PoS - Proceedings of Science
Volume 430 - The 39th International Symposium on Lattice Field Theory (LATTICE2022) - Vacuum Structure, Confinement, and Chiral Symmetry
SU(N) fractional instantons
J.L. Dasilva Golán* and M. Garcia Perez
Full text: pdf
Pre-published on: December 07, 2022
Published on:
Abstract
We present our study of a set of solutions to the $SU(N)$ Yang-Mills equations of motion with fractional topological charge. The configurations are obtained numerically by minimizing the action with gradient flow techniques on a torus of size $l^2 \times(Nl)^2$ with twisted boundary conditions. We pay special attention to the large N limit, which is taken along a very peculiar sequence, with the number of colors N and the magnetic flux m selected respectively as the $n$-th and $n − 2$ terms of the Fibonacci sequence. We discuss the large N scaling of the solutions and analyze several gauge invariant quantities as the Polyakov loops. We also discuss the so-called Hamiltonian limit, with one of the large directions sent to infinity, where these instantons represent tunneling events between inequivalent pure gauge configurations.
DOI: https://doi.org/10.22323/1.430.0394
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.