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1. Introduction

The decays of 𝐵mesons into charmless non-leptonic final states are useful for multiple reasons,
for instance they allow to test the CKM mechanism and to probe for CP violation.

Different first principle theoretical techniques have been introduced to address non-leptonic
𝐵 meson decays. This includes for instance PQCD [1], QCD-Factorization (QCDF) [2–4] and
methods based on light flavour symmetries [5]. Unfortunately, in general, these computations
entail contributions with big uncertainties or which cannot be determined by applying our current
theoretical tools. QCDF is a powerful formalism and allows to disentangle short and long distance
contributions in the heavy quark limit. Currently at the leading power inΛQCD/𝑚𝑏, QCDF allows to
perform calculations up to NNLO in the 𝛼𝑠 expansion [6–12]. However, beyond the leading terms
in ΛQCD/𝑚𝑏 the uncertainties are large and spoil the precision achieved at the leading order. This
includes for instance the so-called annihilation topologies which are non-factorizable and which
lead to end-point singular integrals of the Light-Cone-Distribution Amplitudes (LCDA) of the final
state mesons.

Here we present an approach to determine the potential size of the non-factorizable contribu-
tions appearing in QCDF for the processes 𝐵𝑞 → 𝑃𝑃, where 𝐵𝑞 is either a 𝐵−, 𝐵̄0

𝑑
or a 𝐵̄0

𝑠 meson
and 𝑃 represents a pseudoscalar light meson. Our approach is phenomenological and makes use
of experimental data. We take advantage of the relationship between different parameterizations of
the decay amplitudes as well as of the 𝑆𝑈 (3)-flavour symmetry [13]. In the subsequent sections
we will introduce different options for the parameterizations of the amplitudes of the relevant decay
processes: the Topological, the 𝑆𝑈 (3)-Irreducible and the QCDF decompositions. In addition we
will also provide the set of equations that allow to translate one description into another. Then,
we will perform a 𝜒2-fit to the 𝑆𝑈 (3)-Irreducible amplitudes and we will map these results into
the QCDF amplitudes. This will allow us to finally determine the potential size of the annihilation
contributions as dictated by the state of the art experimental data.

2. Topological and 𝑆𝑈 (3)-Irreducible decomposition of non-leptonic decay
amplitudes for 𝐵𝑞 → 𝑃𝑃 processes

Based on the CKM structure, we consider the following decomposition of the physical ampli-
tudes for 𝐵𝑞 → 𝑃𝑃 processes

A = 𝑖
𝐺𝐹√

2

[
T + P

]
. (1)

where T and P are characterized by the CKM factors 𝜆 (𝑞)𝑢 and 𝜆 (𝑞)𝑡 respectively, for

𝜆
(𝑞)
𝑝 = 𝑉𝑝𝑏𝑉

∗
𝑝𝑞 (2)

with 𝑞 = 𝑑, 𝑠.
The contributionsT andP can be parameterized in different ways. In the subsequent discussion

we will focus on the sector T , but an analogous treatment can be given to the P sector. Thus, the
Topological decomposition of T is [14]
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Figure 1: Diagrammatic representation of the tree-like topological amplitudes in Eq. (3).

T 𝑇𝐷𝐴 = 𝑇 𝐵𝑖 (𝑀)𝑖𝑗 𝐻̄
𝑗𝑙

𝑘
(𝑀)𝑘𝑙 + 𝐶 𝐵𝑖 (𝑀)𝑖𝑗 𝐻̄

𝑙 𝑗

𝑘
(𝑀)𝑘𝑙 + 𝐴 𝐵𝑖𝐻̄

𝑖𝑙
𝑗 (𝑀) 𝑗

𝑘
(𝑀)𝑘𝑙

+𝐸 𝐵𝑖𝐻̄𝑙𝑖𝑗 (𝑀) 𝑗
𝑘
(𝑀)𝑘𝑙 + 𝑇𝐸𝑆𝐵𝑖𝐻̄

𝑖 𝑗

𝑙
(𝑀)𝑙𝑗 (𝑀)𝑘𝑘 + 𝑇𝐴𝑆𝐵𝑖𝐻̄

𝑗𝑖

𝑙
(𝑀)𝑙𝑗 (𝑀)𝑘𝑘

+𝑇𝑆𝐵𝑖 (𝑀)𝑖𝑗 𝐻̄
𝑙 𝑗

𝑙
(𝑀)𝑘𝑘 + 𝑇𝑃𝐴𝐵𝑖𝐻̄

𝑙𝑖
𝑙 (𝑀) 𝑗

𝑘
(𝑀)𝑘𝑗 + 𝑇𝑃𝐵𝑖 (𝑀)𝑖𝑗 (𝑀) 𝑗

𝑘
𝐻̄𝑙𝑘𝑙

+𝑇𝑆𝑆𝐵𝑖𝐻̄𝑙𝑖𝑙 (𝑀) 𝑗
𝑗
(𝑀)𝑘𝑘 . (3)

