy density
of a purely classical collapsing scalar field.

α(t, r) = a−1(t, r) = 1 − rs
r with the Schwarzschild radius rs. Therefore, we expect to be able to

describe the outside region of a black hole but not the inside of a possibly forming event horizon.
The scalar field behind such a horizon is expected to be frozen in time in this coordinate system.
It would be interesting to supplement our calculation with one carried out in a metric where this
problem is absent.

We sliced our space-time into space-like hypersurfaces of constant coordinate time t and use
the Hamiltonian formalism to quantize the scalar field. More details can be found in [11]. We
discretized the radial coordinate r by introducing a lattice with Nr equidistant points with distance
∆r . To account for the angular directions, we decomposed the field into spherical harmonics. Each
spherical harmonic is labeled by two integer numbers l and m where l ≥ 0 and |m| ≤ l. Note that
spherical symmetry demands that all the 2l + 1 modes for one given l are identical. Therefore, we
droped the m dependence in all expressions. Our discretization scheme is depicted in figure 1.

The Hamiltonian of the field can than be written as a function of the angular modes of φl and
their canonical conjugate momenta Πl as

H =

∞∑
l=0
(2l + 1)

(
αa0
aα0
ΠlΠ

†

l
+ φ†

l

√
aα0
αa0

K
√

aα0
αa0

φl

)
. (3)

where we dropped the m index of the field and used a vector notation for the radial dependence.
The kernel

K = qT q +
l(l + 1)

r2 α2 (4)

describes the radial derivatives and the effect of angular momentum. Here, the operator

q =
√
α

a
r∇r

√
α

a
1
r

(5)

contains a suitable discretization ∇r of the radial derivative. For simplicity, we used

∇rφ(r, t) =
1
∆r
(φ(r + ∆r) − φ(r)). (6)

It is useful to write the scalar field in terms of eigenfunctions of the kernel K . The eigende-
composition of K is given by

K = Vω2VT

3
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Figure 2: The eigenmodes of the operator K at the
initial time in a typical simulation. Each solid line
corresponds to one of the eigenmodes Vk . Each
eigenmode is centered around a dotted line that in-
dicates the corresponding eigenfreqency ωk . On
the left hand side, representative eigenmodes in the
whole range of k are shown. On the right hand side,
the top panel shows the eigenmodes with the largest
ωk and the lowest panel shows the eigenmodes with
smallest ωk . The middle panel shows intermediate
eigenmodes.

where ωk is the eigenfrequency of the k-th mode and the k-th column of V is the corresponding
eigenmode. The eigenmodes are visualized in figure 2

The Hamiltonian from eq. (3) is quadratic in the fields and the conjugate momenta. Hence, in
the eigenbasis defined by V , it becomes a collection of decoupled harmonic oscillators:

H =
∑
k

(2l + 1)
∑
l

∑
k

ωlk(φ̂
2
lk + Π̂

2
lk) (7)

where

Π̂lk =
∑
r

1
√
ωlk

V (l)
rk

√
αa0
aα0
Πlr (8a)

φ̂lk =
∑
r

√
ωlkV (l)

rk

√
α0a
a0α

φlr (8b)

The eigenbasis and the eigenfreqencies change in time when the functions a(r, t) and α(r, t) are
not constant in time. We quantized the harmonic oscillators appearing in eq. (7) in the standard
fashion.

To stay as closely as possible to the classical situation, we chose, as an initial state of the simula-
tion, a state in which all harmonic oscillators are in a coherent state, with no entanglement between
the oscillators. Such a coherent state is uniquely characterized by the its classical expectation values
for the field and the conjugate momenta. For all l > 0, we chose the classical expectation values of
the field and momenta to be 0. For the l = 0 modes we chose them so that they produce the desired
classical shape of the energy-momentum tensor in a way that is consistent with the initial metric.
For more details see [11].

3. Time evolution of the scalar field for time independent metrics

Assuming that the function a(r, t) and α(r, t) are independent of t, the time evolution of the
scalar field can be determined exactly. We employed two ways to study this time evolution. The
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first way is to employ the Heisenberg picture and evolve the creation and annihilation operators of
the harmonic oscillators comprising the quantum field. The second way is to use the Schrödinger
picture and evolve the quantum state of the system. Both ways of describing the time evolution are
equivalent.

