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A popular class of extensions of the Standard Model (SM) are models of a new Abelian gauge
boson X , called dark or hidden photon, that kinetically mixes with the SM photon. We revisit the
matching procedure of kinetic mixing terms in the electroweak symmetric phase to the ones in
the broken phase. Our central finding is that in order to obtain the correct matching prescription
one has to take into account mixing of the hidden photon with the neutral component of the weak
SU(2)L bosons. This mixing is generated by a dimension-six operator and, in theories where
SU(2)L multiplets are charged under the novel Abelian gauge group, is necessarily induced at
the one-loop level. We illustrate this matching procedure for the loop-generated kinetic mixing
in U(1)Lµ−Lτ . Furthermore, we show how to obtain general expressions for the Higgs decay
amplitudes to two neutral vector bosons from the vacuum polarisation amplitudes via the low-
energy theorems. As an application, we derive general expression for the branching ratios of the
decays h→ γX and h→ X X in U(1)B−L .

8th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2022)
7-11 November, 2022
Baden-Baden, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:patrick.foldenauer@csic.es
https://pos.sissa.it/


P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
2
)
0
7
4

Consistent Kinetic Mixing Patrick Foldenauer

1. Introduction

Experimental evidence like the gravitational observation of dark matter (DM) and the detection
of neutrino oscillations have firmly established the existence of new physics beyond the Standard
Model (SM). In the past, these hints have lead many physicists to construct theories of new physics
completing the SM at high energy scales, like for example supersymmetric theories, models of grand
unification or string theory. A typical shared characteristic of such ultra-violet (UV) completions is
the presence of novel heavy states that can, in principle, couple sizeably to the SM sector. Such new
heavy states can be tested for example at high-energy experiments like particle colliders. However,
as illustrated in Fig. 1 the landscape of particle physics experiments is much more diverse with a
plethora of observational strategies testing physics at low energies with ever increasing intensities.
Among these are meson factories and beam dump experiments, or astrophysical and cosmological
probes. In general, new gauge bosons of an extra U(1)X symmetry are well-motivated candidates
for novel particles that can naturally have ever smaller masses as their coupling to the SM decreases,
i.e. that live at the sensitivity frontier of the experimental landscape.

In the minimal hidden photon scenario the gauge boson associated to an additional U(1)X
symmetry is kinetically mixed with the SM photon via the operator [1, 2]

L ⊃ −
εA
2

FµνXµν , (1)

where Fµν and Xµν denote the U(1)em and U(1)X field strength tensors, respectively. Since this
term is a a gauge-invariant, renormalisable operator, the kinetic mixing parameter εA, in principle,
is a free parameter of the theory. However, in many non-minimal hidden photon models εA is
generated at the loop level via vacuum polarisation diagrams as the one shown in the right panel
of Fig. 2 due to fermions charged under both U(1) symmetries running in the loop. In these models

Figure 1: The current sensitivity frontier in the landscape of experimental searches for new physics beyond
the Standard Model.
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B X B X

Figure 2: Diagrams of kinetic mixing between the hypercharge boson Bµ and the U(1)X boson Xµ at tree
level (left) and one-loop level (right).

the loop-induced kinetic mixing typically scales as εA ∝ gx/16π2, with gx denoting the coupling
constant of U(1)X .

The kinetic mixing term in Eq. (1) can be diagonalised by a non-unitary field transformation
of the kind

Aµ → Aµ − εA Xµ ⇒ e Aµ jµem → e Aµ jµem − εAe Xµ jµem . (2)

This field redefinition induces a coupling of the new X boson to the SM electromagnetic current
jµem. This interaction motivates the name hidden photon for the X boson, since it couples to the
QED current analogously to the SM photon, but suppressed by εA.

This new hidden photon can generically acquire mass. In the most simple case, the novel
U(1)X symmetry is Higgsed, i.e. it is broken by the vacuum expectation value (VEV) f of a new
scalar singlet S,

L = (DµS)†DµS ⊃
g2
x f 2

2
XµXµ . (3)

Hence, the mass of the hidden photon, mA′ ∝ gx f , is proportional to the U(1)X coupling gx . Thus,
the smaller the gauge coupling gx (or the feebler the interactions of the hidden photon) the smaller
the mass of the hidden photon. This mechanism makes hidden photons a prime candidate for new
physics hiding along the sensitivity frontier illustrated in Fig. 1 and warrants for a careful study of
matching a potential UV hidden photon model onto the low-energy QED regime.

