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1. Introduction

A major pursuit of lattice QCD is the determination of non-perturbative matrix elements
generically given by 〈� ′ |Ô |�〉 where � is a hadron such as � ∼ @̄@ (meson) or � ∼ @@@ (baryon)
and the operator Ô ∼ @̄W@ ∼ � or Ô ∼ �� or even more complicated Ô ∼ ��. While the
usual approach is to compute ratios of 3-point correlation functions to 2-point correlation functions
in these talks we will describe an alternative method based on the Feynman–Hellmann theorem,
which only involves computing perturbed 2-point correlation functions. In [1] we discussed this
for nucleon scattering. However this required degenerate energy states. We shall now describe
a generalisation of the Feynman–Hellmann approach from the determination of nucleon matrix
elements with degenerate energy states to near-degenerate or ‘quasi-degenerate’ energy states, [2].

In these talks we shall first discuss the theory behind the Feynman–Hellmann approach via
the transfer matrix to a computation of 2-pt correlation functions with particular application to
quasi-degenerate states. We employ the Dyson expansion to reduce the problem to a Generalised
EigenVector Problem (GEVP) giving avoided energy levels. As examples we first consider #
scattering for flavour diagonal matrix elements. However naturally our approach is valid for decay
or transition matrix elements, for example the Σ → # transition. (These matrix elements occur
in semi-leptonic hyperon decays and provide an alternative approach to determining the CKM
matrix element +DB, [3].) In both cases we give sketches of avoided energy levels. We then turn
to a numerical simulation for the vector current for this transition matrix element, confirming our
previous theoretical discussion. Finally we give our conclusions. For more details, see [2].

2. The Feynman–Hellmann approach

In this section we shall give some mathematical details of our Feynman–Hellmann (FH)
approach. We employ theHamiltonian formalism and regard Euclidean time (at least) as continuous.
Although our approach is to consider the the 2-point nucleon correlation function, it is valid for all
hadrons. We shall make some comments about the introduction of spin later. We have

�_ �′� (C) = _〈0| ˆ̃�′(0; ®?′)(̂( ®@)C ˆ̄�(0, ®0) |0〉_ , (1)

where the source ˆ̄�(0, ®0) is spatial (for simplicity placed at the origin ®0) and contains all momenta,
while the sink �̃′(0; ®?′) picks out a particular momentum ®?′. (̂ is the ®@-dependent transfer matrix
(̂( ®@) = 4−�̂ ( ®@) in the presence of a perturbed Hamiltonian

�̂ ( ®@) = �̂0 −
∑
U

_U
ˆ̃OU ( ®@) , (2)

with

ˆ̃O( ®@) =
∫
®G

(
$̂ (®G)48 ®@ · ®G + $̂†(®G)4−8 ®@ · ®G

)
. (3)

In the large box-size limit, we pick out the ground state of the perturbed Hamiltonian, |0〉_ as
indicated in eq. (1). At leading order (considered here) we can drop the U index. (At higher orders
this is not possible.) Also as we write _U = |_U |ZU (ZU = ±1,±8) then any phase can be absorbed
into $̂ and we can consider positive _U only.
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Figure 1: A sketch of the energy levels. The set of quasi-degenerate energy states are denoted by (, labelled
from 1 to 3( . These states are well separated from other higher states.

We consider the physical situation with quasi-degenerate energies as shown in Fig. 1, taking
the 3( quasi-degenerate states to be well separated from any higher energy states as shown in the
figure. Their energies are defined by

�̂0 |�A ( ®?A )〉 = ��A ( ®?A ) |�A ( ®?A )〉 , A = 1 , . . . , 3( , (4)

where

��A ( ®?A ) = �̄ + nA , (5)

�̄ being some typical quasi-degenerate energy (for example their average energy). They are well
separated from higher energy states:

�̂0 |- ( ®?- )〉 = �- ( ®?- ) |- ( ®?- )〉 �- � �̄ . (6)

Practically we thus take the quasi-degenerate states as the lowest energy states.
For the matrix elements corresponding to the quasi-degenerate energy levels in Fig. 1 we have

a relation between the various momenta. Using $̂ (®G) = 4−8 ®̂? · ®G $̂ (®0) 48 ®̂? · ®G we soon see that

