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1. Introduction

Lattice QCD calculations of hadronic decay form factors are critical inputs for high precision
tests of the Standard Model (SM) of particle physics. Ab-initio predictions for hadronic flavor-
changing matrix elements allow for the extraction of CKM matrix elements from experimentally
measured decay rates, which in turn enable precision tests of the Standard Model.

Recent years have witnessed a resurgence of theoretical interest in the heavy flavor sector,
driven by new results from experiments at LHC, and anticipation of new results from Belle II.
Several few-sigma discrepancies (collectively referred to as B-anomalies) may be hints for new
physics, and ongoing experiments continue to reduce experimental uncertainties, enabling sharper
tests of the SM, provided theory uncertainties are quantified at a commensurate level. There are
also the long-standing differences in inclusive and exclusive extractions of the CKM elements |Vub|
and |Vcb| which should be resolved. From the theory side, improved theoretical calculations of
B-semileptonic decays will bear directly both on exclusive/inclusive discrepancies, and interpret-
ing B-anomalies. (For recent discussions from a lattice perspective, see e.g. [1, 2, 3, 4].) In this
proceeding, we provide a status update of the FNAL-MILC collaboration’s calculations of semilep-
tonic B(s)-meson decay form factors using the highly improved staggered quark (HISQ) action.

2. Calculation overview

Our calculation uses ensembles generated by the MILC Collaboration using N f = 2+ 1+
1 flavors of dynamical sea quarks with the HISQ action [5, 6, 7]. Here we show results from
ensembles with lattice spacings of a ≈ 0.09, 0.06, and 0.042 fm. At a ≈ 0.09 and 0.06 fm we have
generated correlator data on ensembles with light sea-quarks at their physical values as well as at
ml/ms = 0.1,0.2. At a ≈ 0.042 fm we have analyzed an ensemble with ml ≈ 0.2ms in the sea,
and we plan to include a physical-mass ensemble in the future. The strange and charm sea-quark
masses are tuned to be close to their physical values, and the valence light- and strange-quark
masses are taken to be equal to the corresponding sea-quark masses. The heavy valence quarks
range in mass from roughly 0.9mc to just below the lattice cutoff amh ≲ 1. At the finest lattice
spacings of a ≈ 0.042 fm and 0.03 fm, this setup allows simulation close to the physical mass of
the bottom quark.

To determine the form factors, we compute the following two-point and three-point correlation
functions:

CH(t) = ∑
xxx,yyy

⟨OH(tsrc,xxx)OH(t + tsrc,yyy)⟩ (2.1)

CL(t, ppp) = ∑
xxx,yyy

eippp·(xxx−yyy) ⟨OL(tsrc,xxx)OL(t + tsrc,yyy)⟩ (2.2)

C3(t,T, ppp) = ∑
xxx,yyy,zzz

eippp·(xxx−yyy) ⟨OL(tsrc,xxx)J(t + tsrc,yyy)OH(T + tsrc,zzz)⟩ , (2.3)

where the OH,L are staggered meson operators which couple to the heavy initial (H) and light final
state (L) hadrons. For the scalar and temporal vector current we employ local staggered operators,
while for spatial vector current we use the one-link operator. For brevity, we have suppressed
staggered structure and Lorentz indices in the lattice current J, which represents the scalar, vector,
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Figure 1: A schematic figure of the 3pt functions defined in Eq. (2.3). The light final state hadron is created
with momentum ppp at the origin. An external current J is inserted at time t. The heavy initial hadron is
destroyed at rest at time T .

and tensor currents. Figure 1 shows the structure of these correlation functions. We work in the
rest frame of the decaying hadron H and compute the recoiling hadron L with eight different lattice
momenta pppL = 2π

Nsa
nnn, where Ns ∈ Z is the spatial extent of the lattice and nnn is (0,0,0), (1,0,0),

(1,1,0), (2,0,0), (2,1,0), (3,0,0), (2,2,2) or (4,0,0). For each choice of mass and momentum,
we compute the three-point functions for a few (typically 4 or 5) different source-sink separations
T . For the light-quark propagators in the calculation, we employ the truncated solver method [8],
using 24 to 36 loose solves per configuration.