2. A closer look at the origin of kinetic mixing

The kineticmixing in Eq. (1) of theU(1)X bosonwith the photon ofQEDcannot be fundamental
as the U(1)em only arises after electroweak symmetry breaking (EWSB). Hence, we want to study
how this operator arises from mixing in the underlying UV theory in the unbroken phase.

Naive picture. In the literature it is often assumed that the fundamental mixing of the hidden
photon is not with the SM photon, but with the hypercharge boson B of U(1)Y ,

L ⊃ −
εB
2

BµνXµν , (4)

where Bµν denotes the field strength tensor of the hypercharge boson. This mixing term can be
either elementary or generated at the loop level through fermions carrying charge under both U(1)Y
and U(1)X . These two cases are illustrated by the diagrams in Fig. 2. After decomposing the
hypercharge boson into its mass eigenstate components, Bµ = cwAµ − swZµ, where cw ≡ cos θW
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and sw ≡ sin θW denote the cosine and sine of the Weinberg angle θW , the mixing term in Eq. (4)
reads

L ⊃ −cw
εB
2

FµνXµν + sw
εB
2

ZµνXµν . (5)

Matching the terms in Eq. (1) and Eq. (5), we find the simple expression

εA = cw εB , (6)

relating the fundamental mixing of the hidden photon with the hypercharge boson, εB, and the
mixing with the SM photon in the broken phase, εA.

The full picture. A more careful treatment of the matching procedure reveals that the above
matching relation in Eq. (6) cannot be the full picture. In fact, there exists a dimension-six operator
inducing mixing between the U(1)X and the SU(2)L bosons [3],

OWX =
cWX

Λ2 H†σiH W i
µνXµν . (7)

Here H denotes the SM Higgs doublet, W i
µν is the SU(2)L field strength tensor, and Λ represents

the scale of new physics at which this operator is generated, e.g. by integrating out some heavy
new fields. In the broken phase this operator leads to an effective kinetic mixing term between the
neutral component of the weak bosons, W3, and the hidden photon of the form

OWX ⊃ −
εW
2

W3
µνXµν , (8)

where we have identified εW ≡ cWX v2/Λ2 with the Higgs VEV v. In analogy to what we
did above, we also decompose the neutral weak boson W3 into its mass eigenstate components,
W3
µ = swAµ + cwZµ, which leads to a kinetic mixing term of,

OWX ⊃ −sw
εW
2

FµνXµν − cw
εW
2

ZµνXµν . (9)

Combining this with Eq. (5), our matching relation Eq. (6) is modified to also account for the mixing
contribution with the weak boson W3,

εA = cw εB + sw εW . (10)

This is a very important result, since in generic hidden photon models with SU(2)L multiplets
charged under the novel U(1)X , the operator Eq. (7) will necessarily be generated at the one-loop
level. In these models, the loop contribution to the W3 − X mixing in Eq. (8) can be computed in
analogy to the standard Abelian mixing case [3]. We identify the kinetic mixing contribution as the
transverse component ΠWX of the full vacuum polarisation amplitude,

Π
µν
WX = ΠWX [g

µνp1 · p2 − pµ1 pν2] + ∆WX gµν , (11)

The loop contribution to the kinetic mixing is then computed as

ΠWX =−
g gx

8π2

∑
f

∫ 1

0
dx x(1 − x)T f

3
(
v
f
X + a f

X

)
log

(
µ2

m2
f
− x(1 − x)q2

)
, (12)

where the sum includes all SU(2)L degrees of freedom f with weak charge T f
3 also charged under

U(1)X with vector and axial-vector couplings v fX and a f
X , respectively.
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3. A concrete example: kinetic mixing in U(1)Lµ−Lτ

In generic U(1)X models, SM fermions can also be charged under the new symmetry, leading
to a gauge interaction of the hidden photon of the type,

Lint = −gx jµXXµ , (13)

where a priori the current jµX =
∑
ψ qψ ψ̄γµψ can include all SM matter fields, especially also

the SU(2)L quark and lepton doublets ψ = Q, L. Restricting the gauge current jµX to only con-
tain SM fields (i.e. disallowing for any new fermions), the minimally anomaly-free models are
U(1)B−L,U(1)Lµ−Le ,U(1)Le−Lτ ,U(1)Lµ−Lτ and linear combinations of these. In these models, at
the very least, (some of) the lepton doublets Li are charged under the new U(1) symmetry such
that OWX is induced via loops at the renormalizable level (since the scale at which this operator
is generated is the electroweak scale, Λ = v). We will now study how such a loop-generated term
affects kinetic mixing in the electroweak-broken and -symmetric phase in the example ofU(1)Lµ−Lτ .