〈�( ®?A ) | ˆ̃O( ®@) |�( ®?B)〉 = 〈�A ( ®?A ) |$̂ (®0) |�B ( ®?B)〉 X ®?A , ®?B+ ®@ + 〈�( ®?A ) |$̂
†(®0) |�( ®?B)〉 X ®?A , ®?B−®@ . (7)

So matrix elements step up or down in ®@ ≠ ®0

®?A = ®?B + ®@ , or ®?A = ®?B − ®@ , (8)

i.e. momentum conservation. (For ®@ → ®0 the states coalesce, a special case.) We see immediately
that diagonal matrix elements vanish. So (quasi)-degenerate states have to mix with one other and
we must consider degenerate perturbation theory. We expect that each step up or down corresponds
to another order in _ as can be seen from the forthcoming Dyson expansion. So for example the
$ (_2) term gives Compton-like amplitudes ∼ 〈. . . |$̂U$̂V | . . .〉. In this case both step up and step
down are now possible: ®?B → ®?B ± ®@ → ®?B which are relevant for the forward Compton amplitude
in e.g. DIS which is considered elsewhere, [4–6].

Now insert two complete sets of unperturbed states1⨋
- ( ®?- )

|- ( ®?- )〉 〈- ( ®?- ) | ≡
∑
A

|�A ( ®?A )〉〈�A ( ®?A ) |︸                 ︷︷                 ︸
of interest

+
⨋
�-��̄

|- ( ®?- )〉 〈- ( ®?- ) |︸                ︷︷                ︸
higher states

= 1̂ , (9)

1We use the (lattice) normalisation 〈- |-〉 = 1. To convert to other normalisations use |-〉 → |-〉/
√
〈- |-〉 and

|0〉 → |0〉. In particular for the standard relativistic normalisation we have 〈- |-〉 = 2�- (used in eq. (39)).
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before and after (̂C to give

�_ �′� (C) =
⨋
- ( ®?- )

⨋
. ( ®?. )

_〈0| ˆ̃�′( ®?′) |- ( ®?- )〉 〈- ( ®?- ) |(̂_( ®@)C |. ( ®?. )〉 〈. ( ®?. ) | ˆ̄�(®0) |0〉_ . (10)

Time dependent perturbation theory via the Dyson Series iterates the operator identity

4−(�̂0−_U ˆ̃OU)C = 4−�̂0C + _U
∫ C

0
3C ′ 4−�̂0 (C−C′) ˆ̃OU 4−(�̂0−��

�H
HH_V
ˆ̃OV )C′ , (11)

where at leading orderwe simply drop the perturbation under the integral as indicated. Asmentioned
before the $ (_U_V) term would give Compton like amplitudes ∼ 〈. . . |$̂U$̂V | . . .〉. Considering
the possible pieces separately from eq. (9) gives finally the result, [2],

�_ �′� (C) =
3(∑
8=1

F
(8)
�′ F̄

(8)
�
4−�

(8)
_
C + . . . , (12)

with perturbed energies

�
(8)
_
= �̄ − ` (8) , 8 = 1, . . . , 3( , (13)

where ` (8) are the eigenvalues2 of the 3( × 3( Hermitian matrix �AB defined by

�AB = −nAXAB + _〈�A ( ®?A ) | ˆ̃O( ®@) |�B ( ®?B)〉 . (14)

Furthermore in eq. (12) we have

F
(8)
�′ =

3B∑
A=1

/�
′

A 4
(8)
A , and F̄

(8)
�
=

3B∑
B=1

/̄�B 4
(8)∗
B , (15)

where ®4 (8) , 8 = 1, . . . , 3B are the 3B eigenvectors of �AB and the wavefunctions are given by

/�
′

A = _〈0| ˆ̃�′( ®?′) |�A ( ®?A )〉_ , and /̄�B = _〈�B ( ®?B) | ˆ̄�(®0) |0〉_ , (16)

where the states |�B ( ®?B)〉_ are defined by

|�B ( ®?B)〉_ = |�B ( ®?B)〉 + _
⨋
�.��̄

|. ( ®?. )〉
〈. ( ®?. ) | ˆ̃O( ®@) |�B ( ®?B)〉

�. − ��B
. (17)

We see that there is a factorisation where the unwanted |.〉 states have been absorbed into a time
independent renormalisation of the wavefunction.