Where the initial states are organized in a 𝑆𝑈 (3) triplet 𝐵𝑖 = (𝐵−, 𝐵̄0
𝑑
, 𝐵̄0

𝑠). Analogously, the
final states are included inside the light-meson matrix (𝑀)𝑖

𝑗
which is the result of a 𝑆𝑈 (3) octet

plus a singlet and has the structure

𝑀 =

©­­­«
𝜋0
√

2
+ 𝜂𝑞√

2
+ 𝜂′𝑞√

2
𝜋− 𝐾−

𝜋+ − 𝜋0
√

2
+ 𝜂𝑞√

2
+ 𝜂′𝑞√

2
𝐾̄0

𝐾+ 𝐾0 𝜂𝑠 + 𝜂′𝑠

ª®®®¬ . (4)

The non-zero components of the flavour objects 𝐻̄ are

𝐻̄12
1 = 𝜆

(𝑑)
𝑢 , 𝐻̄13

1 = 𝜆
(𝑠)
𝑢 ,

𝐻̄2 = 𝜆
(𝑑)
𝑢 , 𝐻̄3 = 𝜆

(𝑠)
𝑢 . (5)

In the Topological decomposition each term in Eq. (3) is associated with a topology as indicated
in Fig. 1.

Alternatively, we can express the tensor 𝐻̄ 𝑗𝑖

𝑘
in terms of irreducible representations of 𝑆𝑈 (3)

as follows

3
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𝐻̄
𝑖 𝑗

𝑘
=

1
8
(𝐻̄15)𝑖 𝑗𝑘 + 1

4
(𝐻̄6)𝑖 𝑗𝑘 − 1

8
(𝐻̄3)𝑖𝛿 𝑗𝑘 +

3
8
(𝐻̄3′) 𝑗𝛿 𝑗𝑘 . (6)

We can then re-write Eq. (3) as [14]

T 𝐼𝑅𝐴 = 𝐴𝑇3 𝐵𝑖 (𝐻̄3)𝑖 (𝑀) 𝑗
𝑘
(𝑀)𝑘𝑗 + 𝐶𝑇3 𝐵𝑖 (𝑀)𝑖𝑗 (𝑀) 𝑗

𝑘
(𝐻̄3)𝑘 + 𝐵𝑇3 𝐵𝑖 (𝐻̄3)𝑖 (𝑀)𝑘𝑘 (𝑀) 𝑗

𝑗

+𝐷𝑇3 𝐵𝑖 (𝑀)𝑖𝑗 (𝐻̄3) 𝑗 (𝑀)𝑘𝑘 + 𝐴
𝑇
6 𝐵𝑖 (𝐻̄6)𝑖 𝑗𝑘 (𝑀)𝑙𝑗 (𝑀)𝑘𝑙 + 𝐶

𝑇
6 𝐵𝑖 (𝑀)𝑖𝑗 (𝐻̄6) 𝑗𝑙𝑘 (𝑀)𝑘𝑙

+𝐵𝑇6 𝐵𝑖 (𝐻̄6)𝑖 𝑗𝑘 (𝑀)𝑘𝑗 (𝑀)𝑙𝑙 + 𝐴
𝑇
15𝐵𝑖 (𝐻̄15)𝑖 𝑗𝑘 (𝑀)𝑙𝑗 (𝑀)𝑘𝑙 + 𝐶

𝑇
15𝐵𝑖 (𝑀)𝑖𝑗 (𝐻̄15) 𝑗𝑘𝑙 (𝑀)𝑙𝑘

+𝐵𝑇15𝐵𝑖 (𝐻̄15)𝑖 𝑗𝑘 (𝑀)𝑘𝑗 (𝑀)𝑙𝑙 . (7)