In the broken phase we can perform the usual, well-known QED mixing computation with two
Dirac fermions f = µ, τ running in the loop. In the infrared (IR) limit of zero momentum transfer,
q = 0, the resulting mixing parameter reads

εA =
e gµτ
6π2 log

(
mµ

mτ

)
,

γ X

µ, τ

. (14)

Simultaneously, the naive UV computation, in which we only account for mixing with the hyper-
charge boson B, results in a mixing coefficient of

εB =
g′ gµτ

24π2

[
3 log

(
mµ

mτ

)
+ log

(mνµ

mντ

)]
,

B X

Lµ, Lτ , µR, τR

. (15)

Obtaining these two results, Eq. (14) and Eq. (15), we have explicitly confirmed that the naive
matching relation in Eq. (6) does not hold and therefore cannot be the correct prescription. From
our considerations in Section 2 we already know how to amend the naive mixing prescription, such
that the computations of the mixing in the broken and unbroken phase match. The solution is to
also take into account the loop-induced mixing between the hidden photon and the neutral SU(2)L
boson. In U(1)Lµ−Lτ the second and third generation lepton carry charge under the new symmetry.
Hence, a W3 − X mixing term is generated from the mixing with the diagram with Lµ and Lτ
running in the loop,

εW =
g gµτ

24π2

[
log

(
mµ

mτ

)
− log

(mνµ

mντ

)]
,

W 3
X

Lµ, Lτ

. (16)

The resulting mixing contribution exactly yields the missing piece to obtain the mixing coefficient
εA of Eq. (14) in the broken phase according to the full matching prescription in Eq. (10). It is
particularly noteworthy that the contributions from the neutrinos to εB and εW exactly cancel. This
is expected, since only electrically charged particles can run in the γ − X loop, such that neutrinos
can never contribute to the hidden photon mixing with the SM QED photon in the broken phase.
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4. The Higgs low-energy theorems

As a byproduct of computing all the neutral boson vacuum polarisation amplitudes, ΠµνViVj
, we

can derive universal expressions for the decay amplitudes of the Higgs to a pair of neutral bosons
from the low-energy theorem [4, 5],

lim
ph→0

M(h→ ViVj) →
∂

∂v
M(Vi → Vj). (17)

Starting from the general one-loop corrected effective low-energyLagrangian in the electroweak
broken phase, the different mixing contributions can be written as

L = −
1
4
(Fµν, Zµν,Xµν)


©­­«

1 0 εA
0 1 εZ
εA εZ 1

ª®®¬ +Π

©­­«
Fµν

Zµν

Xµν

ª®®¬ +
1
2
(Aµ, Zµ,Xµ) [M + ∆]

©­­«
Aµ

Zµ

Xµ

ª®®¬ , (18)

where M = diag(0,m2
Z,m

2
X) denotes the tree-level mass matrix of the neutral bosons and εA and

εZ are the tree-level kinetic mixing coefficients. Furthermore, the loop-generated contributions to
kinetic and mass mixing are encoded in the matrices

Π =
©­­«
Πγγ ΠγZ ΠγX

ΠγZ ΠZZ ΠZX

ΠγX ΠZX ΠXX

ª®®¬ , ∆ =
©­­«
0 0 0
0 ∆ZZ ∆ZX

0 ∆ZX ∆XX

ª®®¬ . (19)

We can diagonalise the tree-level kinetic mixing terms in Eq. (18) via a non-unitary field redefinition
given by

G =

©­­­­­­«
1 0 −

εA√
1−ε2

A
−ε2

Z

0 1 −
εZ√

1−ε2
A
−ε2

Z

0 0 1√
1−ε2

A
−ε2

Z

ª®®®®®®¬
. (20)

After diagonalisation we find the general Higgs decay amplitude to read [3],

M
µν
h→Vi Vj

= ∂v[GT ΠG]i j [p
µ
2 pν1 − p1 · p2 g

µν] + ∂v
[
GT

[
M + ∆

]
G

]
i j
gµν , (21)

where we have factored out the gauge boson polarisation vectors of the amplitude Mh→Vi Vj =

