

Single charged Higgs boson production at the LHC

Presented by Mohamed OUCHEMHOU

Work in collaboration with A. Arhrib, R. Benbrik, M.Krab, B.Manaut and Qi-Shu Yan e-Print:2210.09416[hep-ph] 8th Symposium on Prospects in the Physics of Discrete Symmetries Kongresshaus Baden-Baden

7-11 novembre 2022

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

1/21 7-11 novembre 2022

re 2022 1 / 21

OUTLINE

INTRODUCTION

- ② GENERAL 2-HIGGS -DOUBLET MODEL .
- **6** CHARGED HIGGS PRODUCTION at LHC.
- RESULTS AND DISCUSSION.
- ONCLUSION.

- -

2/21

イロト イロト イヨト イヨト

INTRODUCTION

- Measurements of Higgs properties at run 1 and run 2 are in a good agreement with the SM, but ...
- Maybe other scalars waiting to be discovered ;
- In the SM, only one scalar isospin doublet field is introduced to break the electroweak gauge symmetry. This is just an assumption.
- Two Higgs Doublet Model
 - Larger scalar sector than SM
 - Rich collider phenomenology

A B K A B K

GENERAL 2-HIGGS-DOUBLET MODEL

The most general scalar potential of the 2HDM :

$$V(\phi_{1},\phi_{2}) = m_{11}^{2}(\phi_{1}^{\dagger}\phi_{1}) + m_{22}^{2}(\phi_{2}^{\dagger}\phi_{2}) - [m_{12}^{2}(\phi_{1}^{\dagger}\phi_{2}) + \text{h.c.}] + \frac{1}{2}\lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \frac{1}{2}\lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1}) + \frac{1}{2}\left[\lambda_{5}(\phi_{1}^{\dagger}\phi_{2})^{2} + \text{h.c.}\right] + \left\{ \left[\lambda_{6}(\phi_{1}^{\dagger}\phi_{1}) + \lambda_{7}(\phi_{2}^{\dagger}\phi_{2})\right](\phi_{1}^{\dagger}\phi_{2}) + \text{h.c.} \right\}, (1)$$

Where,

$$\Phi_{i} = \begin{pmatrix} \Phi_{i}^{+} \\ \Phi_{i}^{0} \end{pmatrix}, <0|\Phi_{i}|0> = \begin{pmatrix} 0 \\ \frac{\upsilon_{i}}{\sqrt{2}} \end{pmatrix}, i = 1, 2$$

$$(2)$$

- \implies 8 degrees of freedom
- 5 physical Higgses : 2 CP-even h and H, 1 CP-odd A and 2 Charged Higgs H^{\pm}
- Avoid FCNC \Longrightarrow , \mathcal{Z}_2 symmetry($\lambda_6 = \lambda_7 = 0$)
- The CP-conserving of the potential \implies all parameter are real.
- 2 minimization conditions and the combination $v_1^2 + v_2^2 \Longrightarrow 7$ free parameters : $m_h < m_H, m_H^{\pm}, m_A, \sin(\beta - \alpha), \tan \beta = \frac{v_2}{v_1}$ and m_{12}^2 .

GENERAL 2-HIGGS-DOUBLET MODEL

YUKAWA COUPLINGS

The Yukawa Lagrangian, which describes the interactions between the Higgs sector and the fermion sector, is given as follows

$$\mathcal{L}_{Y} = \bar{Q'_{L}}(Y_{1}^{u}\tilde{\Phi_{1}} + Y_{2}^{u}\tilde{\Phi_{2}})U'_{R} + \tilde{Q'_{L}}(Y_{1}^{d}\Phi_{1} + Y_{2}^{d}\Phi_{2})d'_{R} + \bar{L'_{L}}(Y_{1}^{l}Q_{1} + Y_{2}^{l}\Phi_{2})l'_{R} + h.c \quad (3)$$

