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We perform a numerical investigation of the fine splitting of the pseudoscalar meson mass in
the Schwinger model. We use overlap fermions at a single lattice spacing and in a mass range,
where the analytic prediction 𝑀𝜋 = 2.008 . . . 𝑚2/3

𝑓
is satisfied. We then check the prediction of

an exponential suppression of the fine splitting in the fermion mass. We generically find behavior
compatible with exponential suppression, but with a prefactor that seems to substantially differ
from a leading order expansion.
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1. Introduction

In 2020, Georgi demonstrated, that conformal coalescence in the Schwinger model [1, 2] leads to
an automatic fine tuning [3]. Specifically, he predicted isospin breaking effects in the pseudoscalar
meson mass to be suppressed exponentially in the average fermion mass 𝑚 𝑓 for the non-degenerate
two flavor theory. A detailed analytical investigation of this effect that includes leading order
prefactors can be found in the companion proceeding [4]. Here we would like to check this
prediction numerically in a suitable range of fermion masses and splittings on a single lattice
spacing.

2. Short review of analytical results

The leading order relation between the pseudoscalar meson mass 𝑀𝜋 and the degenerate fermion
mass 𝑚 𝑓 for the two flavour Schwinger model

𝑀𝜋 = 2.008 . . . 𝑚2/3
𝑓
. (1)

was found by Smilga some time ago [5]. For small, non-degenerate fermion masses with an average
mass 𝑚 𝑓 ≪ 𝜇 and a mass difference 𝛿𝑚 ≲ 𝑚 𝑓 , Georgi has found an exponential suppression of the
pseudoscalar meson mass splitting proportional to a factor [3]

𝑒
−( 𝜇

𝑚 𝑓
)

2
3

(2)

where 𝜇 is the Schwinger mass in the two flavor case 𝜇2 = 𝑒2 𝜋
2 . As detailed in companion

proceedings [4], the leading order estimate of the meson mass splittingΔ𝑀 = 𝑀𝜋0 −𝑀𝜋± , including
prefactors, is expected to be

Δ𝑀

𝑀𝜋±
=

2
3

(𝜋
2

) 1
4
𝜇− 1

6
𝛿𝑚

𝑚
5
6
𝑓

𝑒
− 1

2

(
𝜇

𝑚 𝑓

) 2
3

. (3)

Defining, for convenience, a parameter
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we may rewrite this relation as

log
(
𝑘
Δ𝑀

𝑀𝜋±

)
= −1

2

(
𝜇
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) 2
3

. (5)

We will check this relation numerically, keeping the parameter 𝑘 fixed. Note that, according to (4),
this implies that the ratio 𝛿𝑚/𝑚5/6

𝑓
is being kept fixed.
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3. Technical Details

For our numerical investigation we employ overlap fermions, which have the distinct advantage
of a missing additive mass renormalization. Also, the computational overhead of using overlap
fermions is relatively small in the Schwinger model, as we diagonalize the fermion matrix directly.
Dynamical fermions are obtained via reweighting of quenched configurations, which is feasible in
the Schwinger model. Exact diagonalization of the fermion matrix allows us to compute propagators
for arbitrary masses without inverting the fermion matrix for different masses. Note that for this
reason correlators for different fermion masses but with otherwise identical parameters are obtained
from the same gauge ensemble and are therefore correlated. To forego the problem of topological
freezing, our gauge field update algorithm includes instanton multiplications (see [6–8] for details).
All simulations were carried out on a 224 lattice at 𝛽 = 1.8. We computed propagators for the
𝑁 𝑓 = 2 theory with nine different average fermion masses 𝑚 𝑓 . For each 𝑚 𝑓 , we produced a set
of degenerate propagators 𝛿𝑚 = 0, as well as two different sets of nondegenerate propagators with
mass splittings 𝛿𝑚/𝑚 𝑓 of roughly 0.1 and 0.8 respectively. Due to 𝛿𝑚/𝑚5/6

𝑓
being kept fixed, the

actual splittings will vary somewhat and their exact values are given in table 1.

𝛿𝑚
𝑚

5
6
𝑓

𝛿𝑚
k

0.1𝑚 𝑓 3.218 16.24

0.8𝑚 𝑓 1.652 2.030

Table 1: Mass splittings for our nondegenerate propagators.

4. Numerical results

We first turn our attention to the degenerate case and check the Smilga relation eq. 1. Fig. 1 shows
the mass plateau for one degenerate fermion mass, which is in the middle of our investigated mass
range. As one can see, a plateau value for the mass can clearly be identified. In fig. 2, we plot
the extracted meson masses vs. the degenerate quark mass. The relation very closely matches the
correct power law, with the coefficient of proportionality also close to the Smilga value 2.008 . . ..
Zooming in, we see some difference from the predicted behavior, which can probably be attributed
to discretization, finite volume and higher order effects in the mass expansion. Since our focus in
this proceedings is on a first qualitative look at the fine splittings, we do not investigate these small
differences in detail, but rather note, that their effect on the fine splitting needs to be studied further
in future investigations.
Having checked the Smilga relation, we can put reasonable bounds on the fermion masses used
in the fine splitting investigation. In fig. 2, the gray area marks the fermion masses that produce
pions, which are heavier than the 𝜂′, i.e. 𝑀𝜋 ≳ 𝜇. They do certainly not fulfill the small mass limit
condition, which we will keep in mind in the further analysis.
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Figure 1: Mass plateau of a 𝜋±-meson with fermion mass 𝑚 𝑓 /𝑒 = 0.149. The analytic value (dotted line) is
the Smilga result from eq. 1.