To extract the required matrix elements, our analysis employs joint correlated fits to the two-
point and three-point correlation functions using the spectral decomposition. For instance, for the
three-point function in Eq. (2.3), the spectral decomposition reads

C3(t,T, ppp) = ∑
m,n

(−1)m(t+1)(−1)n(T−t−1)Amne−E(n)
L (ppp)te−M(m)

H (T−t). (2.4)

As usual for staggered fermions, the correlation functions include smoothly decaying contributions
with the desired parity as well as oscillating contributions from states of opposite parity. The
spectral decompositions for the two-point functions are similar. The ground-state amplitude A00

is proportional to the matrix element ⟨L|J |H⟩, and so a fit to Eq. (2.4) gives the required matrix
element. For the sake of visualization, the following ratio of correlation functions is useful:

RS(t,T, ppp) =
√

2MH

(
mh −ml

M2
H −M2

L

)
CS

3(t,T, ppp)√
CL

2 (t, ppp)CH
2 (T − t)e−ELte−MH(T−t)

. (2.5)

Up to discretization effects, this ratio asymptotically approaches the form factor f0 for large times:

RS(t,T, ppp) 0≪t≪T−→ f0(ppp). (2.6)

Slightly different ratios, differing only by kinematic prefactors and renormalization factors, can
also be constructed for f∥ and f⊥. Although our quantitative analysis is based on fits to the spectral
decomposition, the ratio provides a valuable visual check on the results.

All of our results are blinded by a random factor that is common for all three-point functions
of a given analysis/decay channel. We will carry the analysis of the blinded form factors all the way
through the chiral interpolation and continuum extrapolation, unblinding only when the analysis of
systematic errors is complete.
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3. Results

3.1 Two-point and three-point functions

In Fig. 2 we show example two-point correlators from our analysis, computed here on the
a ≈ 0.06 fm ml/ms = 0.1 ensemble. For the heavy Hs hadrons, we compute two-point correlators
for a range of heavy input masses: mh ≈ 0.9mc,1.0mc,2.0mc,3.0mc,4.0mc. These are shown in the
top panel of the figure. From the second panel one can see that the noise-to-signal increases as the
heavy mass increases, but overall the statistical precision is very good and long stable plateaus are
observed in the effective masses in the third panel. The lower panel shows the final-state hadron
(in this case Ds) for all of the different momenta studied. As expected the noise-to-signal increases
with increasing recoil momentum, but stable effective masses are obtained even at our highest
momentum studied.

Fig. 3 plots an example set of two-point and three-point functions, which are fit simultaneously
according to Eq. (2.4) to extract matrix elements used in determining the form factors. The right-
hand plot shows the ratio of Eq. (2.5) from these correlators.
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Figure 2: Two-point functions used in the calculation of Bs → Ds ℓν , shown here for the 0.06 fm-0.1 ms

ensemble. The top panel shows, moving from left to right, the correlation functions, noise-to-signal, and
effective masses for Hs correlation functions, for a range of heavy input masses mh. The bottom panels
display the same information for two-point functions of the final state Ds particle, over a range of momenta.

3.2 Form factors

Having extracted scalar and vector three-point matrix elements from simultaneous fits, we can
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Figure 3: (Left) Combination of two- and three-point functions which are fit simultaneously to determine
matrix element (3.3). (Right) Correlator data re-expressed in a convenient ratio form that visually illustrates
the value extracted for the matrix element as a plateau (dotted line). Note that in practice the matrix elements
are determined from a simultaneous multi-exponential fit of the correlators, as described in the text.

relate these to the decay form factors via

⟨L|V µ |H⟩ ≡
√

2MH
(
vµ

H f∥(q
2)+ pµ

⊥ f⊥(q2)
)

(3.1)

≡ f+(q2)

(
pµ

H + pµ

L − M2
H −M2

L

q2 qµ

)
+ f0(q2)

M2
H −M2

L

q2 qµ (3.2)

⟨L|S |H⟩= M2
L −M2

H

mh −mℓ
f0(q2) . (3.3)

In these expressions, MH , ML, pµ

H , and pµ

L refer to the mass and four-momentum of the heavy initial
(H) and light final state (L) mesons; mh and mℓ refer to the heavy and light input quark masses of
the transition current; vµ

H = pµ

H/MH is the four-velocity of the heavy meson; pµ

⊥ = pµ

L −(pL ·vH)v
µ

H
is the component of the light hadron’s momentum orthogonal to vH , and; qµ = pµ

H − pµ

L is the
momentum transfer. The final equality relating f0 to the scalar matrix element follows from partial
conservation of the vector current (see Eq. (3.8) below). The manifestly covariant expressions
simplify in the rest frame of the decaying heavy meson and take the following simple forms:

f∥ = ZV 0

〈
L
∣∣V 0

∣∣H〉
√

2MH
(3.4)

f⊥ = ZV i

〈
L
∣∣V i

∣∣H〉
√

2MH

1
pi

L
(3.5)

f0 = ZS
mh −mℓ

M2
H −M2

L
⟨L|S |H⟩ . (3.6)

In Fig. 4, we show results for the f0 form factor of Hs → Ds decay, plotted as a function
of momentum transfer q2. In this and subsequent figures, the colors (green, blue, purple) corre-
spond to the lattice spacings (a ≈ 0.09,0.06,0.042 fm), and lighter/darker shading correspond to
lighter/heavier input masses mh. As we go to finer lattice spacings, larger values of mh are accessed
and the total energy available for the recoiling hadron increases. We observe small statistical errors
over the kinematic range studied. The different symbol shapes in the figure correspond to different
light-quark sea masses, and one observes very little sea-quark mass dependence in this decay.