• \mathcal{Z}_2 Symmetry

$\begin{array}{ c c c c c c c }\hline I & c_{\alpha}/s_{\beta} & c_{\alpha}/s_{\beta} & c_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & ct_{\beta} & -ct_{\beta} & -ct_{\beta} \\ \hline II & c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & -s_{\alpha}/c_{\beta} & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & c_{\alpha}/c_{\beta} & ct_{\beta} & t_{\beta} & t_{\beta} \\ \hline X & c_{\alpha}/s_{\beta} & c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & s_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & ct_{\beta} & -ct_{\beta} & t_{\beta} \\ \hline Y & c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & c_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & s_{\alpha}/s_{\beta} & ct_{\beta} & t_{\beta} & -ct_{\beta} \\ \hline \end{array}$	Type	ξ^h_u	ξ^h_d	ξ_l^h	ξ_u^H	ξ_d^H	ξ_l^H	ξ_u^A	ξ_d^A	ξ_l^A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ι	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	ct_{β}	$-ct_{\beta}$	$-ct_{\beta}$
$\begin{array}{ c c c c c c c c }\hline X & c_{\alpha}/s_{\beta} & c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & s_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & ct_{\beta} & -ct_{\beta} & t_{\beta} \\\hline Y & c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & c_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & s_{\alpha}/s_{\beta} & ct_{\beta} & t_{\beta} & -ct_{\beta} \\\hline \end{array}$	II	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	$-s_{lpha}/c_{eta}$	s_{lpha}/s_{eta}	c_{lpha}/c_{eta}	c_{lpha}/c_{eta}	ct_{β}	t_{eta}	t_{eta}
$ Y \left \begin{array}{ccc} c_{\alpha}/s_{\beta} & -s_{\alpha}/c_{\beta} & c_{\alpha}/s_{\beta} & s_{\alpha}/s_{\beta} & c_{\alpha}/c_{\beta} & s_{\alpha}/s_{\beta} & ct_{\beta} & t_{\beta} & -ct_{\beta} \end{array} \right $	Х	c_{lpha}/s_{eta}	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	c_{α}/c_{β}	ct_{β}	$-ct_{\beta}$	t_{eta}
	Y	c_{lpha}/s_{eta}	$-s_{lpha}/c_{eta}$	c_{lpha}/s_{eta}	s_{lpha}/s_{eta}	c_{lpha}/c_{eta}	s_{lpha}/s_{eta}	ct_{β}	t_{eta}	$-ct_{\beta}$

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

5/21 7-

7-11 novembre 2022

GENERAL 2-HIGGS-DOUBLET MODEL

THEORETICAL AND EXPERIMENTAL CONSTRAINTS

- Unitarity, Perturbativity, Vacuum Stability.
- Exclusion limits at 95% Confidence Level (CL) from Higgs searches at colliders (LEP, Tevatron and LHC)
- Constraints from the Higgs boson signal strength measurements

• Constraints of flavour physics observables, namely, $B \to X_s \gamma$, $B_{s,d} \to \mu^+ \mu^-$ and Δm_{s} .

6/21

CHARED HIGGS PRODUCTIONS AT LHC.

At hadron colliders, a charged Higgs boson can be produced through several channels:

- the $pp \to t\bar{t} \to b\bar{b}H^-H^+ + c.c$; process via the top decay $t \to bH^+$ (or the equivalent antitop mode).
- $pp \to H^{\pm}tb: \ g\bar{b} \to \bar{t}H^{\pm} + C.C \text{ and } gg \to tbH^+$
- Associated production with a W^{\pm} gauge boson: $gg \to W^{\pm}H^{\mp}$ and $b\bar{b} \to W^{\pm}H^{\mp}$.
- Production in association with a bottom quark and a light-jet: $pp \to H^{\pm}bj$.
- Resonant production via $c\bar{s}, c\bar{b} \to H^+$
- Associate production with a neutral Higgs: $q\bar{q}' \rightarrow H^{\pm}\Phi_i$ where Φ_i denotes one of the three neutral Higgs bosons, $\Phi = h, H$ or A

7/21

◆ロト ◆問 ト ◆臣 ト ◆臣 ト ○臣 ○ のへの

7/21

7-11 novembre 2022

• Pair production: $gg \to H^+H^-$ and $q\bar{q} \to H^+H^-$.

Production through $pp \to H^{\pm}W^{\mp}$ & $pp \to H^{\pm}bj$

Figure: Feynman diagrams contributing to the $H^{\pm}W^{\mp}$ production.

bb-resonant channel is negligible since the Yukawa couplings are small.
gg-resonant is only relevant when M_H > M_{H±} + M_W or M_A > M_{H±} + M_W

Figure: Feynman diagrams contributing to the $H^{\pm}bj$ production.

