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Dark matter may be stable because of a conserved ZN (cyclic) symmetry. Usually N is assumed
to be 2, but it may also be larger than 2.
This ZN is usually assumed to be in a direct product with some other symmetry group. The full
symmetry group of the theory is then G = ZN ×G′. We suggest another possibility.
Many discrete subgroups of U(D), for any D ≥ 2, have a non-trivial center ZN , even if they are
not the direct product of that ZN with some other group. When that happens, the irreducible
representations (‘irreps’) of the group may either represent all the elements of that ZN by the unit
matrix, or else they may represent that ZN faithfully. If ordinary matter is placed in a representa-
tion where ZN is represented by 1, and dark matter is placed in irreps that represent ZN faithfully,
then dark matter is stabilized by that ZN .
We have scanned all the discrete groups in the SmallGroups library with order ≤ 2000 that
are not the direct product of a cyclic group with some other group. We have determined their
centers and whether they are subgroups of one or more groups SU(D) or U(D). We have found
that very many groups, especially subgroups of U(D) but not of SU(D), have non-trivial centers
ZN , mostly with N of the form 2p ×3q but also with other values of N.
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1. Introduction

The lightest Dark Matter (DM) particles must be stable (i.e. unable to decay), on cosmological
timescales. The stability is determined by an unbroken cyclic ZN symmetry which is non-trivial
(i.e. it has N ≥ 2), such that standard matter is invariant under ZN while DM is not. The ZN charge
different from 1 of the lightest DM particle prevents it from decaying to standard matter, which has
ZN charge 1.

In many models this stability is provided by N = 2. But, some authors have considered possi-
bilities N > 2 such DM stabilized by a Z3 symmetry [1, 2]. Larger cyclic groups have been used to
stabilize DM, like Z4, Z5 and Z6 [3, 4, 5] or a general ZN [6, 7].

The cyclic ZN symmetry that stabilizes DM may be the center of a larger internal-symmetry
group G. The simplest possibility consists in G being a discrete group of order O that is isomorphic
to the direct product ZN ×G′, where G′ is a group of order O/N. In that case, all the irreducible
representations of G consist of the product of an irrep of ZN and an irrep of G′. The particles of
the Standard Model (SM) must be placed in the trivial representation of ZN while DM particles are
placed in non-trivial representations of ZN .

But there exist also discrete groups G that cannot be written as the direct product of a cyclic
group and a smaller group but may have a non-trivial ZN center. In that case an irrep of G may
represent ZN non-trivially (viz. when some elements of ZN are represented by a phase f with f ̸= 1
but f N = 1). If ZN remains unbroken when G is broken, and if there are particles with ZN charge
different from 1, then those particles play the role of DM, while the particles with ZN value 1 are
standard matter. This mechanism had already been suggested before, viz. in Ref. [8] and studied in
recent works by Refs. [9] and [10].

In this work we make a systematic survey of the centers of all the discrete groups G of order
up to 2000 that cannot be written as the direct product of a cyclic group and another group and
that have some faithful irreducible representation (‘firrep’).1 We identify the center ZN of each
of those groups, and also the dimensions D of their firreps. Also we construct various tables with
the integers O, N, and D. We find that very many discrete groups, especially those that are not
subgroups of any continuous group SU(D), have centers ZN with N ≥ 2, and N is sometimes
quite large. Comprehensive listings of the groups that we have studied are available online at
https://github.com/jurciukonis/GAP-group-search [11].

2. Group search

The defining representation of SU(D) consists of the D×D unitary matrices with determinant
1. In this representation, the center of SU(D) is formed by the D diagonal matrices

∆×1D, ∆
2 ×1D, ∆

3 ×1D, . . . , ∆
D ×1D = 1D, (2.1)

where ∆ = exp(2iπ/D). Thus, the center of SU(D) is a ZD group. More generally, if m is an
integer that divides D and µ = exp(2iπ/m), then there is a cyclic symmetry Zm given, in the

1We do not survey groups of order either 512, 1024, or 1536, because there are millions or billions of groups of
those orders.
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defining representation of SU(D), by

Zm =
{

µ ×1D, µ
2 ×1D, µ

3 ×1D, . . . , µ
m ×1D = 1D

}
. (2.2)

One or more discrete subgroups of SU(D) may then have Zm as their center. Thus, discrete sub-
groups of SU(D) that are not subgroups of any U(D′) with D′ < D may have very few centers. For
particular cases of SU(D) please see Ref. [10].

On the other hand, discrete subgroups of U(D) do not bear the constraint that the determinants
of the matrices in their defining representations should be 1. As a consequence, if

Zt =
{

θ ×1D, θ
2 ×1D, θ

3 ×1D, . . . , θ
t ×1D = 1D

}
, (2.3)

where θ = exp(2iπ/t), is the center of a discrete subgroup of U(D), then there appears to be a
priori no restriction on t. An example of U(2) would be the discrete group Z8 ⋊Z2 having order
16 and SmallGroups identifier [16, 6] as illustrated in Ref. [10].