So from eq. (12) we see that the problem is now ‘reduced’ to a GEVP or Generalised Eigen-
Vector Problem, [7, 8], which can be applied to determine the energy eigenvalues � (8)

_
as described

in section 5.
In principle this means that we can extend the computation to include lower energy states |/〉

in the spectrum, with �/ � �̄ , i.e. again well separated from the quasi-energy states. If there are
such states present in eq. (9) then we need to avoid any transitions between these states and either the

2�AB is decomposed as �AB =
∑3(
8=1 `

(8) 4 (8)A 4
(8) ∗
B .
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quasi-degenerate states or the higher energy states, as these will have a term ∼ 4−�/ C and hence will
be the leading term in eq. (12). This can be achieved by a possible mixture of vanishing overlaps
with these states, vanishing matrix elements and regarding them as extra terms in the GEVP. We do
not consider this lower energy case further here.

Finally note that the above result is true for general source and sink operators. If we are able
to set �̂′ and �̂ ‘close’ to �̂A and �̂B respectively then the above expressions simplify and we have

F
(8)
A = /A 4

(8)
A , and F̄

(8)
B = /̄B4

(8)∗
B . (18)

3. Examples

Let us consider a 3( = 2-fold case: A , B = 1, 2. Then due to the step up or down in ®@ for the
matrix element we must have

〈�A ( ®?A ) | ˆ̃O( ®@) |�B ( ®?B)〉 =
(

0 0∗

0 0

)
AB

, where 0 = 〈�2( ®?2) |$̂ (®0) |�1( ®?1)〉 . (19)

Diagonalising �AB ( ®?, ®@) in eq. (14) gives upon solving the quadratic equation the eigenvalues `±
giving energies

�
(±)
_

= �̄ − `± =
1
2
(�2 + �1) ∓

1
2
Δ�_ , (20)

with

Δ�_ = �
(−)
_
− � (+)

_
=

√
(�2 − �1)2 + 4_2 |0 |2 . (21)

A flavour diagonal matrix element is given from nucleon scattering where we have

$ (®G) ∼ (D̄WD) (®G) − (3̄W3) (®G) , and |�1( ®?1)〉 = |# ( ®?)〉︸                  ︷︷                  ︸
��1 ( ®?1)≡�# ( ®?)=�̄+n1

, |�2( ®?2)〉 = |# ( ®? + ®@)〉︸                       ︷︷                       ︸
��2 ( ®?2)≡�# ( ®?+ ®@)=�̄+n2

. (22)

In general we have quasi-degenerate energy states, but it is easy to choose ®? and ®@ so the energies
are degenerate �# ( ®? + ®@) = �# ( ®?), [1]. (A similar situation occurs if we consider �# ( ®? − ®@)
instead.) For flavour transition matrix elements for example Σ(B33) → # (D33) decay we have

$ (®G) ∼ (D̄WB) (®G) , and |�1( ®?1)〉 = |Σ( ®?)〉︸                 ︷︷                 ︸
��1 ( ®?1)≡�Σ ( ®?)=�̄+n1

, |�2( ®?2)〉 = |# ( ®? + ®@)〉︸                       ︷︷                       ︸
��2 ( ®?2)≡�# ( ®?+ ®@)=�̄+n2

. (23)

As "Σ ≠ "# then we now usually have quasi-degenerate energy states. Both cases (diagonal and
transition matrix elements) thus have a similar structure.

We now illustrate these results with a series of (exaggerated) 1-dimensional sketches. For
nucleon scattering, eq. (22), we have the situation depicted in Fig. 2. We focus on the degeneracy
when �# (?) = �# (? + @) at ? = −@/2 where in addition n1 = 0 = n2. When the free case (left
panel of Fig. 2) becomes the interacting case (right panel of Fig. 2) we have the phenomenon of
‘avoided energy level crossing’ when the energy levels do not cross. The sketch curves are based on

5
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Figure 2: Left panel: Plotting ? versus �# for the free case when we have quasi-degenerate energies taking
units where @ = 1 at ? ≈ −1/2. Right panel: The interacting case showing ‘avoided energy levels’. The
_→ 0 or free case is shown as dashed lines.