• $qb \rightarrow q'bH^{\pm}$ (s and t-channel) and $q\bar{b} \rightarrow q'bH^{\pm}$ (u and t-channel) • $M_{H^{\pm}} < m_t - m_b$, s-channel dominate, Other diagram contribute for $M_{H^{\pm}} > m_t - m_b$

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

RESULTS AND DISCUSSION

• We randomly scan the space parameter as set in bellow:

	M_h [GeV]	M_H [GeV]	$M_A [\text{GeV}]$	$M_{H^{\pm}}$ [GeV]	$\sin(\beta - \alpha)$	$\tan\beta$	$m_{12}^2 \; [{ m GeV}^2]$
NS	125.09	[126; 700]	[15; 700]	[80; 700]	[0.95; 1]	[2; 25]	$[0; m_H^2 \cos\beta\sin\beta]$
IS	[15; 120]	125.09	[15; 700]	[80; 700]	[-0.5; 0.5]	[2; 25]	$[0; m_h^2 \cos\beta\sin\beta]$

Table: 2HDM type-I and type-X input parameters.

• we concentrate on the following signatures:

$$\sigma^{S}(pp \to xWW) = \sigma(pp \to H^{\pm}W^{\mp} \to W^{\pm}SW^{\mp} \to xW^{\pm}W^{\mp}), \qquad (4)$$

$$\sigma^{S}(pp \to xWbj) = \sigma(pp \to H^{\pm}bj \to W^{\pm}Sbj \to xW^{\pm}bj), \tag{5}$$

where S can be either h or A, and x stands for bb, $\tau\tau$ or $\gamma\gamma$.

• In both Scenario, we could expect the following signatures: $bbWW, \tau\tau WW, \gamma\gamma WW$, $bbWbj, \tau\tau Wbj$ and $\gamma\gamma Wbj$

イロト イボト イヨト イヨト

Normal scenario

• $pp \to H^{\pm}W^{\mp} \to W^{\pm}W^{\mp}A \to b\bar{b}WW, \tau\tau WW$

10/21

Normal scenario

• $pp \to H^{\pm}bj \to W^{\pm}Abj \to bbWbj, \tau\tau Wbj$

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

11/21 7-11 novembre 2022

Inverted scenario

• $pp \rightarrow H^{\pm}W^{\mp} \rightarrow W^{\pm}W^{\mp}h \rightarrow WWb\bar{b}, WW\tau\tau$

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

12/21 7-11 novembre 2022

Inverted scenario

• $pp \rightarrow H^{\pm}bj \rightarrow W^{\pm}hbj \rightarrow bbWbj, \tau\tau Wbj$