In the first case, it is useful to write the Hamiltonian in the form

H =
∑
l

b(l)+ W (l)b(l)†+ + b(l)†− W (l)b(l)− + b(l)+ X (l)b(l)− + b(l)†− X (l)b(l)†+ . (9)

Here, W (l) and X (l) are Nr × Nr coefficient matrices in the momentum space and the b†(l)± and b(l)±
are vectors of creation and annihilation operators for the Nr eigenmodes. Note that W (l) and X (l)

can be determined by comparison of coefficients with eq. (7). It is useful to consider the linear
combinations b(l)u (t), b(l)v (t), b(l)†u (t), and b(l)†v (t) In terms of these linear combinations the time
evolution can be written as

bu(t) =
1
√

2
(b+u(t) + b†i u

∗(t))V
√
ω (10a)

bu(t) =
1
√

2
(b+v(t) − b†−v

∗(t))V
√
ω−1 (10b)

Therefore, the problem reduces to finding the time evolution of the matrices u(t) and v(t). Once
initialized by

u(0) =
1
√
ω

VT and v(0) =
√
ωVT (11)

their time evolution is given by(
u(t + ∆t) v(t + ∆t)

)
=

(
u(t) v(t)

)
exp

(
−i

(
0

√
aα0
αa0

K
√

aα0
αa0

αa0
aα0

0

)
∆t

)
(12)

Note that eq. (12) describes a Bogolyubov transformation.
The second approach is to use the properties of Gaussian states. Since the initial state is

Gaussian and the Hamiltonian is quadratic, the Wigner functional has the form of a Gaussian
probability density function in phase space. Therefore, it is convenient to study the time evolution
in terms of this Gaussian. For a review on Gaussian states, see e.g. [12].

It is useful to introduce a vector in phase space

®x(l) =
(
Π
(l)†
1 Π

(l)†
2 . . . φ

(l)
1 φ

(l)
2 . . .

)T
(13)

where the indices of the fields and the momenta corresponds to the radial coordinate. With this
vector, the Hamiltonian can be written as

H = ®x(l)†M (l) ®x(l) (14)

where

M (l) =

(
A 0
0 A−

1
2 K A−

1
2

)
with A =

αa0
aα0

. (15)
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rotation

shift

squeeze Figure 3: The construction of a Gaussian state from
the ground state of a harmonic oscillator. Shown are
sketches of the Wigner distributions of three Gaus-
sian states. EachGaussian state can be characterized
uniquely by a mean value in the phase space and a
covariance matrix. The state shown at the origin
is the harmonic oscillator ground state. By a shift,
a coherent state can be constructed. After squeez-
ing, the resulting state has a minimal uncertainty
non-equally distributed between coordinate and mo-
mentum. The time evolution of is achieved by a rigid
rotation around the origin.

The time evolution can be realized by first performing a canonical transformation with the matrix

T =

( 1√
ω

VT
√

A
√
ωVT 1√

A

)
(16)

which brings the Hamiltonian to a form where only decoupled oscillators appear. Then, the time
evolution is described by a rigid rotation in phase space:

R =

©«

cos(ω1∆t) sin(ω1∆t)
cos(ω2∆t) sin(ω2∆t)

. . .
. . .

− sin(ω1∆t) cos(ω1∆t)
− sin(ω2∆t) cos(ω2∆t)

. . .
. . .

ª®®®®®®®®®®¬
(17)

To get back into momentum space, one has to invert the canonical transformation so that the full
time evolution can be described by S = T−1RT . In terms of the mean value and the covariance
matrix, the time evolution is given by

®µ(l)(t + ∆t) = S ®µ(l)(t), (18a)
C(l)(t + ∆t) = SC(l)(t)ST . (18b)

In general, such a time evolution can be decomposed into shifts, squeezes and rotations. For the
case of one oscillator, these operations are visualized in figure 3. Note that for more then one
oscillators, the covariance matrix has more degrees of freedoms than visualized. These additional
degrees of freedoms correspond to the entanglement of different oscillators. Also, note that in a
time independent background metric, using either eq. (12) or eqns. (18a) and (18b) is exact.

6
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4. Time evolution of the metric

Since the energy momentum tensor changes with time when performing the time evolution
discussed in the previous section, the metric must be updated accordingly at each time step. For the
time evolution of the metric, it is useful to define the functions

α̂(r, t) = α(r, t)a(r, t),

d(r, t) =
r

a2(r, t)
.

In terms of these functions, the Einstein equations can be written as

ln′(α̂) = 〈h0
r 〉ψ, (20a)

d ′ + d〈h0
r 〉ψ = 1 − r 〈mr 〉ψ, (20b)

where a prime indicates radial derivatives. The quantities h0
r and mr are linear combinations of the

energy momentum tensors. In terms of the Bogolyubov coefficients, they are

〈h0
r 〉ψ =

1
d0â0

(
|lur |2 + |lvr |2 +

∞∑
l=0
(2l + 1)

(
(v†

l
vl)rr + (q0u†

l
ulq0T )rr)

))
, (21)

〈mr 〉ψ =
d0α̂0

r2

∑
l=0∞
(2l + 1)

l(l + 1)
r2 (u†

l
ul)rr . (22)

Here, lur and lvr encode the classical expectation values of the coherent state and are present only
in the l = 0 case. Equivalent formulations in terms of the ®µ and C can also be derived. Eqs. (20a)
and (20b) can be numerically integrated.

To combine this metric update with the field evolution, we developed the following procedure.
First, we take the scalar field at time t and do one field update with time step ∆t. Then, we use eqns.
(20a) and (20b) to construct a new metric from the evolved fields. Then, we go back to the time t
and repeat the update but instead of the original metric, we use the newly determined one. After
this evolution, we construct again new metric. We repeat this process until the metric converges.
When convergence is reached, we update the field at time t with a time step 2∆t using the metric
we converged to. We use the result of this last time evolution as the final result for the field at time
t + 2∆t.

