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Scalar FCNC and CP violating mixing matrices from the vacuum M. Nebot

1. Introduction

We report on the study [1] of a possible relation between CP violation in the quark and
lepton sectors, parametrized by the phases δCKM and δPMNS of the CKM and PMNS mixing
matrices. At present, the CP violating nature of CKM has been robustly established, even
allowing for the presence of New Physics contributing to CP violation [2], while sustained
efforts to detect leptonic CP violation in neutrino experiments are in progress [3]. If one
extends the Standard Model (SM) to include non-vanishing neutrino masses and assumes
complex Yukawa couplings as the origin of CP violation, then δCKM and δPMNS are not
related. Although CKM is complex, this does not imply that CP violation is violated
at the Lagrangian level through complex Yukawa couplings. As analysed in [4], one may
have vacuum induced CP violation which generates a complex CKM matrix and agrees
with experiment. We consider here the simplest extension to the leptonic sector, with
Dirac neutrinos, of the previous viable model. It is a generalised Branco-Grimus-Lavoura
(BGL) model [5], in the context of two Higgs doublet models (2HDMs) with a flavoured
Z2 symmetry softly broken by the scalar potential. In this scenario, generating a complex
CKMmatrix and tree level Scalar Flavour Changing Neutral Couplings (SFCNC) are tightly
connected. The same occurs when the model is extended to the leptonic sector: δPMNS 6= 0

requires SFCNC both in the charged lepton and neutrino sectors. This necessity is both an
obstacle and a blessing: an obstacle because strict experimental limits on SFCNC apply,
and a blessing because the models are then falsifiable in the sense that they imply SFCNC
at a level within experimental reach.

2. The model

The Yukawa lagrangian of the model reads1

LY = −
2∑
i=1

[
Q0
L Γ

(d)
i Φi d

0
R +Q0

L Γ
(u)
i Φ̃i u

0
R + L0

L Γ
(e)
i Φi e

0
R + L0

L Γ
(ν)
i Φ̃i ν

0
R

]
+ h.c. . (1)

Concerning the Z2 symmetry, the fields Φ2, Q
0
L3

and L0
L3

are odd while the rest of the
fields are even. This symmetry gives rise to “generalized BGL” (gBGL) textures [5] for the
Yukawa coupling matrices Γ

(f)
i (with × denoting generic entries):

Γ
(d)
1 ∼ Γ

(u)
1 ∼ Γ

(e)
1 ∼ Γ

(ν)
1 ∼

× × ×
× × ×
0 0 0

 , Γ
(d)
2 ∼ Γ

(u)
2 ∼ Γ

(e)
2 ∼ Γ

(ν)
2 ∼

0 0 0

0 0 0

× × ×

 ,

(2)
Note that Γ

(f)
2 = P3Γ

(f)
2 and Γ

(f)
1 = (1− P3) Γ

(f)
1 where P3 is the projector

P3 =

0 0 0

0 0 0

0 0 1

 . (3)

1We follow standard notation for fermionic left-handed doublets Q0
L, L0

L, right-handed singlets d0R, u0
R,

`0R, ν0R, scalar doublets Φj with Φ̃j = iσ2Φ∗
j , and Yukawa matrices Γ

(f)
j .
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Electroweak symmetry is spontaneously broken by the vacuum 〈Φj〉 =
vje

iθj
√

2
( 0

1 ), vj , θj ∈ R,
vj > 0. As usual, v2 ≡ v2

1 + v2
2 and β such that v1 = vcβ , v2 = vsβ (here and in

the following, cβ = cosβ, sβ = sinβ, tβ = tanβ, t−1
β = (tβ)−1) are introduced, with

v2 = 1√
2GF

' (246 GeV)2. In the ”Higgs basis”
(
H1

H2

)
=
(
cβ sβ
sβ −cβ

)(
e−iθ1Φ1

e−iθ2Φ2

)
one has

〈H1〉 = v√
2

( 0
1 ) and 〈H2〉 = ( 0

0 ). The Yukawa couplings in eq. (1) are rewritten as

−LY = Q0
L

√
2

v

[
M0
dH1 +N0

dH2

]
d0
R +Q0

L

√
2

v

[
M0
uH̃1 +N0

uH̃2

]
u0
R + (4)

L0
L

√
2

v

[
M0
`H1 +N0

`H2

]
e0
R + L0

L

√
2

v

[
M0
ν H̃1 +N0

ν H̃2

]
ν0
R + h.c.. (5)

