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The minimal non-supersymmetric SO(10) Grand Unified Theory consists of the scalar sector
45 ⊕ 126 ⊕ 10C. Since this model is expected to provide robust proton decay predictions, its
analysis is of great interest, but has been hampered by tree-level tachyonic instabilities and thus
requires an assessment at one-loop level. We describe in these proceedings the latest progress
in such efforts. We find that viable regions of parameter space exist where the scalar spectrum
is non-tachyonic, perturbative and compatible with unification. The latest developments show,
however, an obstruction in the Yukawa sector: realistic fermionmasses require the StandardModel
Higgs doublet to be fine-tuned to the EW scale in such a way that it is an admixture of states from
both the 10 and 126, which turns out to be in tension with either tachyonicity or perturbativity of
the scalar spectrum. This strongly indicates the model is not perturbatively viable, albeit due to a
subtle and perhaps unexpected reason.
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1. Introduction

The most compact non-supersymmetric SO(10) Grand Unified Theory (GUT) model is based
on the scalar sector 45 ⊕ 126 ⊕ 10C. While the representations 45 and 126 are used to break the
GUT symmetry down to the Standard Model (SM) group, the representations 126 and 10 should
allow for a realistic Yukawa-sector fit to the SM. Due to the economy with which representations
are made use of, this is considered the “minimal” SO(10) GUT model.

It has long been known that this model suffers from tachyonic instabilities at tree-level, but that
one-loop corrections to the effective potential might provide a cure [1–4]. Although this greatly
complicates its analysis, the model remains interesting due to the expectation of a robust proton
decay prediction [5].

We present in these proceedings the latest developments in the analysis of the model based
on our work in [6] and some further work in progress (to appear soon). We organize the paper as
follows: we describe the model and define all associated quantities in Section 2, and then proceed
with its analysis as a sequence of arguments in Section 3. We conclude in Section 4 pointing to
strong indications the model is in fact not phenomenologically viable.

2. Model definition

The GUT model we consider is a Yang-Mills gauge theory with the gauge group SO(10), and
the following field content:

fermions : 3 × 16� , scalars : 45 ⊕ 126 ⊕ 10C. (1)

Each fermionic representation 16� contains an entire generation of SM particles together with
a right-handed neutrino a2 . The scalar representation 45 is real, while 126 and 10C consist of
complex scalars. Note: while the 10 is a self-conjugate (real) representation of the group SO(10),
we complexify it due to the requirements of the Yukawa sector.

We briefly present the structure and salient points of the scalar sector in Section 2.1 and of the
Yukawa sector in Section 2.2.

2.1 Scalar sector

The representation 45 has 2 real SM-singlet fields, the 126 one complex SM-singlet field and
the 10 no SM singlets, hence it is not involved in the spontaneous symmetry breaking process. We
label the vacuum expectation values (VEVs) of SM-singlet fields as follows:

〈(1, 1, 1, 0)45〉 ≡
√

3 l�! , 〈(1, 1, 3, 0)45〉 ≡
√

2l', 〈(1, 1, 3, +2)126〉 ≡
√

2f, (2)

where for unambiguous identification we use labels 〈'(〉, where ' and ( denote the left-right
SU(3)2 × SU(2)! × SU(2)' × U(1)�−! and SO(10) origin of the SM-singlets, respectively.

Symmetry breaking to the SM group is envisioned to happen in two stages:

SO(10)
〈45〉
−−−→ �

〈126〉
−−−−→ SU(3)2 × SU(2)! × U(1). , (3)
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case direction of 〈45〉 approximate relation intermediate symmetry �

(a) l�! = 0 |l�! | � |l' | SU(4)� × SU(2)! × U(1)'
(b) l' = 0 |l' | � |l�! | SU(3)2 × SU(2)! × SU(2)' × U(1)�−!
(c) l�! = l' l�! ≈ l' SU(5) × U(1)
(d) l�! = −l' l�! ≈ −l' SU(5) ′ × U(1) ′
(e) generic generic |l�!/l' | ∼ O(1) SU(3)2 × SU(2)! × U(1)' × U(1)�−!