To understand the effect of the changing metric to the scalar field, it is most useful to use the
Wigner functional formulation for Gaussian states. A change in the metric changes the quadratic
form that defines the Hamiltonian. This in turn means that both the the eigenmodes- and frequencies
of K change. Therefore, what was a vacuum in one oscillator basis, is not a vacuum in another basis.
The situation is visualized for one oscillator in figure 4. In addition to the squeezing depicted in this
figure, in the higher dimensional case there will also be mixing between the different oscillators.
In figure 5 the covariance matrix of a sample system after some simulation time can be seen. Note
that the covariance matrix contains the full information on equal time correlation functions.

5. Renormalization

The components of the energy momentum tensor that appear in eqs. (20a) and (20b) are
divergent. They require renormalization to produce a finite result.

7
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Figure 4: A vacuum state for one harmonic oscil-
lator corresponds to a squeezed state after the har-
monic oscillator frequency has changed. The black
coordinate system corresponds to the phase space
space of the initial harmonic oscillator with canon-
ically conjugate variables (φ,Π). The blue coor-
dinate system corresponds to a harmonic oscillator
with changed frequency.

Figure 5: Covariance matrix characterizing the
l = 0 part of a Gaussian state after some time.
The diagonal blocks contain the connected field and
canonical conjugate momenta equal-time correla-
tion functions. The of diagonal blocks correspond
to mixed correlation function.

In the approximation where only the l = 0 mode is taken into account, normal ordering at the
initial time is sufficient to make these components finite. For more details, see [11]. In the general
case, there are additional divergences that must be subtracted. These additional divergences are
related to the inifite number of l > 0 modes. Each of these modes is finite on its own. But because
the modes with a given l come in multiples of 2l + 1, the contribution per l increases as l increases.
And because infinitely many l modes have to be summed, the whole energy momentum tensor
diverges. The contribution of the first l modes to h0 can be seen in figure 6 in the case of a typical
simulation.

In [13] is was shown that for a certain set of states, which are called Hadamard states, the two
point function of the field has the form

lim
x′→x
〈ψ | G(x, x ′) | ψ〉 =

u(x, x ′)
σ(x, x ′)

+ v(x, x ′) lnσ(x, x ′) + w(x, x ′) (23)

Here, σ(x, x ′) is the geodesic distance between x and x ′ and u(x, x ′), v(x, x ′) are state-independent
function that depend only on the metric and w(x, x ′) is regular. Since the energy momentum tensor

8
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Figure 6: Divergent contribution of higher l modes. While every
single mode is finite, the sum over all modes divergence as the
function of a l-cutoff. Shown is the h0 part of the normal ordered
energy density. Normal ordering is carried out with respect to the
creation/annihilation operators at the initial time.

pr
el
im
in
ar
y Figure 7: Apreliminary simulation of the semiclas-

sical collapse of a massless scalar field with Pauli-
Villars regularization for three times. In red the com-
bination h0 is shown. The classical case is potted
transparently while the semiclassical case is shown
with 100 and 400 l-mode in dashed and solid lines.
In blue, the the ratio of the fictitious Schwarzschild
radius of all matter inside a sphere with radius r
over this radius is shown. A value of 1 indicates the
formation of a horizon.

can be defined in terms of the coincidence limit of G(x, x ′), this allows in principle to subtract the
divergent terms in G(x, x ′) before constructing the quantities of interest.

The translation of this structure to the decomposition into spherical harmonics is complicated.
See [14] for work in that direction. In [5, 6] it was suggested to introduce a set of Pauli-Villars
fields to the system. These Paul-Villars fields are massive copies of the original scalar fields. The
contributions of these additional fields to the energy momentum tensors can weighted with either a
positive or a negative sign. If one employs a total of of 5 Pauli-Villars fields with alternating signs
and with the masses fulfilling the conditions [5, 6]

m2
2 + m2

4 = m2
1 + m2

3 + m2
5, (24a)

m4
2 + m4

4 = m4
1 + m4

3 + m4
5, (24b)

the energy momentum tensor becomes finite.
We carried out a simulationwith a set of Pauli-Villarsmasses chosen according to this condition.

We set the first mass m1 = 1 in Planck units. Preliminary results can be found in figure 7. The
possible dependence of the result on the regulator masses is currently under investigation.

9
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6. Conclusions and outlook

We presented a formalism to numerically study the real time evolution of a free, scalar field in
a curved, non stationary space times. As a source term in the semiclassical Einstein equations, we
used the energy momentum tensor of the quantum field. In the approximation where only the l = 0
mode contributes, renormalization can be done via normal ordering. In the full system, additional
divergences appear that must be canceled. One scheme for canceling these divergences is the use
of Pauli-Villars fields. Other regularization schemes are currently under investigation.
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