with

(𝐻̄3)2 = 𝜆
(𝑑)
𝑢 , (𝐻̄6)12

1 = −(𝐻̄6)21
1 = (𝐻̄6)23

3 = −(𝐻̄6)32
3 = 𝜆

(𝑑)
𝑢 ,

2(𝐻̄15)12
1 = 2(𝐻̄15)21

1 = −3(𝐻̄15)22
2 = −6(𝐻̄15)23

3 = −6(𝐻̄15)32
3 = 6𝜆 (𝑑)𝑢 , (8)

and

(𝐻̄3)3 = 𝜆
(𝑠)
𝑢 , (𝐻̄6)13

1 = −(𝐻̄6)31
1 = (𝐻̄6)32

3 = −(𝐻̄6)23
3 = 𝜆

(𝑠)
𝑢 ,

2(𝐻̄15)13
1 = 2(𝐻̄15)31

1 = −3(𝐻̄15)33
3 = −6(𝐻̄15)32

3 = −6(𝐻̄15)23
3 = 6𝜆 (𝑠)𝑢 . (9)

Once the physical amplitudes are computed, the component 𝐴𝑇6 appears always in the combina-
tions 𝐶𝑇6 − 𝐴𝑇6 and 𝐵𝑇6 + 𝐴𝑇6 and consequently it can always be absorbed according to the following
rules,

𝐶𝑇6 − 𝐴𝑇6 → 𝐶𝑇6 , 𝐵𝑇6 + 𝐴𝑇6 → 𝐵𝑇6 , (10)

and similarly for the corresponding penguin amplitudes.
The Topological and the 𝑆𝑈 (3)-Irreducible parameterizations are related each other according

to the following equations

𝐴𝑇3 = − 𝐴
8
+ 3𝐸

8
+ 𝑇𝑃𝐴, 𝐵𝑇3 = 𝑇𝑆𝑆 +

3𝑇𝐴𝑆 − 𝑇𝐸𝑆
8

,

𝐶𝑇3 =
1
8
(3𝐴 − 𝐶 − 𝐸 + 3𝑇) + 𝑇𝑃, 𝐷𝑇3 = 𝑇𝑆 +

1
8
(3𝐶 − 𝑇𝐴𝑆 + 3𝑇𝐸𝑆 − 𝑇),

𝐴𝑇6 =
1
4
(𝐴 − 𝐸), 𝐵𝑇6 =

1
4
(𝑇𝐸𝑆 − 𝑇𝐴𝑆),

𝐶𝑇6 =
1
4
(−𝐶 + 𝑇), 𝐴𝑇15 =

𝐴 + 𝐸
8

,

𝐵𝑇15 =
𝑇𝐸𝑆 + 𝑇𝐴𝑆

8
, 𝐶𝑇15 =

𝐶 + 𝑇
8

. (11)

3. Phenomenological determination of the amplitudes

To assess the set of values for the 𝑆𝑈 (3)-Irreducible amplitudes compatible with experimental
data a 𝜒2-fit is performed. Our analysis includes branching fractions and CP asymmetries for non
leptonic 𝐵 meson decays defined respectively as

4
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B(𝐵̄ → 𝑓 ) = 1
2
𝜏𝐵

[
Γ(𝐵̄ → 𝑓 ) + Γ(𝐵 → 𝑓 )

]
and ACP(𝐵̄ → 𝑓 ) = Γ(𝐵̄ → 𝑓 ) − Γ(𝐵 → 𝑓 )

Γ(𝐵̄ → 𝑓 ) + Γ(𝐵 → 𝑓 )
,

(12)

where the decay width is then evaluated as

Γ(𝐵̄ → 𝑓 ) =
𝑆

16𝜋𝑀𝐵

|A𝐵→ 𝑓 |2. (13)

Our best fit point for the 𝑆𝑈 (3)-Irreducible amplitudes in T 𝐼𝑅𝐴 is [13]

|𝐴𝑇3 | = 0.029, 𝛿𝐴𝑇3
= −3.083, |𝐶𝑇3 | = 0.258, 𝛿𝐶𝑇

3
= −0.105,

|𝐶𝑇6 | = 0.235, 𝛿𝐶𝑇
6
= −0.079, |𝐴𝑇15 | = 0.029, 𝛿𝐴𝑇15

= −3.083,

|𝐶𝑇15 | = 0.151, 𝛿𝐶𝑇
15
= 0.061, |𝐵𝑇3 | = 0.034, 𝛿𝐵𝑇

3
= 3.087,

|𝐵𝑇6 | = 0.033, 𝛿𝐵𝑇
6
= −0.286, |𝐵𝑇15 | = 0.008, 𝛿𝐵𝑇

15
= −1.892,

|𝐷𝑇3 | = 0.055, 𝛿𝐷𝑇
3
= 2.942, (14)