In Fig. 5 we show the f∥ and f⊥ form factors extracted using three-point functions involving the
local-temporal and one-link spatial currents, respectively. Qualitatively these share similar features
with the f0 results, we observed good statistical control out to large momenta, and there is little
evidence of light sea-quark mass effects. The data plotted here is shown before renormalization
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Figure 4: f0 form factor for Hs → Ds decay as a function of momentum transfer q2, for a range of heavy
input masses.
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Figure 5: f∥ (left) and f⊥ (right) form factors for Hs → Ds decay as a function of momentum transfer q2,
for a range of heavy input masses.

of the vector current. In order to take the chiral-continuum limit of this data the currents must be
renormalized and we discuss this further in the next subsection.

Fig. 6 shows f0(q2) for the decay Hs → K. Here again we see good statistical control through
most of the kinematic range. The light-quark mass dependence again appears to be relatively small,
although here we expect some impact from the light valence quark in the kaon, which is matched
to the light sea-quark mass.
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Figure 6: f0 form factor for Hs → K decay as a function of momentum transfer q2, for a range of heavy
input masses.
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3.3 Vector current renormalization

The vector current operators we use to induce the quark transition require renormalization. We
renormalize the vector current by applying the partially conserved vector current (PCVC) relation
directly to extracted matrix elements:

∂µV cons
µ = (mh −ml)S . (3.7)

Applied to our lattice matrix elements,

ZV 4(MH −EL)⟨L|V 0|H⟩+ZV iq · ⟨L|V|H⟩= (mh −ml)⟨L|S|H⟩ , (3.8)

where V 4 is local and V i is a one-link current. At zero recoil momentum, the second term in (3.8)
is zero and so ZV 4 may be straightforwardly determined from the zero-recoil three-point matrix
elements. In Fig. 7 we show the results of this for the Bs → Ds correlators. Note that the same
renormalization factors can also be used for B → D since the h → c quark transition is the same. To
find ZV i non-zero recoil three-point matrix elements must be used in Eq. 3.8. As a preliminary step
we used the n = (3,0,0) matrix elements along with the values for ZV 4 computed in the previous
step, and found qualitative behavior similar to what is observed for ZV 4 , namely that factors tend
towards 1 as the continuum is approached, and also increase with increasing heavy quark mass amh,
consistent with (amh)

n-type lattice discretization errors. A more robust determination, including
fully quantified error bars, may be obtained for (ZV 4 ,ZV i) via simultaneous fit using all available
momenta, and this is how we intend to obtain our final Z-factors.
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Figure 7: Renormalization factors for the local temporal vector current determined from Ward identities of
three-point correlators.

4. Conclusion & Outlook
We have presented preliminary results for semileptonic B(s)-decay form factors, computed

using the HISQ action for all valence quarks on the MILC collaboration’s N f = 2+ 1+ 1 HISQ
ensembles. This is an update to last year’s proceeding [9], where decays of D mesons were also
considered. The analysis of D-meson decay form factors was recently completed [10]. The calcula-
tions outlined here together with high-precision experimental measurements will result in improved
determinations of |Vcs|, |Vcb|, |Vcd |, |Vub|, providing some of the most stringent tests of the Standard
Model in these respective sectors.
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To access B physics in the continuum we work at a range of heavy mass input values on
each ensemble, with amh ≲ 1. On the finest ensembles studied (a = 0.042 and 0.03 fm) we have
simulated valence quarks at or near to the physical b-quark mass. Treating all quarks with the same
action allows us to compute and analyze data for a range of decays in a unified treatment, with
non-perturbatively renormalized currents. For the decays considered we observe good statistical
control over the kinematic range studied. We have simulated on ensembles with physical light
sea-quarks at our a = 0.09 and 0.06 fm lattice spacings, which should allow chiral interpolation,
thereby reducing systematic errors. In the future we plan extend this to the physical mass ensemble
at a = 0.042 fm. We are currently analyzing the data computed at our finest lattice spacing of
a = 0.03 fm.
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