Inverted Scenario

•
$$pp \to H^{\pm}W^{\mp} \to W^{\pm}W^{\mp}h \to \gamma\gamma WW$$

• $pp \to H^{\pm}bj \to W^{\pm}hbj \to \gamma\gamma Wbj$

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

3 × 14/217-11 novembre 2022 $14 \, / \, 21$

1 E b

в

Benchmarks Points type-I

Parameters	BP1	BP2	BP3	BP4	BP5	BP6	1	Parameters	BP1	BP2	BP3	BP4	BP5	BP6
M_h (GeV)	125.09	125.09	125.09	125.09	125.09	125.09	1	M_h (GeV)	64.68	68.22	69.29	112.45	115.42	71.68
M_H (GeV)	135.07	144.62	132.07	130.26	135.12	134.75		M_H (GeV)	125.09	125.09	125.09	125.09	125.09	125.09
M_A (GeV)	200.95	219.65	67.01	74.07	62.97	66.54		M_A (GeV)	130.84	147.98	132.88	53.72	51.90	135.54
$M_{H\pm}$ (GeV)	226.20	259.66	146.88	144.66	113.18	123.09		$M_{H\pm}$ (GeV)	126.68	139.15	163.20	101.36	119.45	115.38
$sin(\beta - \alpha)$	0.994	0.985	0.989	0.985	0.991	0.968		$sin(\beta - \alpha)$	0.127	0.140	-0.062	0.175	0.134	-0.144
$\tan \beta$	3.97	2.77	3.53	3.55	4.26	4.37		$\tan \beta$	3.46	3.35	3.13	4.02	3.80	6.94
m_{12}^2 (GeV ²)	4322.16	6675.8	4565.08	4417.98	4055.61	3949.10		m_{12}^2 (GeV ²)	1053.71	511.93	850.14	2757.59	2782.55	177.81
	В	$R(H^{\pm} \rightarrow$	$\rightarrow XY$) in	%			1		Bl	$R(H^{\pm} \rightarrow$	$\cdot XY$) in	%		
$BR(H^{\pm} \rightarrow W^{\pm}H)$	35.41	46.78	-	-	-	-	1	$BR(H^{\pm} \rightarrow W^{\pm}h)$	94.72	95.95	99.54	-	-	94.11
$BR(H^{\pm} \rightarrow W^{\pm}A)$	-	-	98.12	95.37	92.47	95.19		$BR(H^{\pm} \rightarrow W^{\pm}A)$	-	-	0.03	90.00	97.52	-
	I	$3R(h \rightarrow$	XY) in 9	6			1		I	$BR(h \rightarrow $	XY) in 9	6		
$BR(H \rightarrow b\bar{b})$	53.68	29.76	11.01	11.20	1.68	0.16	1	$BR(h \rightarrow bb)$	85.76	85.49	85.39	5.38	1.08	9.71
$BR(H \rightarrow \tau \tau)$	5.26	2.95	1.07	1.09	0.16	0.01		$BR(h \rightarrow \tau \tau)$	7.37	7.41	7.43	0.51	0.10	0.85
$BR(H \rightarrow \gamma \gamma)$	0.34	0.33	0.11	0.24	0.03	0.07		$BR(h \rightarrow \gamma \gamma)$	< 0.01	< 0.01	0.02	< 0.01	< 0.01	51.14
	I	$3R(A \rightarrow$	XY) in 9	%]		E	$R(A \rightarrow$	XY) in 9	%		
$BR(A \rightarrow bb)$	22.54	17.96	79.98	78.51	80.80	80.08	1	$BR(A \rightarrow bb)$	30.88	16.29	36.79	82.60	82.94	13.45
$BR(A \rightarrow \tau \tau)$	2.43	1.97	6.96	6.97	6.94	6.95		$BR(A \rightarrow \tau \tau)$	3.07	1.66	3.67	6.87	6.85	1.35
$BR(A \rightarrow \gamma \gamma)$	0.05	0.05	0.01	0.01	0.01	0.01		$BR(A \rightarrow \gamma \gamma)$	0.02	0.02	0.03	0.01	0.01	0.01
		σi	n fb]			σi	n fb			
$\sigma^{H}(pp \rightarrow bbWW)$	9.23	8.95	-	-	-	-]	$\sigma^{h}(pp \rightarrow bbWW)$	118.15	115.14	115.07	-	-	3.65
$\sigma^{H}(pp \rightarrow \tau \tau WW)$	0.90	0.88	- 1	- 1	-	-		$\sigma^{h}(pp \rightarrow \tau \tau WW)$	10.16	9.99	10.01	-	-	0.32
$\sigma^{H}(pp \rightarrow \gamma \gamma WW)$	0.05	0.09	-	-	-	-		$\sigma^{h}(pp \rightarrow \gamma \gamma WW)$	< 0.01	< 0.01	0.03	-	-	19.24
$\sigma^A(pp \rightarrow bbWW)$	-	-	93.43	88.32	81.14	72.36	1	$\sigma^A(pp \rightarrow bbWW)$	-	-	0.02	100.57	103.02	-
$\sigma^A(pp \rightarrow \tau \tau WW)$	-	-	8.13	7.84	6.97	6.28		$\sigma^A(pp \rightarrow \tau \tau WW)$	-	- 1	< 0.01	8.37	8.51	-
$\sigma^A(pp \rightarrow \gamma \gamma WW)$	-	-	0.02	0.02	0.01	0.01		$\sigma^A(pp \rightarrow \gamma \gamma WW)$	-	-	< 0.01	0.01	0.01	-
$\sigma^{H}(pp \rightarrow bbWbj)$	0.55	0.53	-	-	-	-	1	$\sigma^{h}(pp \rightarrow bbWbj)$	1524.43	838.06	22.80	-	-	63.37
$\sigma^{H}(pp \rightarrow \tau \tau Wbj)$	0.05	0.05	- 1	- 1	-	-		$\sigma^{h}(pp \rightarrow \tau \tau Wbj)$	131.05	72.70	1.98	-	-	5.55
$\sigma^{H}(pp \rightarrow \gamma\gamma Wbj)$	< 0.01	0.01	-	-	-	-]	$\sigma^{h}(pp \rightarrow \gamma \gamma Wbj)$	0.01	0.01	0.01	-	-	333.74
$\sigma^A(pp \rightarrow bbWbj)$	-	-	349.75	410.27	1088.35	815.06	1	$\sigma^A(pp \rightarrow bbWbj)$	-	-	< 0.01	2179.63	1618.58	-
$\sigma^A(pp \rightarrow \tau \tau Wbj)$	-	-	30.43	36.43	93.51	70.82		$\sigma^A(pp \rightarrow \tau \tau Wbj)$	-	-	< 0.01	181.28	133.67	-
$\sigma^A(pp \rightarrow \gamma\gamma Wbj)$	-	-	0.056	0.08	0.15	0.12		$\sigma^A(pp \rightarrow \gamma \gamma Wbj)$	-	-	< 0.01	0.22	0.15	-

Table: 2HDM type-I selected BPs in the NS.