M0
d =

eiθ1v√
2

(
Γ

(d)
1 cβ + Γ

(d)
2 sβe

iθ
)
, M0

u =
e−iθ1v√

2

(
Γ

(u)
1 cβ + Γ

(u)
2 sβe

−iθ
)
, (6)

are the quark mass matrices, with θ = θ2 − θ1. The N0
f matrices are

N0
d =

eiθ1v√
2

(
Γ

(d)
1 sβ − Γ

(d)
2 cβe

iθ
)
, N0

u =
e−iθ1v√

2

(
Γ

(u)
1 sβ − Γ

(u)
2 cβe

−iθ
)
. (7)

(The global phase θ1 in the previous expressions can be rephased away and thus from now
on we set, without loss of generality, θ1 = 0.) For leptons, u 7→ ν and d 7→ ` in eqs. (6),(7).
A very relevant property is the following:

N0
f =

[
tβ1−

(
tβ + t−1

β

)
P3

]
M0
f . (8)

In general, it will not be possible to bi-diagonalize simultaneously both M0
f and N0

f : the
matrices N0

f control the scalar mediated flavour changing neutral couplings.
For details concerning the scalar sector of this model, we refer to [4]. Let us just mention
that in order to have CP violation arising from the vacuum one needs soft breaking of the
Z2 symmetry, and that the lightest scalar, h, is assumed to be the SM-like Higgs with mass
mh = 125 GeV which, in the alignment limit, has SM-like couplings. In terms of the R real
orthogonal 3× 3 matrix that controls mixing of the physical neutral scalars, the alignment
limit corresponds to R11 → 1.

3. CP violating CKM and PMNS matrices and SFCNC

Invariance under CP of the entire Lagrangian implies that Γ
(f)
i = Γ

(f)∗
i . As shown in

[4], the mass matrices can be factorized as

M0
f =

1 0 0

0 1 0

0 0 eiσf

 M̂0
f = ϕ3(σf ) M̂0

f , (9)

where M̂0
f are arbitrary real (mass) matrices and σd = σe = θ, σu = σν = −θ. The

peculiarity of eq. (9) is that the usual bi-diagonalization involves 3 × 3 real orthogonal

3
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matrices in addition to ϕ3(±θ), which is the unique source of irremovable complexity. It
leads to the following form of the mixing matrices, V = U †uLUdL (CKM) and U = U †eLUνL
(PMNS):

V = OTuL ϕ3(2θ)OdL , U = OTeL ϕ3(−2θ)OνL . (10)

There is enough freedom in eq. (10) to obtain arbitrary V and U , except for the fact that
any CP violating observable in the quark sector and any CP violating observable in the
lepton sector, must vanish with θ → 0. Notice that eq. (10) does not imply in general that
δCKM = −δPMNS. In this class of 2HDMs with spontaneous CP violation, the complexity of
the mixing matrices and the presence of SFCNC are closely connected: as discussed in [4]
for the quark sector, if one imposes the absence of SFCNC to comply in a simple manner
with experimental constraints, then the CKM matrix is real, contrary to evidence. Let us
recall briefly how this connection works. SFCNC are encoded in the matrices N0

f in eq. (7);
in the fermion mass bases, N0

f → Nf , and eq. (8) gives

Nf = U †fL N
0
f OfR =

[
tβ1−

(
tβ + t−1

β

)
P f3

]
diag(mf1 ,mf2 ,mf3), (11)

where P f3 are the projection operators

P f3 ≡ U
†
fL

P3 UfL = OTfL P3OfL . (12)

SFCNC are thus controlled by the real projectors P f3 , in particular the off-diagonal entries
of P f3 , given by the OfL matrices, which also enter the CKM and PMNS mixing matrices.
It is also important to notice that SFCNC in the up(neutrino) and down(charged lepton)
sectors are not independent since, by construction,

P u3 = V P d3 V
†, P e3 = U P ν3 U

†. (13)

For example, if SFCNC in the up quark sector are fixed, SFCNC in the down quark sector
are completely determined (this is relevant for the count and the election of the independent
parameters). The situation in the lepton sector is analogous. The elements of P f3 are(

P f3

)
ij

=
(
OTfL P3OfL

)
ij

= (OfL)3i (OfL)3j ≡ r̂[f ]ir̂[f ]j , (14)

where r̂[f ]i ≡ (OfL)3i are the components of real, unit vectors in three dimensions r̂[f ], the
third rows of the orthogonal matrices OfL . Following eq. (13) one has r̂[u]jVjk = e2iθr̂[d]k

and r̂[e]jUjk = e−2iθr̂[ν]k. To avoid SFCNC in P f3 , one needs one component r̂[f ]k = 1 and

the others r̂[f ]j = 0, j 6= k. Then
(
P f3

)
ij

= δikδjk ≡ (Pk)ij for a fixed k, i.e. P f3 = Pk for

that given f . This has a straightforward consequence for the mixing matrix. Consider, for
example, no SFCNC in the neutrino sector: P ν3 = Pk; then

U = OTeLϕ3(−2θ)OνL = OTeLOνL

[
1 + (e−2iθ − 1)OTνLP3OνL

]
= OTeLOνL

[
1 + (e−2iθ − 1)Pk

]
.