Table 1: Various intermediate symmetries � that result from VEV direction of 〈45〉. The subscript letter
indicate 2 or � for color, ! for left, ' for right, � − ! for “baryon minus lepton number”, and primes denote
the flipped-SU(5) case. Derived in e.g. [2].

where � is the intermediate symmetry group. It depends on the direction the VEV of the 45 takes,
see Table 1. The 2nd breaking stage is triggered by the VEV f in the 126, and establishes an
intermediate scale that phenomenologically corresponds to the seesaw scale.

The scalar potential + can be split into two parts according to the presence of 10C:

+ = +SB ++10, (4)

where +10 consists of all terms that involve the representation 10 and +SB of those that do not. The
part +10 will not be further considered here, while +(� is relevant for symmetry breaking in Eq. (3)
and takes the explicit form

+SB = − 1
4`

2(qq)0 + 1
400(qq)0(qq)0 + 1

402(qq)2(qq)2 − 1
5!a

2(ΣΣ∗)0 + 1
(5!)2_0(ΣΣ∗)0(ΣΣ∗)0+

+ 1
(4!)2_2 (ΣΣ∗)2(ΣΣ∗)2 + 1

(3!)2 (2!)2_4 (ΣΣ∗)4(ΣΣ∗)4 + 1
(3!)2_

′
4 (ΣΣ

∗)4′ (ΣΣ∗)4′+

+ 1
4! 8g (q)2(ΣΣ

∗)2 + 1
2·5!U (qq)0(ΣΣ

∗)0 + 1
4·3! V4 (qq)4(ΣΣ∗)4 + 1

3! V
′
4 (qq)4′ (ΣΣ

∗)4′+
+ 1
(4!)2 [2 (ΣΣ)2(ΣΣ)2 + 1

4!W2 (qq)2(ΣΣ)2 + ℎ.2..

(5)

We denote 45 ∼ q8 9 and 126 ∼ Σ8 9:;<, where SO(10) indices run from 1 to 10 and both tensors
are completely antisymmetric. The parentheses indicate a contraction that leaves the number of
indices specified in the subscript uncontracted, see e.g. [6] for details. The prefactors next to the
parameters are conventional, and all parameters have real values except for the complex [2 and W2.

2.2 Yukawa sector

The Yukawa sector of the model consists of operators in which fermions couple to scalar
representations 10 and 126, schematically written as

LYuk = 160�
(
. 0110 10 + .̃ 0110 10∗ + . 01126 126∗

)
161� + ℎ.2.. (6)

We denoted family indices by 0 and 1, and there are three 3 × 3 symmetric Yukawa matrices in the
model: .10, .̃10 and .126. All gauge and Lorentz indices have been suppressed in the notation.

There are 2 SM-doublets (1, 2, +1
2 ) and 2 anti-doublets (1, 2,− 1

2 ) in the scalar sector, and we
label their electroweak (EW) VEVs by

ED10 =
〈
(1, 2, +1

2 )10
〉
, ED126 =

〈
(1, 2, +1

2 )126∗
〉
, (7)

E310 = 〈( 1, 2,−
1
2 )10〉, E3126 = 〈( 1, 2,−

1
2 )126∗〉. (8)
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The SM Higgs doublet is a linear combination of all four doublet fields, from which we get the
normalization condition E2

("
=

��ED10
��2 + ��E310

��2 + ��ED126

��2 + ��E3126

��2 with E(" h 174 GeV. These
definitions lead to fermion mass matrices

"* = .10 E
D
10 + .̃10 E

3
10
∗ + .126 E

D
126, "� = .10 E

3
10 + .̃10 E

D
10
∗ + .126 E

3
126, (9)

"Dirac
a = .10 E

D
10 + .̃10 E

3 ∗
10 − 3.126 E

D
126, "� = .10 E

3
10 + .̃10 E

D
10
∗ − 3.126 E

3
126, (10)

where*, �, � and a denote the up, down, charged lepton and neutrino sectors, respectively.
Note that having a complex representation 10 leads to 2 different Yukawa terms involving it,

hence the two different Yukawa matrices .10 and .̃10. Complexification of the 10 is necessary to
avoid the relation ED10 = E

3∗
10 , which would prevent a proper fit of the up relative to the down sector.