Table: 2HDM type-I selected BPs in the IS.

• 2HDM type-I paramters, branching ratios and signal cross sections corresponding to the selected BPs

3

イロト イヨト イヨト

CONCLUSION

- We point out that the bbWW and bbWbj signals are plagued by the huge QCD background, especially the $t\bar{t}$ one, yielding poor significance.
- The signatures $\tau \tau WW$ and $\tau \tau Wbj$ can give the best reach since they would suppress the tt background, especially if we require at least one leptonic decay of tau leptons.
- We also suggest $\gamma\gamma WW$ and $\gamma\gamma Wbj$ as clean signatures in the inverted scenario.
- Such signals could provide a complementary search for a charged Higgs boson at the LHC.

Thank you for listening!

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

-

Backup

Presentation in the DISCRETE 2022 2HDM, CHARGED HIGGS

1

Normal scenario

• $pp \to H^{\pm}W^{\mp} \to W^{\pm}W^{\mp}H \to WWb\bar{b}, WW\tau\tau$

Normal scenario

• $pp \to H^{\pm}bj \to W^{\pm}Hbj \to bbWbj, \tau\tau Wbj$

Inverted Scenario

• $pp \rightarrow H^{\pm}W^{\mp} \rightarrow W^{\pm}W^{\mp}A \rightarrow WWb\bar{b}, WW\tau\tau$ • $pp \rightarrow H^{\pm}bj \rightarrow W^{\pm}Abj \rightarrow bbWbj, \tau\tauWbj$