Figure 2: Degenerate pion mass for the 𝑁 𝑓 = 2 case vs. quark mass. The blue line represents the analytical
result of eq. 1, while the orange line is a linear fit with zero offset to the three central poins. The fit results
in a prefactor of 1.9522 ± 0.0028, compared to the Smilga prediction 2.008 . . .. On the right hand side, the
pion mass is divided by the appropriate power of the quark mass so that the small deviations can be seen
more clearly.

We now turn our attention to the nondegenerate case. The first series of ensembles, with the
constant factor of 𝑘 = 16.24, corresponds to a relation between fermion mass and mass difference
of 𝛿𝑚 ≈ 0.1𝑚 𝑓 . In fig. 3, the pion mass splitting is plotted logarithmically vs. the quark mass
splitting, given as the exponent appearing in eq. 3. In fact, eq. 3 gives a parameterless prediction
of the fine splitting, which is also displayed in the figure and does not describe the data at all.
The slope, and thus the general exponential behaviour, does however seem to be described rather
well. This is borne out in fig. 4, where we plot the difference in the logarithmic fine splitting
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Figure 3: Isospin breaking effects in the pion mass vs. average quark mass for 𝛿𝑚 ≈ 0.1𝑚 𝑓 (𝑘 = 16.24).
The continuous line is the prediction from eq. 3.

Figure 4: Difference in isospin breaking effects relative tho the fourth mass point. The orange line represents
the analytic expectation from eq. 3, while the blue, dotted line is the exponent predicted by Georgi.
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Figure 5: Same as fig. 3 but for the case of 𝛿𝑚 ≈ 0.8𝑚 𝑓 (𝑘 = 2.03).

between any fermion mass and the fourth fermion mass in our ensemble. Note, that this procedure
is also expected to substantially decrease the errors, since all masses stem from the same set of
configurations and are therefore highly correlated. We choose to subtract the fourth mass since this
lies in the middle of the mass regime and has a low statistical error. One can see, that the data are
now described very well by the exponential prediction, including the factor 1/2 from eq. 3. By
comparison, the exponential without the factor 1/2 seems to be too steep and does not reproduce
the data well. Masses that do not fulfill the small mass limit condition are once more highlighted in
gray.
The second set of nondegenerate masses that we explored utilises the same gauge ensemble and
also identical 𝑚 𝑓 , but has a substantially larger quark mass splitting 𝛿𝑚/𝑚 𝑓 ∼ 0.8, or, more
precisely, a constant factor 𝑘 = 2.03. This ensemble is meant to test whether indeed the exponential
suppression can be seen even if 𝛿𝑚 ∼ 𝑚 𝑓 as Georgi predicted. Fig. 5 again compares the data
and the parameterless prediction of eq. 3. As in the case of the smaller splitting, we observe that
the slope seems to be correct, while the prefactor is not, albeit it seems to be closer in this case.
This suggests a missing dependency in eq. 3 on 𝑚 𝑓 and 𝛿𝑚 that would account for the shift of the
offset observed. We once more take the difference of the masses to the fourth mass, with the result
displayed in fig. 6. We can see that, for relatively small fermion masses, the behaviour is again
well described by the exponential from eq. 3. The precision, however, is worse than for small mass
splitting, which is to be expected,because disconnected diagrams do contribute more. One can
also see, that for larger fermion masses (notably in the grey band) there is some deviation from the
simple exponential behavior. This is, however, to be expected, as the condition 𝑚 𝑓 ≪ 𝜇 is being
violated, and it is rather interesting that for small 𝛿𝑚 one does not see corrections to the exponential
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Figure 6: Same as fig. 4 but for the case of 𝛿𝑚 ≈ 0.8𝑚 𝑓 (𝑘 = 2.03).

behavior even in that region.

5. Conclusion and outlook

We performed a first numerical investigation of the predicted exponential fine splitting of meson
masses in the Schwinger model. Our data are compatible with an exponential fine splitting in
the 𝑚 𝑓 ≪ 𝜇 region, even for large quark mass splittings 𝛿𝑚 ∼ 𝑚 𝑓 . Furthermore, our data are
compatible with the explicit exponent found in [4], although not with the prefactor.
The most pressing issue for further investigations is, of course, to understand and correct the current
deviation in the prefactor. While it is very likely that one needs to refine the analytic result,
further numerical investigations, especially for substantially lower fermion masses and towards the
continuum limit, could also help clarifying this discrepancy.
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