Motivated by this observation that discrete subgroups of U(D) may in general have diverse
centers, in our work we have surveyed many discrete groups in order to find out their centers and
also which groups U(D) they are subgroups of. Therefore we have made a scan over all the discrete
groups of order O ≤ 2000 in the SmallGroups library2, using GAP3 except the groups of order
either 512, 1024, or 1536. Then we have discarded all the groups that are isomorphic to the direct
product of a smaller (i.e. of lower order) group and a cyclic group. We also have used GAP to find
out all the irreps of each remaining group, and then to ascertain whether those irreps are faithful or
not. We have discarded all the groups that do not have any firrep. We have thus obtained 87,349
non-isomorphic groups, that are all listed in our tables available at [11]. We have computed the
determinants of the matrices of each firrep in order to find out whether all those determinants are
1 or not. We have also looked for all the matrices in the firreps that are proportional to the unit
matrix and we have checked that those matrices form a group ZN for some integer N (which for
some groups is just 1). We have also examined the question whether each D-dimensional firrep is
equivalent to a representation through matrices of SU(D).4

There are relatively few groups that have firreps with different dimensions. For instance: A5

has firreps of dimensions three, four, and five for which all generators have determinant 1. The
discrete group GL(2, 3), with SmallGroups identifier [48, 29], has two 2-dimensional genera-
tors with determinant 1 while the third one has determinant −1; hence, we classify GL(2, 3) as a
subgroup of U(2), but it is not a subgroup of SU(2). On the other hand, there is another faithful

2This library [12] contains all the finite groups of order less than 2001, but for order 1024—because there are about
4.9× 1010 of groups of order 1024. SmallGroups also contains some groups for some specific orders larger than
2000. In SmallGroups the groups are ordered by their orders; for each order, the complete list of nonisomorphic
groups is given. Each discrete group is labeled [O, n] by SmallGroups, where O is the order of the group and n ∈ N
is an integer that distinguishes among the non-isomorphic groups of the same order.

3GAP [13] is a system for computational discrete algebra that provides a programming language and includes many
functions that implement various algebraic algorithms. With GAP it is possible to study groups and their representations,
to find the subgroups of larger groups, and so on.

4All the irreps of discrete groups are equivalent to representations through unitary matrices, and therefore we know
that all the generators that GAP provides to us are equivalent to unitary generators. In order to know whether the
generators belong to SU(D) we just compute their determinants.
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irrep of GL(2, 3), through 4× 4 unitary matrices, all of them with determinant 1. Therefore, we
classify GL(2, 3) as a subgroup of both U(2) and SU(4), but GL(2, 3) earns these two classifica-
tions through different irreps. We have found just 2787 such discrete groups, out of the total 87,349
groups that we have surveyed; they are collected in table Intersections at [11].

On the other hand, the group Σ(36×3), that has SmallGroups identifier [108, 15], has
irreps of dimensions 1, 3, and 4, but the 1- and 4-dimensional irreps are unfaithful—all the fir-
reps have dimension 3. This group is not included in table Intersections but it appears in table
U(D)&SU(D) at [11], because some 3-dimensional irreps has determinant 1 for all generators,
while other 3-dimensional irreps do not have determinant 1 for all generators.

It is worth to mention also that the scan over the SmallGroups library to find the firreps of
all possible dimensions constituted a computationally very expensive task. Some groups of orders
1728 and 1920 require quite a few CPU hours to find the irreps. Orders 768, 1280, and 1792 have
more than one million non-isomorphic groups of each order and therefore require many CPU hours
to scan over all of them.

3. Conclusions

In this paper we have pointed out that the stability of Dark Matter may be determined by a
non-trivial ZN center of the larger internal symmetry group G, while G is not a direct product
ZN × G′. Also we summarize the search of these centers of discrete groups that have faithful
irreducible representations that was performed in Ref. [10]. In our survey we have found groups
with non-trivial ZN centers with the corresponding properties:

• ZN for N ≤ 162.

• N = 2p ×3q for all the integers p and q such that N ≤ 162.

• N = 2p ×5 for 0 ≤ p ≤ 3.

• N = 7, N = 11, N = 14, N = 15, and N = 25.

• The number N always divides the order O of the group. The integer O/N always has at least
two prime factors: O/N = 4, 6, 8, 9, 10, 12, 14, and so on.

Also the relations between the integer N characterizing the center ZN of each group and the
identifiers of the group series defined in Ref. [14] were found and given in Ref. [10].

Listings of obtained 87,349 non-isomorphic groups that we have studied are available online
at https://github.com/jurciukonis/GAP-group-search.
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