Benchmarks Points type-X

Parameters	BP1	BP2	BP3	BP4	BP5	BP6	Parameters	BP1	BP2	BP3	BP4	BP5	BP6
M_h (GeV)	125.09	125.09	125.09	125.09	125.09	125.09	M_h (GeV)	62.84	64.20	64.66	63.37	66.57	64.3
M_H (GeV)	146.55	155.71	171.94	194.37	165.65	163.04	M_H (GeV)	125.09	125.09	125.09	125.09	125.09	125.0
M_A (GeV)	251.36	263.79	69.87	73.03	65.94	66.4	M_A (GeV)	136.51	163.01	158.98	151.78	163.69	148.3
$M_{H\pm}$ (GeV)	249.84	262.81	168.56	182.11	155.45	157.54	$M_{H\pm}$ (GeV)	156.59	169.29	196.97	150.48	154.02	151.5
$sin(\beta - \alpha)$	0.952	0.957	0.952	0.951	0.960	0.961	$sin(\beta - \alpha)$	-0.011	-0.021	-0.023	0.003	-0.008	-0.0
$\tan \beta$	5.97	6.43	5.95	6.25	6.60	6.77	$\tan \beta$	7.35	7.22	6.69	8.76	6.95	9.69
m_{12}^2 (GeV ²)	3496.62	3676.93	4831.6	5891.78	4064.40	3838.03	m_{12}^2 (GeV ²)	346.61	388.33	107.71	388.48	609.71	282.5
	В	$R(H^{\pm} \rightarrow$	XY) in	%				BI	$R(H^{\pm} \rightarrow$	XY) in '	%		
$BR(H^{\pm} \rightarrow W^{\pm}H)$	57.20	60.26	-	-	-	-	$BR(H^{\pm} \rightarrow W^{\pm}h)$	82.26	92.29	95.47	57.99	70.22	53.5
$BR(H^{\pm} \rightarrow W^{\pm}A)$	-	-	92.04	94.30	78.23	80.13	$BR(H^{\pm} \rightarrow W^{\pm}A)$	< 0.01	-	0.01	-	-	-
	I	$3R(h \rightarrow J)$	(Y) in 9	6				E	$R(h \rightarrow Z)$	(Y) in %	0		
$BR(H \rightarrow b\bar{b})$	0.54	0.38	0.05	0.01	0.06	0.09	$BR(h \rightarrow bb)$	0.33	0.30	0.41	0.21	0.44	0.09
$BR(H \rightarrow \tau \tau)$	92.06	84.60	9.48	3.18	16.25	24.36	$BR(h \rightarrow \tau \tau)$	99.26	99.32	99.20	99.42	99.17	99.55
$BR(H \rightarrow \gamma \gamma)$	0.02	0.02	< 0.01	< 0.01	< 0.01	< 0.01	$BR(h \rightarrow \gamma \gamma)$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
	I	$BR(A \rightarrow 1)$	XY) in S	%			$BR(\overline{A} \rightarrow XY)$ in %						
$BR(A \rightarrow bb)$	0.05	0.03	0.89	0.72	0.6	0.54	$BR(A \rightarrow bb)$	0.32	0.11	0.29	0.15	0.16	0.11
$BR(A \rightarrow \tau \tau)$	8.0	6.76	98.60	98.78	98.95	99.02	$BR(A \rightarrow \tau \tau)$	94.78	31.66	59.44	89.46	37.97	93.91
$BR(A \rightarrow \gamma \gamma)$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	$BR(A \rightarrow \gamma \gamma)$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
		σ in	ı fb						σ in	ı fb			
$\sigma^{H}(pp \rightarrow bbWW)$	0.04	0.02	-	-	-	-	$\sigma^{h}(pp \rightarrow bbWW)$	0.07	0.07	0.10	0.02	0.09	0.01
$\sigma^{H}(pp \rightarrow \tau \tau WW)$	8.31	5.95	-	-	-	-	$\sigma^{h}(pp \rightarrow \tau \tau WW)$	20.70	21.98	24.14	10.86	19.85	8.13
$\sigma^{H}(pp \rightarrow \gamma \gamma WW)$	< 0.01	< 0.01	-	-	-	- 1	$\sigma^{h}(pp \rightarrow \gamma \gamma WW)$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
$\sigma^A(pp \rightarrow bbWW)$	-	-	0.29	0.21	0.14	0.12	$\sigma^A(pp \rightarrow bbWW)$	< 0.01	-	< 0.01	-	-	-
$\sigma^A(pp \rightarrow \tau \tau WW)$	-	-	32.65	28.84	24.47	23.68	$\sigma^A(pp \rightarrow \tau \tau WW)$	< 0.01	-	< 0.01	-	-	-
$\sigma^A(pp \rightarrow \gamma \gamma WW)$	-	-	< 0.01	< 0.01	< 0.01	< 0.01	$\sigma^A(pp \rightarrow \gamma \gamma WW)$	< 0.01	-	< 0.01	-	-	-
$\sigma^{H}(pp \rightarrow bbWbj)$	0.02	< 0.01	-	-	-	-	$\sigma^{h}(pp \rightarrow bbWbj)$	0.05	0.01	0.01	0.06	0.12	0.02
$\sigma^{H}(pp \rightarrow \tau \tau Wbj)$	0.49	0.35	-	-	-	-	$\sigma^{h}(pp \rightarrow \tau \tau Wbj)$	15.90	2.77	1.54	27.21	27.76	17.40
$\sigma^{H}(pp \rightarrow \gamma \gamma Wbj)$	< 0.01	< 0.01	-	-	-	-	$\sigma^{h}(pp \rightarrow \gamma \gamma Wbj)$	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
$\sigma^A(pp \rightarrow bbWbj)$	-	-	0.03	0.01	0.15	0.08	$\sigma^A(pp \rightarrow bbWbj)$	< 0.01	-	< 0.01	-	-	-
$\sigma^A(pp \rightarrow \tau \tau Wbj)$	-	-	4.30	2.53	24.94	14.74	$\sigma^A(pp \rightarrow \tau \tau Wbj)$	< 0.01	-	< 0.01	-		-
$\sigma^A(pp \rightarrow \gamma \gamma Wbj)$	-	-	< 0.01	< 0.01	< 0.01	< 0.01	$\sigma^A(pp \rightarrow \gamma \gamma Wbj)$	< 0.01	-	< 0.01	-		- 1

Table: 2HDM type-X selected BPs in the NS.

Table: 2HDM type-X selected BPs in the IS.

• 2HDM type-X paramters, branching ratios and signal cross sections corresponding to the selected BPs

2

イロト 不同ト 不同ト 不同ト