and for the corresponding amplitudes in P 𝐼𝑅𝐴 we get

|𝐴𝑃3 | = 0.014, 𝛿𝐴𝑃
3
= −1.328, |𝐶𝑃6 | = 0.145, 𝛿𝐶𝑃

6
= −2.881,

|𝐴𝑃15 | = 0.003, 𝛿𝐴𝑃
15
= 2.234, |𝐶𝑃15 | = 0.003, 𝛿𝐶𝑃

15
= −0.608,

|𝐵𝑃3 | = 0.043, 𝛿𝐵𝑃
3
= 2.367, |𝐵𝑃6 | = 0.099, 𝛿𝐵𝑃

6
= 0.353,

|𝐵𝑃15 | = 0.031, 𝛿𝐵𝑃
15
= −0.690, |𝐷𝑃3 | = 0.030, 𝛿𝐷𝑃

3
= 0.477,

|𝐶𝑃3 | = 0.008, 𝜃𝐹𝐾𝑆 = 0.628. (15)

where the modulus are given in units of GeV3. The phase 𝜃𝐹𝐾𝑆 reffers to the 𝜂 meson mixing
angle in the Feldmann–Kroll–Stech scheme [15]. Our minimum point leads to the following 𝜒2 per
degree of freedom value

𝜒2/𝑑.𝑜. 𝑓 . = 0.851. (16)

For the determination of the confidence intervals of our 𝑆𝑈 (3) parameters, we perform a
likelihood ratio test applying Wilk’s theorem. We find convenient to study the allowed regions in
the space expanded by the real and the imaginary components of each one of the 𝑆𝑈 (3)-Irreducible
amplitudes at the 68% confidence level. Examples of the regions obtained are shown in Fig. 2,
moreover in Table 1 we present our determinations for the branching fractions for some non leptonic
𝐵 meson decay channels into pairs of pseudoscalar particles.

4. Amplitudes in QCD Factorization

The calculation of the amplitude for 𝐵 → 𝑃𝑃 in QCDF can be obtained by applying the general
formula [17]

5
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Figure 2: 𝑆𝑈 (3) confidence regions.

Channel

Branching ratio

Channel

Branching ratio
in units of 10−6 in units of 10−6

Experimental [16] Theoretical Experimental [16] Theoretical

𝐵− → 𝜋0𝜋− 5.5 ± 0.4 6.04+2.42
−2.51 𝐵− → 𝜂𝜋− 4.02 ± 0.27 3.80+1.25

−1.55

𝐵− → 𝐾0𝐾− 1.31 ± 0.17 1.36+0.17
−0.16 𝐵− → 𝜂′𝜋− 2.7 ± 0.9 3.55+4.49

−1.67

𝐵̄0 → 𝜋+𝜋− 5.12 ± 0.19 6.31+0.61
−0.50 𝐵̄0 → 𝜂𝜋0 0.41 ± 0.17 0.41+8.90

−4.08

𝐵̄0 → 𝜋0𝜋0 1.59 ± 0.26 1.01+1.30
−0.51 𝐵̄0 → 𝜂′𝜋0 1.2 ± 0.6 1.20+3.62

−1.19

𝐵̄0 → 𝐾+𝐾− 0.078 ± 0.015 0.13+0.08
−0.07 𝐵̄𝑠 → 𝜂𝐾0 Not available 0.13+0.11

−0.08

𝐵̄0 → 𝐾0𝐾̄0 1.21 ± 0.16 1.13+0.83
−0.91 𝐵̄𝑠 → 𝜂′𝐾0 Not available 6.65+1.48

−1.65

𝐵̄𝑠 → 𝜋−𝐾+ 5.8 ± 0.7 7.75+0.63
−0.09 𝐵− → 𝜂𝐾− 2.4 ± 0.4 2.34+1.39

−1.67

𝐵− → 𝜋0𝐾− 12.9 ± 0.5 12.78+1.75
−1.94 𝐵− → 𝜂′𝐾− 70.4 ± 2.5 70.82+11.16

−11.53

𝐵− → 𝜋−𝐾̄0 23.7 ± 0.8 23.85+2.23
−2.31 𝐵̄0 → 𝜂𝐾0 1.23 ± 0.27 1.38+1.15

−0.36

𝐵̄0 → 𝜋+𝐾− 19.6 ± 0.5 19.47+1.72
−2.24 𝐵̄0 → 𝜂′𝐾0 6.6 ± 0.4 6.65+1.48

−1.65

Table 1: Experimental input and fit results for CP-averaged branching fractions.