−1 −0.5 0 0.5 1

p

E
N
(p+1)E

Σ
(p)

⇒

−1 −0.5 0 0.5 1

p

E
(−)

E
(+)

Figure 3: Left panel: The free case when we have quasi-degenerate energies again taking units where @ = 1.
Right panel: The interacting case showing ‘avoided energy levels’.

previously derived formulae for � (+) , � (−) in eq. (20) and occur because in eq. (21) the square-root
is always positive. Again note that a similar situation arises when �# (?) = �# (? − @) at ? = @/2
(not shown in the sketch). A similar situation occurs for Σ→ # decay as illustrated in Fig. 3. Again
we have a degeneracy: �Σ(?) = �# (? + @) which is now shifted slightly to smaller ?, as indicated
in the figure.

The eigenvectors 4 (±)A are given by

4
(±)
A = # (±)

(
_ |0 |
^±

0
|0 |

)
A

, with ^± = 1
2 (�1 − �2) ± 1

2Δ� , (24)

where the# (±) normalisation factor is chosen so that |4 (±)1 |
2+|4 (±)2 |

2 = 1. As 0 = |0 |Z0 (Z0 = ±1,±8)
then as expected any possible phase of the matrix element is contained in the eigenvectors, the
energy must be real. Note that the components of the eigenvectors are related: 4 (−)2 = −4 (+)1 Z0 and
4
(+)
2 = 4

(−)
1 Z0. We sketch their behaviour in Fig. 4. Shown are sketches of eq. (24) for 4 (−) 2

1 and
4
(−) 2
2 against ? both for the free and interacting case corresponding for the eigenvalues for Σ→ #

shown in Fig. 3. While in the free case the components of ®4 (±) remain constant (left panel) for the
interacting case (right panel) they flip as the momentum ? changes.

6
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Figure 4: Left panel: The free case where we have plotted 4 (−) 2
1 and 4 (−) 2

2 against ?, again taking units
where @ = 1. Right panel: The interacting case showing the change of state.

4. Incorporating the spin index

We now make a few comments on how the spin index is incorporated into the formalism.
Further details are given in [2]. We have the replacement

|�A ( ®?A )〉 → |�A ( ®?A , fA )〉 , (25)

where fA = ± is the spin index. Hence the � matrix is doubled in size fAA = +1,−1, . . . + 3( ,−3(
i.e. we now have a 23( × 23( matrix. However due to Kramers’ degeneracy theorem the energy
states corresponding to |�A ( ®?A , fA )〉, are doubly degenerate, so we still have 3( energy eigenvalues.
We could continue as before with this enlarged matrix. However it is advantageous to try to keep
as close as possible to the previous results. We can achieve this by writing the overlaps as

_〈0|�̂A U (®0) |�A ( ®?A , fA )〉_ = /A D
(A )
U ( ®?A , fA ) + . . . ,

_〈�B ( ®?B, fB) | ˆ̄�B V (®0) |0〉_ = /̄B D̄
(B)
V
( ®?B, fB) + . . . , (26)

where /A and /̄B are taken as scalars. Although the states here are the perturbed states, rather
than the unperturbed states, we expect the effect of the perturbation to be small as from eq. (17)
the $ (_) terms involve overlaps such as 〈0|�̂A |.〉 or 〈- |�̂A |�A 〉 which vanish or are small due to
the orthogonality of the spectrum. Furthermore, although we could consider the Dirac indices as
a GEVP it is convenient to sum over them with some matrix, Γ. Presently we only numerically
consider the unpolarised case with Γunpol = (1 + W4)/2 so

�_ AB (C) = trΓunpol�_ �A�B (C) . (27)

This reduces � to the previous 3( × 3( matrix as in eq. (14) and leads to the replacement in eq. (19)
of 0 → (0++ + 0−−)/2 where the indices are the spin components. So effectively this is the same
result as before, we are just averaging over the spins. So this gives finally

�_ AB (C) =
3(∑
8=1

F
(8)
A F̄

(8)
B 4
−� (8)

_
C . (28)

Alternatively an explicit form factor decomposition of the matrix elements (for all possible W
matrices) shows that different spin components of matrix elements are related to each other. The

7
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upshot is that for previous examples in section 3 for 3( = 2 we first make the replacement

0 →
(
0++ 0+−
0−+ 0−−

)
, (29)

with 0−− = [0∗++, 0−+ = −[0∗+− ([ = ± depending on the matrix element considered) and in the
previous results we replace |0 | → | det 0 |1/2 where | det 0 | = |0++ |2 + |0+− |2. As we pick out either
0++ or 0+− this is equivalent to the previous procedure.