M
µν
h→Vi Vj

ε∗µ,λ(p1) ε
∗
ν,λ′(p2). To leading order in the small mixing coefficients εA and εZ , for the

rotated matrices in Eq. (19) we find the symmetric matrices,

GT ΠG = Π −
©­­­­«
0 0 εAΠγγ + εZ ΠγZ

· 0 εAΠγZ + εZ ΠZZ

· · 2εAΠγX + 2εZΠZX

ª®®®®¬
, (22)

GT
[
M + ∆

]
G =

[
M + ∆

]
−

©­­­«
0 0 0
· 0 εZ (m2

Z + ∆ZZ )

· · 2εZ ∆ZX

ª®®®¬ , (23)
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Figure 3: Diagrammatic representation of the amplitudeM(h→ γX) due to the various contributions from
fermion loops at linear order in the kinetic mixing parameters εA and εZ .

Note that the mass mixing terms, ∆ViVj , are only generated in theories where the loop fermions
have axial-vector charges under both gauge groups.

In the case that only SM fermions are charged under the novelU(1)X symmetry, the expressions
relevant for computing the Higgs decay amplitudes to photons, Z andX bosons according to Eq. (21)
are given by

∂v ΠγX(0) =
∑
f

N f
c

e gx
12 π2 v

Q f v
f
X , (24)

∂v ΠZX(0) =
∑
f

N f
c

e gx
24 π2 v

T f
3 − 2 s2

w Q f

swcw
v
f
X , (25)

∂v ΠXX(0) =
∑
f

N f
c

g2
x

24 π2 v
v
f 2
X , (26)

where the sum runs over all heavy fermions with with m f � mh, i.e. only the top quark in the SM.
In a practical example of the Higgs low-energy theorems, we can compute the branching ratios

of the SM Higgs decaying to γX and X X in a model of gauged U(1)B−L . For example, the relevant
contributions to the decay h→ γX are shown in a diagrammatic representation in Fig. 3 to leading
order in the kinetic mixing parameters εA and εZ . Assuming the new gauge boson to be light,
mX � mh, we can universally express the branching ratios to leading order in the gauge coupling
gx and the kinetic mixing parameter as

BRh→γX ' (0.92 g2
x + 6.36gxεA + 11.01ε2

A) · 10−3, (27)

BRh→XX ' g2
x(2.5 g2

x − 5.7 gxεA + 3.2ε2
A) · 10−3. (28)

Evaluating these expressions for still allowed values of the gauge coupling and mixing of gx ∼ 10−4

and εA ∼ 10−3 yields model-independent branching ratios of BRh→γX ∼ 10−8 and BRh→XX ∼

10−17. While the process h → X X seems hopeless to be tested at any conceivable future detector,
the process h → γX could be tested at an upcoming collider like the FCC-hh aiming at collecting
up to O(1010) Higgs bosons.

5. Conclusion

In summary, hidden photons are well-motivated candidates for new physics hiding along the
experimental sensitivity frontier. In the minimal setup, the interactions of these particles with the
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SM sector arises purely through kinetic mixing. Due to gauge invariance the kinetic mixing of the
novel X boson has to proceed with the hypercharge boson B in the electroweak symmetric phase.
At dimension-six, however, there exists an operator coupling the X boson to the SU(2)L bosons,
generating a mixing term between the hidden photon and W3, which can effectively arise at the
renormalisable level. In theories in which SU(2)L multiplets are carrying charge under the new
U(1)X symmetry this novel type of mixing is always generated at the one-loop level. It is vital
to take this W3 − X mixing into account in order to obtain the correct matching onto the effective
mixing with the photon in the electroweak broken phase. In essence, the correct matching of the
mixing of the hidden photon with the hypercharge and neutral weak boson, εB and εW , onto the
mixing with the photon, εA, is given by the relation

εA = cw εB + sw εW .

Importantly, the weak mixing contribution εW is unavoidably generated at the one-loop level in
the phenomenologically interesting anomaly-free hidden photon models like U(1)B−L , U(1)Lµ−Le ,
U(1)Le−Lτ , U(1)Lµ−Lτ , and combinations of these.

Finally, we have demonstrated how to obtain the decay amplitudes of the Higgs to a pair of
neutral bosons from the vacuum polarisation amplitudes via the Higgs low-energy theorems. This
method automatically generates all relevant contributions to the decay amplitude at a fixed order in
the kinetic mixing.
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