AQCDF = 𝑖
𝐺𝐹√

2

∑︁
𝑝=𝑢,𝑐

𝐴𝑀1𝑀2

{
𝐵𝑀1

(
𝛼1𝛿𝑝𝑢𝑈̂ + 𝛼𝑝4 𝐼 + 𝛼

𝑝

4,𝐸𝑊𝑄̂
)
𝑀2 Λ𝑝

+ 𝐵𝑀1Λ𝑝 · Tr
[(
𝛼2𝛿𝑝𝑢𝑈̂ + 𝛼𝑝3 𝐼 + 𝛼

𝑝

3,𝐸𝑊 𝑄̂
)
𝑀2

]
+ 𝐵

(
𝛽2𝛿𝑝𝑢𝑈̂ + 𝛽𝑝3 𝐼 + 𝛽

𝑝

3,𝐸𝑊 𝑄̂
)
𝑀1𝑀2Λ𝑝

+ 𝐵Λ𝑝 · Tr
[(
𝛽1𝛿𝑝𝑢𝑈̂ + 𝛽𝑝4 𝐼 + 𝑏

𝑝

4,𝐸𝑊 𝑄̂
)
𝑀1𝑀2

]
+ 𝐵

(
𝛽𝑆2𝛿𝑝𝑢𝑈̂ + 𝛽𝑝

𝑆3𝐼 + 𝛽
𝑝

𝑆3,𝐸𝑊 𝑄̂
)
𝑀1Λ𝑝 · Tr𝑀2

+ 𝐵Λ𝑝 · Tr
[(
𝛽𝑆1𝛿𝑝𝑢𝑈̂ + 𝛽𝑝

𝑆4𝐼 + 𝑏
𝑝

𝑆4,𝐸𝑊𝑄̂
)
𝑀1

]
· Tr𝑀2

}
, (17)
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where

Λ𝑝 =
©­­«

0
𝜆
(𝑑)
𝑝

𝜆
(𝑠)
𝑝

ª®®¬ , 𝑈̂ =
©­­«

1 0 0
0 0 0
0 0 0

ª®®¬ ,
𝑄̂ =

3
2
𝑄 =

©­­«
1 0 0
0 −1

2 0
0 0 − 1

2

ª®®¬ , 𝐼 =
©­­«

1 0 0
0 1 0
0 0 1

ª®®¬ , (18)

and the 𝑆𝑈 (3) triplet 𝐵 and 𝑆𝑈 (3) octet 𝑀 coincide with the ones introduced in section 2.
The parameterization of the physical amplitude in Eq. (17) can be related to the Topological

decomposition by using

𝑄̂ =
3
2
𝑈̂ − 1

2
𝐼 and Λ𝑡 = −Λ𝑢 − Λ𝑐 . (19)

Then, by expressing the matrices in Eqs. (18) in terms of components we find

𝑈𝑖𝑘 (Λ𝑢)
𝑗 = 𝐻̄

𝑖 𝑗

𝑘
. (20)

For completeness we also write the corresponding transformation for the flavour structures 𝐻̃𝑖 𝑗
𝑘

and 𝐻̃𝑖 appearing in the P sector

𝑈𝑖𝑘 (Λ𝑡 )
𝑗 = 𝐻̃

𝑖 𝑗

𝑘
, (Λ𝑡 )𝑖 = 𝐻̃𝑖 . (21)

The set of Eqs. (20) and (21) are the basic pieces required to transform the Topological description
into the QCDF one. The general solution for the transformation equations can be found in [13].
However, these expressions can be simplified by taking into account the following NLO results [17]

𝛼𝑢3 = 𝛼𝑐3 = 𝛼3, 𝛼𝑢3,𝐸𝑊 = 𝛼𝑐3,𝐸𝑊 = 𝛼3,𝐸𝑊 , 𝛽𝑢𝑖 = 𝛽
𝑐
𝑖 = 𝛽𝑖 , 𝑏𝑢𝑖 = 𝑏

𝑐
𝑖 = 𝑏𝑖 . (22)

In addition, considering that at NLO the amplitudes 𝛼𝑝4,𝐸𝑊 are at the permille level, the
differences |𝛼𝑐4,𝐸𝑊 −𝛼𝑢4,𝐸𝑊 | can be at most O(10−3). Analogously for 𝛼𝑝4 the magnitudes are about
10%, and the differences |𝛼𝑐4 − 𝛼𝑢4 | are about 2%. Accounting for all these approximations we can
obtain the following set of equations relating the Topological and the QCDF parameterizations