(15)
The PMNS matrix U is a real rotation times a diagonal matrix of phases with e−2iθ in
position k, the rest of them 1, and there is no CP violation. The same reasoning applies
to all fermion sectors: if one forces the absence of SFCNC, one obtains a CP conserving
mixing matrix.

4
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4. The general relation between δCKM and δPMNS

From the discussion in the previous sections, it is important to recall that (i) the only
possible source of CP violation in the CKM and in the PMNS mixing matrices is θ 6= 0

(from the vacuum), and (ii) if SFCNC are removed in one fermion sector, even if θ 6= 0, CP
violation disappears from the corresponding mixing matrix.
The CKM and PMNS matrices can be parametrized (up to rephasings of fields) with 4
quantities each: {θq12, θ

q
13, θ

q
23, δq} and {θ`12, θ

`
13, θ

`
23, δ`} in the usual PDG parametrizations

[7]. For CKM, experimental information allows the extraction of θq12, θ
q
13, θ

q
23, and of the

CP violating phase δq, which is non-zero. In the lepton sector, experimental information
allows to extract θ`12, θ`13, θ`23, but, although some sensitivity to δ` is emerging [8], it remains
“the last frontier”. Although eq. (10) is different from the PDG parametrization, one can
impose the experimental information encoded in {θq12, θ

q
13, θ

q
23, δq} and {θ`12, θ

`
13, θ

`
23, δ`} in an

invariant manner. In particular, δCKM, the CP violating phase in V , is the model prediction
for δq and similarly δPMNS, the CP violating phase in U , is the model prediction for δ`. As
already mencioned, if θ = 0, then δCKM = δPMNS = 0, but θ 6= 0 ; δCKM 6= 0, δPMNS 6= 0.
At this point, we need to discuss the independent parameters in the model. We start with
the quark sector, and stress that an important goal is to analyse how information on CP
violation in the quark sector (requiring δq = δCKM), can translate into some prediction on
δPMNS. The CKM matrix in eq. (10) involves 7 real parameters: 3 in OuL , 3 in OdL , and θ.
This number can be reduced to 6: each rotation is written as a product of one parameter
rotations OfL = R1(pf1)R2(pf2)R3(pf3) where each Rj(x) can be one of the following

R12(x) =

 cx sx 0

−sx cx 0

0 0 1

 , R13(x) =

 cx 0 sx
0 1 0

−sx 0 cx

 , R23(x) =

1 0 0

0 cx sx
0 −sx cx

 ,

(16)
with R1(p) 6= R2(p), R2(p) 6= R3(p), and cx = cosx, sc = sinx. If one chooses a
parametrization with R1(pf1) = R12(pf1) in both OuL and OdL , then only pu1 − pd1 enters
V and we can set pd1 = 0 without loss of generality. The remaining 6 independent pa-
rameters match 4 independent quantities in V (equivalent to {θq12, θ

q
13, θ

q
23, δq}), and the

2 independent parameters which control SFCNC, e.g. r̂[u]1, r̂[u]2. That is, the experi-
mental information constrains {θq12, θ

q
13, θ

q
23, δq, r̂[u]1, r̂[u]2}, and could fix the model param-

eters {pu1 , pu2 , pu3 , pd2, pd3, θ}. Notice that, ideally, one can fix θ since CP violation is well
established in the quark sector. Similarly, in the lepton sector one would have param-
eters {pe1, pe2, pe3, pν2 , pν3 , θ}. The experimental information on PMNS strongly constrains
{θ`12, θ

`
13, θ

`
23}; additional information from SFCNC sensitive processes like h→ `i ¯̀j , i 6= j,

is needed in order to constrain more parameters. The crucial point is that, a priori, θ can
be fixed in the quark sector and thus, with one less experimental input in the leptonic
sector, one could predict the value of the CP violating Dirac phase δ` in PMNS prior to its
measurement. In this sense we can ideally relate the PMNS phase to the CKM phase in
this class of models with spontaneous CP violation.