The simplest case of a renormalizable SO(10)-symmetric Yukawa sector, in which the SM
masses and mixing angles can be successfully fit, consists of the terms .10 and .126, e.g. see [7].
Eq. (6) extends it by also having the .̃10-term, so it can clearly be fit as well.

Finally, we comment on the necessity of .̃10. Although such a Yukawa term can be forbidden
by introducing a global U(1) Peccei-Quinn (PQ) symmetry under which the 10 and 126 are charged,
this also forbids the W2 term in the scalar potential of Eq. (5) (45 is real, hence it has zero PQ charge).
The W2 parameter, however, was found to be crucial for the scalar spectrum to be non-tachyonic,
cf. [6], hence PQ symmetry cannot be imposed here.

3. Progress in model analysis

Having specified the model under consideration in Section 2, we now turn to the progress in
analyzing its viability. As we shall see below, the study is complicated by the realization that the
lowest consistent perturbative order for its description is at one-loop level rather than tree level,
implying that the model is indeed quantum in nature.

We present the developments as a series of key insights. This provides a good summary of the
existing literature, the newest of which is our work in [6]. We finish by going beyond and presenting
a key insight in our current research (to appear soon), which seems to offer a final negative judgment
on the model’s viability.

3.1 Tachyonic instabilities

The first crucial insight is gained by determining the vacuum and the scalar spectrum of the
model. For later convenience, let us first define the dimensionless ratio j of VEVs as

j :=
l�!l'

|f |2
. (11)

The stationarity conditions for the scalar potential + come only from +(� of Eq. (5), and solving
them for massive parameters `2, a2 and g gives (see e.g. [4])

`2 = (1200 + 202)l2
�! + (800 + 202)l2

' + (4U + 4V′4 + 202j) |f |2, (12)
a2 = 3(U + 4V′4)l

2
�! + 2(U + 3V′4)l

2
' + (12V′4j + 4_0) |f |2 + 02j(l�! + l') (3l�! + 2l'), (13)

g = 2V′4 (3l�! + 2l') + 02j(l�! + l'). (14)
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Inserting this solution into the second derivative of the potential, we obtain the following expressions
for the tree-level mass-squares of SM color-octets (8, 1, 0) and weak-triplets (1, 3, 0):

"2(8, 1, 0) = +202(l�! − l') (l' + 2l�!), (15)
"2(1, 3, 0) = −202(l�! − l') (2l' + l�!). (16)

These expressions are both non-tachyonic only if 02 > 0 and the regime l�!/l' ∈ (−2,− 1
2 )

applies. This suggests a flipped-SU(5) or left-right intermediate symmetry, i.e. cases (d) and (e) in
Table 1, which is at odds with unification constraints [1, 8, 9].

It has been first argued in [2], and more specifically for the 45 ⊕ 126 Higgs model in [3], that
this problem can be cured and phenomenologically relevant cases (a) and (b) might be reached
if quantum corrections to the scalar potential are taken into account. One might hope to cure
the tachyonic instabilities in the octet and triplet, provided that the 02 parameter is small, so that
their tree-level masses are spuriously small. The states of Eqs. (15)–(16) with 02-proportional
mass-squares have been referred to in the literature as pseudo-Goldstone bosons (PGBs).

An analytic computation of the one-loop spectrum in the W2, [2, f → 0 limit has been per-
formed in [4], with all indication that the tachyonic instabilities can indeed be cured. It has also been
pointed out that one of the SM-singlet (1, 1, 0) mass-eigenstates should also function as a PGB,
along with any other SM representations required to complete intermediate-symmetry multiplets.

3.2 Symmetry breaking and perturbativity

A further observation regarding symmetry breaking patterns can be made by considering the
role of the dimensionless ratio j, cf. [6].