𝑇 = 𝐴𝑀1𝑀2𝛼1, 𝐶 = 𝐴𝑀1𝑀2𝛼2, 𝐸 = 𝐴𝑀1𝑀2𝛽1,

𝐴 = 𝐴𝑀1𝑀2𝛽2, 𝑇𝐴𝑆 = 𝐴𝑀1𝑀2𝛽𝑆1, 𝑇𝐸𝑆 = 𝐴𝑀1𝑀2𝛽𝑆2,

𝑆 = −𝐴𝑀1𝑀2

[
𝛼3 + 𝛽𝑆3 −

𝛼3,𝐸𝑊

2
−
𝛽𝑆3,𝐸𝑊

2

]
,

𝑃 = −𝐴𝑀1𝑀2

[
𝛼𝑐4 + 𝛽3 −

𝛼𝑐4,𝐸𝑊

2
−
𝛽3,𝐸𝑊

2

]
,
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𝑃𝐴 = −𝐴𝑀1𝑀2 (𝛽4 −
𝑏4,𝐸𝑊

2
), 𝑃𝑆𝑆 = −𝐴𝑀1𝑀2 (𝛽𝑆4 −

𝑏𝑆4,𝐸𝑊

2
),

𝑃𝐶 = −3
2
𝐴𝑀1𝑀2𝛼3,𝐸𝑊 , 𝑃𝑇 = −3

2
𝐴𝑀1𝑀2𝛼

𝑐
4,𝐸𝑊 ,

𝑃𝑇𝐴 = −3
2
𝐴𝑀1𝑀2𝛽3,𝐸𝑊 , 𝑃𝑇𝐸 = −3

2
𝐴𝑀1𝑀2𝑏4,𝐸𝑊 ,

𝑃𝐴𝑆 = −3
2
𝐴𝑀1𝑀2𝑏𝑆4,𝐸𝑊 , 𝑃𝐸𝑆 = −3

2
𝐴𝑀1𝑀2𝛽𝑆3,𝐸𝑊 ,

𝑇𝑃𝐴 = 0, 𝑇𝑆𝑆 = 0, 𝑇𝑆 = 0, |𝑇𝑃 | < 0.02. (23)

Figure 3: QCDF confidence regions.

By taking advantage of the transformation equations in Eq. (11), we can then translate the
results of our 𝜒2-fit as described in Sec. 3 into the corresponding values for the different QCDF
amplitudes 𝛼 𝑗 , 𝛽 𝑗 and 𝑏 𝑗 . Here we present the confidence regions for 𝛽1 and 𝛽𝑆1 in Fig. 3. These
are two examples of the results we were aiming for. We can see how the real and imaginary
components of the annihilation amplitudes 𝛽1 can be in the ballpark of 10% and being as sizeable
as 40% for the singlet contributions 𝛽𝑆1. The large values for this latter contribution arises from the
fact that the constraints on these quantities come mostly from the channels involving 𝜂 mesons in
the final states. Unfortunately, currently the observables associated with these channels suffer from
large uncertainties.

5. Conclusions

The aim of the present work was to determine the potential size of the regions for the weak
annihilation amplitudes in QCDF following a data-driven approach. To fulfill this goal we have
established a set of transformation rules between the Topological and the QCDF decompositions.
We have then performed a global fit to the 𝑆𝑈 (3)-Irreducible amplitudes with a few additional mild
assumptions. Then, assuming flavour 𝑆𝑈 (3) to be unbroken, we have exploited the connection
between the QCDF and the 𝑆𝑈 (3)-Irreducible/Topological descriptions to translate the fit results
into 1𝜎 confidence regions of the real and imaginary parts of the QCDF amplitudes.

Our results indicate that the size of some of the annihilation amplitudes in the parameterization
of QCDF get constrained very well around or below 10% whereas others can take values up to

8
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∼ 40% which holds for those involved in channels with 𝜂 mesons. While the confidence regions
obtained from the fit are in many cases still sizeable they can be regarded as upper bounds, and pro-
vide valuable information on non-perturbative input parameters useful in future phenomenological
studies on two-body charmless non-leptonic 𝐵 (𝑠) decays. Moreover, with improved experimental
data the potential size of these physical contributions will get further reduced.
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