5
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5. Simplified models incorporating MFV and their connections to
SFCNC

A detailed analysis of the quark sector was presented in [4], including an extensive list
of constraints related to flavour transitions, Higgs signals, etc. Surprisingly, they allowed
significant freedom in the values of θ and SFCNC. If one extends the analysis to include
the lepton sector straightforwardly, the connection between CP violation in CKM and
PMNS would be blurred by that (current) freedom. It is thus interesting to make further
simplifying assumptions, guided and compatible with experimental data.
Let us start with the quark sector. If one eliminates SFCNC either in the up or in the down
sector, CP violation is removed from the CKM matrix. A weaker simplification is to impose
that some SFCNC are absent: we consider models where one component vanishes, r̂[f ]i = 0

for a given i = 1, 2 or 3, which leaves only one SFCNC transition j � k, i, j, k all different.
This can be imposed in both the up and down sectors. Together with the 4 constraints to
reproduce a realistic CKM matrix, one has now 6 constraints for 6 parameters. These two
SFCNC requirements translate into 4 parameters in the CKM matrix in eq. (10) and, in
that case, the models incorporate the Minimal Flavor Violation ansatz. Following the same
simplifying assumption in the lepton sector there are, in principle, 81 models to consider.
However, since the most challenging SFCNC in the lepton sector arises from µ→ e+ γ, we
directly restrict ourselves to models where r̂[e]1r̂[e]2 = 0. From this set of models, there is
only one case which appears to be viable. We briefly present this model in order to illustrate
the central idea of the δCKM–δPMNS connection and refer to [1] for further details. In this
model,

V = R23(pu2)TR12(pu1)Tϕ3(2θ)R13(pd2) , (17)

and r̂[u] = (0,− sin pu2 , cos pu2), r̂[d] = (− sin pd2, 0, cos pd2). From a fit to the CKM matrix one
obtains

2θ = 1.077+0.039
−0.031, pu1 = 0.22694± 0.00052,

pu2 = (4.235± 0.059)× 10−2, pd2 = (3.774± 0.098)× 10−3 .
(18)

Concerning the lepton sector, the PMNS matrix is2

U = R13(pe2)TR12(pe1)Tϕ3(−2θ)P23R12(pν2) . (19)

We can now fit the PMNS data without the information on δ`, since we are interested in
its prediction, and obtain two solutions:

Solution 1 : pe1 = 0.7496, pe2 = 1.3541, pν2 = 0.8974 , (20)

Solution 2 : pe1 = 2.3889, pe2 = 1.3541, pν2 = 1.0542 . (21)

SFCNC are controlled (in both cases) by r̂[e] = (−0.9765, 0, 0.2156). The solutions differ
in the phase δPMNS and the (unique) CP violating imaginary part of an invariant quartet

2The permutation P23 =
(

1 0 0
0 0 1
0 1 0

)
is just the product of a 23 rotation and a π rephasing and thus does

not deviate from the general parametrization introduced in precedence.

6
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JPMNS = Im
(
Ue1Uµ2U

∗
e2U

∗
µ1

)
:

Case JPMNS δPMNS ∆χ2
NO(δPMNS) ∆χ2

IO(δPMNS)

Solution 1 −0.0316 1.629π (293◦) 5 0

Solution 2 0.0282 0.679π (126◦) 13 > 20

(22)

∆χ2
NO(δPMNS) and ∆χ2

IO(δPMNS) are the values that correspond to δPMNS attending to the
∆χ2 profiles for δ` obtained for normal and inverted neutrino mass orderings in [8].
We have thus reached our goal: using the information on CP violation in the quark sector,
we have been able to predict the phase in PMNS using the connection that SCPV provides
in this model. Notice, in particular, that Solution 1 has δPMNS = 1.629π, which is in good
agreement with the most likely values in PMNS analyses [8].
As a last item in our discussion, we now comment on the SFCNC. In the down quark sector,
b� d SFCNC have a negligible contribution to B0

d–B̄
0
d oscillations, while h→ b̄d, bd̄ remain

beyond the LHC capabilities. In the up quark sector, however, we have

1.8× 10−4 ≤ Br(t→ ch) ≤ 4.3× 10−4 , (23)

which is quite restricted and under pressure from current LHC bounds [9]. In the lepton
sector we have

2.0× 10−3 ≤ Br(h→ eτ̄ + ēτ)
Γ(h)

Γ(hSM)
≤ 5.0× 10−3, (24)

which is also under strong pressure from improving LHC bounds [10].

Conclusions

We have discussed a class of models where a connection between the CP violations
in the quark and lepton mixing matrices due to a common origin, a complex vacuum
phase, is present. As analysed, one has to have SFCNC in all fermion sectors in order
to generate complex CKM and PMNS matrices, but these are introduced in a controlled
manner. To illustrate this potential connection, we have considered a subclass of models
which incorporate additional simplifications, maintaining essentially the minimal amount
of SFCNC needed for a spontaneous origin of CP violation. Out of 34 = 81 possible models
of this type, only one model is viable and it predicts δPMNS in agreement with the trend in
recent analyses. SFCNC implications of this model have been briefly addressed.
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