To have the phenomenologically motivated seesaw-scale sufficiently below the GUT scale, a
hierarchy |f |2 � l2

�!
+l2

'
is required, i.e. the VEV 〈126〉 is much smaller than 〈45〉. Consider the

role of j in the vacuum solution of Eqs. (12)–(14). For the massive parameters to be perturbative,
i.e. sufficiently below the Planck scale, either |j | . 1 or |l�! +l' | ≈ |f |2. Since the latter option
leads to case (d) and is incompatible with unification, see Section 3.1, the former condition must
apply, hence either |l�! | � |f | � |l' | or |l' | � |f | � |l�! |, i.e. only cases (a) and (b) from
Table 1 can be phenomenologically relevant for the model.

3.3 Restrictions on parameter space

Still further insight has been gained in our recent work [6] with a full numerical analysis at
one-loop for the Higgs model 45 ⊕ 126, i.e. restricted to the part +(� of + in Eq. (4).

The ability to compute the entire one-loop spectrum opens up the possibility to assess perturba-
tivity. There is no canonical or unambiguous way to judge whether a particular parameter point of
the model is perturbative; nevertheless we constructed two quantitative measures C̄ and Δ that allow
for comparisons of points and reveal something about the degree of perturbativity. The measure C̄
is defined as the geometric mean

C̄ :=
√
C−C+, (17)

where C± := log10 [`'±/`'] with `' being the renormalization scale of the chosen parameter values
and `'± the higher (lower) scale above (below) which the beta-functions for dimensionless scalar
parameters blow up.

5
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The measure Δ is defined as the ratio of the largest one-loop correction to mass-squares X<2
(1)

searched for among all fields, and the average tree-level mass-square <2
(0) of the heavy fields (those

at GUT scale, excluding any PGBs):

Δ :=
max X<2

(1)

<2
(0)

. (18)

Taking advantage of all available information from the one-loop calculation, a parameter point
is considered viable if it fulfills the following three requirements:

1. Non-tachyonicity: all one-loop scalar mass-squares of physical fields must be non-negative.

2. Perturbativity: the one-loop corrections and RGE running are sufficiently under control by
taking the very mild restrictions Δ < 1 and C+ > 0.5.

3. Unification: a top-down one-loop RGE analysis of gauge couplings gives successful unifica-
tion, i.e. the low energy SM gauge couplings can be successfully fit.

Conditions 1 and 2 stem purely from considerations of mathematical consistency, while condition
3 is phenomenological.

A comprehensive numerical scan of the parameter space was performed in [6] for the two
relevant cases (a) and (b). Viable regions were found in both cases, but the viability constraints
severely restrict the allowed parameter values, as demonstrated by Figure 1. The results also
show that case (a) admits points with a higher degree of perturbativity and also has energy scales
consistent with unification and phenomenology, unlike case (b). Case (a) has the seesaw scale in
a reasonable pheno range between 1011–1011.8 GeV and the GUT scale at around 14.9 GeV, while
case (b) has a too-low intermediate scale of 108 GeV and a GUT scale 1018 GeV, which is too close
to the Planck scale for renormalizability or perturbativity to apply.
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Figure 1: The allowed ranges of dimensionless (left) and massive (right) parameters of the 45 ⊕ 126 Higgs
model for case (a). The various colors indicate searches with increasingly stricter C̄ perturbativity measure,
allowing for ever smaller parameter ranges. The increasing transparency levels of bars indicate 1-, 2- and
3-sigma ranges in the dataset.

We therefore conclude that only case (a) remains phenomenologically viable, albeit with a
GUT scale that is somewhat low for the experimental bounds on proton decay. We do caution that
a more thorough proton decay analysis is required before dismissal, since two-loop RGE effects or
tuning some scalar states to be lower in mass might sufficiently raise the unification scale.
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3.4 Doublet fine-tuning and beyond

We’ve now reached the latest development in the story of the minimal SO(10) model that is
part of our current work in progress.