5. A lattice application for transition matrix elements

As an example of this formalism, we shall now consider in more detail how the previous results
can be applied to the Σ→ # transition matrix element. We first discuss the necessary modifications
to the action and the fermion inversion procedure before considering the specific numerical results.

To apply the results of section 3 we need to consider the action

( = (6 +
∫
G

(D̄, B̄)
(

�D −_T
−_T ′ �B

) (
D

B

)
+

∫
G

3̄ �3 3 , (30)

where (6 is the gluon action and the fermionic piece is explicitly given. (For simplicity we absorb
any clover terms into the �s.) We take the D and 3 quarks as mass degenerate <D = <3 ≡ <;, with
a common mass <;. For T we take the general local expression

T (G, H; ®@) = W 48 ®@ · ®G XG,H , (31)

and for W5-hermiticity for the matrix in eq. (30) we need T ′ = W5T †W5.
From the action in eq. (30) we see that we now need to invert a larger matrix to find the

propagator for the various correlation functions. Although possible directly, we have found it
advantageous to consider it as a 2 × 2 block matrix and invert that. This leads to

� (DD) = (1 − _2�−1
D T�−1

B W5T †W5)−1�−1
D ,

� (BB) = (1 − _2�−1
B W5T †W5�

−1
D T)−1�−1

B , (32)

and

� (DB) = _�−1
D T� (BB) ,

� (BD) = _�−1
B W5T †W5�

(DD) . (33)

The problemwith eq. (32) is that it involves an inversion within an inversion, which computationally
would be very expensive. However for _ small (the case considered here) it is sufficient to expand
to a low order in _, especially as the expansion parameter is _2. To build the Green’s functions
we use X ®G,®0XC ,0 as the initial source, and build the chain using the previously calculated object as
the new source. This has the advantage of producing the Green’s function and hence correlation
function matrix

�_ AB (C) =
(
�_ΣΣ(C) �_Σ# (C)
�_ #Σ(C) �_ # # (C)

)
AB

, (34)

8
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as a continuous function of _ rather than needing a separate evaluation for each value of _ chosen.
We now apply the GEVP (Generalised EigenValue Problem) to the 2 × 2 correlator matrix

�_(C), eq. (34). The variation of the method we use here, [9], is first to determine the left 3(8) and
right D (8) eigenvectors by considering the correlation matrix at times C0 and C0 + ΔC0. These can be
combined with the correlator matrix to construct a new correlation function

�
(8)
_
(C) = 3(8) †�_(C)D (8) , 8 = ± . (35)

These two correlators � (8)
_
(C), 8 = ± represent the two GEVP energy eigenstates of the system

∝ 4−�
(8)
_
C which of course includes the perturbation to the action. To relate this to the transition

form factors, we require the energy splitting between these two states and so from eqs. (20), (21)
we construct the ratio of the correlators

'_(C) =
�
(−)
_
(C)

�
(+)
_
(C)

C�0∝ 4−Δ�_C , (36)

which in the large Euclidean time limit will behave like a single-exponential function and will show
up in the effective energy as a plateau region. We thus use this effective energy to pick out a suitable
plateau region and then fit a single-exponential function to the ratio. The two important parameters
of the GEVP calculation are C0 and ΔC0. Optimally the time range from C0 and C0 + ΔC0 needs to be
in a region where the ground state is saturated but the signal-to-noise ratio is still sufficiently high
to exclude any effects from higher states. Finally we note that using eqs. (18), (28) means that

3
(8)
A =

# (8)

/A
4
(8)
A , and D

(8)
B =

#̄ (8)

/̄B
4
(8)
B , (37)

where # (8) and #̄ (8) are normalisation constants. Essentially 3(8)∗A measures the component of �A
in the 8th eigenvector and similarly for D (8)B and �̄B.

6. Lattice results

While the above discussion is general, we now consider the concrete case of the vector matrix
element +4 for Σ → # where the Σ is stationary, i.e. ®?1 = ®0 and ®?2 = ®@ in eq. (23). Then the
(Euclidean) momentum transfer is given in this case by3

@ = (8("Σ − �# ( ®@)), ®@) , or &2 = −("Σ − �# ( ®@))2 + ®@2 . (38)

Thus from eq. (21) we must compute

Δ�_ =

√√√
(�# − "Σ)2 + 4_2

(
〈# ( ®@) |D̄W4B |Σ(®0)〉
(2�# ) (2"Σ)

2)
. (39)

3Note that we have adopted the convention that @ is positive for a scattering process where for the scattered baryon
the momentum @ is added to the initial baryon momentum. This is opposite to the semi-leptonic case, where the lepton
and neutrino carry momentum @.
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Numerical simulations have been performed using # 5 = 2 + 1 $ (0) improved clover Wilson
fermions [10] at V = 5.50 and (^;, ^B) = (0.121040, 0.120620) on a #3

B × #C = 323 × 64 lattice.
More definitions and details are given in [11]. We just mention here that our strategy is to keep
the average bare quark mass constant from the (* (3) flavour symmetric point. This situation
corresponds to a lattice spacing of 0 ∼ 0.074 fm ∼ 1/(2.67GeV) leading to a pion mass of
∼ 330MeV. Errors given in the following are primarily statistical (using ∼ $ (500) configurations)
using a bootstrap method.

Clearly we need to keep the energy states close to each other. As spatial momentum on the
lattice is discretised and given in each direction in steps of 2c/#B, which is coarse on this lattice
size. To obtain a finer energy level separation we use twisted boundary conditions, [12, 13], in the
H-direction and set ®@ = (0, \2/#B, 0) and take 6 values of the twist parameter \2 such that in lattice
units ®@2 runs from 0 (run #1) to ∼ 0.05 (run #6), so that &2 ∼ −0.01GeV2 to ∼ 0.35GeV2.

Using each of these momentum values we calculate the correlation function matrix in eq. (34)
up to order $ (_4) in the expansion of eqs. (32) and (33). Since the multiplication with _ occurs
after the fermion matrix inversions, we are able to construct the correlation function matrix for a
large number of _ values in the range _ = (0, . . . , 0.05). After solving the GEVP for each of these
matrices we construct the ratio in eq. (36). The effective energy of this ratio is shown in Fig. 5 for
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Figure 5: LH panel: (Δ�_)eff = − ln('_ (C + 1)/'_ (C)) versus C for _ = 0.025 at $ (_), $ (_2), $ (_3) and
$ (_4) for run #5. RH panel: similarly for _ = 0.05. The points are slightly offset for visibility.

run #5 at two different _ values. The right hand plot in this figure also shows the effect of the higher
order corrections at _ = 0.05.

Figure 6 shows the dependence of the energy shift on _ for each of the four orders in the
expansion for run #1 and run #5. Once again we can see that as _ increases the lower orders of the
expansion start to deviate and higher order corrections are required. The expansion seems to hold
up better for run #5 where the energy gap between the unperturbed states is minimized. However
even for run #1, there is a sufficiently large _ range available to extract the matrix element.

The matrix element can then be extracted by using eq. (39), the result of which is shown in
Fig. 7. We also show the results of a three-point function calculation on the same configurations,
there is good agreement between the two methods.
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Figure 6: LH panel: The _-dependence for run #1 for Δ�_. The numerical results for each order in _ ($ (_),
$ (_2), $ (_3) and $ (_4)) are given as bands. RH panel: Similarly for run #5.
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Figure 7: The renormalised transition matrix element as a function of &2 from the Feynman-Hellmann
method (triangles) and from the three-point function method (circles). (/+ is taken from [14].)

7. Conclusions

The Feynman-Hellmann approach has been shown here to be a viable alternative to the con-
ventional three-point function method for calculating matrix elements. The Feynman-Hellmann
approach allows for a simpler analysis of excited state contributions as the resulting correlator has
the same structure as a two-point function. This allows for the application of the many established
techniques for analysing two-point correlation functions. To extend this method to transition matrix
elements has required reformulating it for quasi-degenerate states and using partially twisted bound-
ary conditions to achieve these quasi-degeneracies. The extention also allows for the inclusion of
higher orders in the _ expansion which has allowed us to extend the range of _ which can be
used. We have shown that this method can produce results with good agreement to the three-point
function method for the Σ→ # transition for &2 values −0.01 GeV2 to 0.35 GeV2. Further details
are given in [2].
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