As discussed in Section 2.2, there are four SM doublets (1, 2,±1/2), i.e. two in each of
the representations 126 and 10. Their tree-level mass-square matrix can therefore be written
schematically based on their SO(10)-origin in terms of 2 × 2 blocks as

"2(1, 2, +1
2 ) =

(
"2

126 "2
mix

"
2†
mix "2

10

)
. (19)

The block "2
126 depends on the parameters in +(�, while "2

10 and the mixing block "2
mix involve

the representation 10 and thus consist of parameters from +10, cf. Eq. (4). In the limit of case (a) in
Table 1, the sizes of the diagonal-block entries are "2

10, "
2
126 ∼ l

2
'
, while "2

mix ∼ |f |2.
A SM Higgs doublet at 125 GeV requires one mass in Eq. (19) to be fine-tuned from the GUT

scale down to the EW scale. Furthermore, it was argued in Section 2.2 that a Yukawa-sector fit is
possible, but this assumes the VEVs of Eqs. (7) and (8) can all take fit-specified non-zero values.
The SM Higgs must therefore be an admixture of both doublets from the 10 as well as 126. The
only way this is possible in Eq. (19) is to first mini-tune one doublet combination in each of the
diagonal blocks "2

126 and "
2
10 down to |f |

2, so that "mix can mix the two states, and then perform
one full fine-tuning down to the EW scale.

Consider now the tree-level masses of the doublet and two more states in case (a), cf. [6]:

"2(1, 2, +1
2 )lightest =

(
V4
2
− 5V′4 − 202j −

√(
4V′4 + 02j

)2 + 4|W2 |2
)
l2
', (20)

"2(3̄, 1, +1
3 )lightest =

(
V4 − 4V′4 − 202j − 4 |W2 |

)
l2
', (21)

"2(1, 3,−1) = −2(2V′4 + 02j)l2
' . (22)

Figure 1 shows that the viable region is found inside the multi-dimensional box defined by

V4 ∈ [0.2, 1] , V′4 ∈ [−0.2,−0.01] , 02 ∈ [−0.05, 0.05] , j ∈ [−1, 1] , |W2 | ∈ [0.1, 0.3] . (23)

Fine-tuning the doublet mass-square in Eq. (20) to effectively zero (or |f |2) in this region results
in tachyonicity in either Eq. (21) or (22). Thus an obstruction exists for the required mini-tuning in
the "2

126 block.
There is only one possible remedy to this obstruction. Since all mass-square entries receive

quantum corrections, one might hope for perturbative fine-tuning, where the mini-tuning of "2
126

is performed only down to next-order corrections, and hope these corrections then align properly
for a further cancellation. This is only a necessary and not a sufficient condition, since there is no
guarantee that the next-order corrections of the doublet indeed align for cancellation, while at the
same time those of states in Eqs. (21) and (22) align for non-tachyonicity.

We are currently working on a new parameter-space scan which includes perturbative fine-
tuning of doublets. Preliminary results show that this can be marginally achieved at tree-level,
but the one-loop corrections do not cooperate well: the mini-tuning in "2

126 at one loop cannot
be suppressed down to the estimated two-loop level in perturbative regions, so the obstruction

7
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becomes worse at one-loop compared to tree-level. This analysis required a proper assessment of
one-loop corrections also from hitherto ignored parameters in +10 and goes beyond the scope of
these proceedings.

4. Conclusion

We summarized in these proceedings the progress made in analyzing the minimal SO(10)
GUT model with the scalar sector consisting of 45 ⊕ 126 ⊕ 10C. Emphasizing the most recent
developments, we report on our recent work [6] as well as progress in ongoing research.

We explicitly showed in [6] by numerical calculation that in some parameter-space regions the
tree-level tachyonic instabilities in the scalar potential are indeed cured by one-loop corrections, as
anticipated. The model is thus quantum in nature, i.e. the first consistent perturbative calculation
is at one-loop. It was also shown in the same work that the breaking pattern resulting in a
SU(4)� × SU(2)! × U(1)' intermediate symmetry is the only phenomenologically viable option.

Our ongoing research focuses on an observation relevant for the Yukawa sector: the fine-tuning
required for a realistic SMHiggs doublet is obstructed in perturbative regions of the parameter space
by other scalar states becoming tachyonic. Preliminary results show that this problemmost probably
cannot be overcome at any perturbative order, strongly indicating that the minimal SO(10) GUT
model is in fact not perturbatively viable.
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