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1. Introduction

Correlation functions are key objects in Quantum Field Theory (QFT) and the quest to compute
them is of the utmost importance in Physics. Calculating correlation functions in full generality is
often a prohibitive task, and we have to rely on different approximations. Traditionally, correlation
functions are addressed in the context of perturbation theory as a series expansion with respect
to a small coupling, where individual contributions are expressed in terms of Feynman diagrams.
Alternatively, they are studied in the context of Lattice Field Theory, considering a discrete version
of Euclidean space-time and benefiting from powerful Monte-Carlo methods for the integration.
Following [1] and [2, 3], in this contribution we review how techniques and tools developed in the
context of perturbation theory can be applied to the study of lattice correlation functions, primarily
at the non perturbative level: integration-by-parts identities (IBPs) [4–6] (supplemented with sym-
metry relations) and the method of differential equations (DEQs) [7–9], cast in the mathematical
framework of twisted co-homology [10].

2. Setup and Notation

Let us consider for concreteness a scalar _𝜙4 model, whose action in the continuum limit reads

𝑆 =

∫
𝑑𝐷𝑥

1
2
𝜕`𝜙(𝑥)𝜕`𝜙(𝑥) −

𝑚2

2
𝜙2(𝑥) − _𝜙4(𝑥), 𝐷 ∈ N. (1)

Correlation functions are defined as

𝐺𝑁 (𝑥1, . . . , 𝑥𝑁 ) =
∫
D𝜙𝜙(𝑥1) . . . 𝜙(𝑥𝑁 )𝑒𝑖𝑆∫

D𝜙𝑒𝑖𝑆
. (2)

In the context of Lattice Field Theory, we consider a periodic lattice Λ with spacing 𝑎 and 𝐿` points
in the `−direction, such that the total number of lattice sites is 𝑁 =

∏𝐷−1
`=0 𝐿`. Compared to the

continuum limit, we have the following identifications∫
𝑑𝐷𝑥⇝ 𝑎𝐷

∑︁
𝑥∈Λ

, 𝜕`𝜙(𝑥) ⇝
𝜙(𝑥 + 𝑎𝑒`) − 𝜙(𝑥)

𝑎
, (3)

where 𝑥 + 𝑎𝑒` represents the lattice point adjacent to 𝑥 in the `−direction. Employing a Wick
rotation−in order to land on a space-time with Euclidean signature−and the substitutions in eq. (3),
the Euclidean action on the lattice reads

𝑆𝐸 =
∑︁
𝑥∈Λ

−
𝐷−1∑̀︁
=0

𝜙(𝑥) 𝜙(𝑥+𝑎𝑒`)+
(
𝐷+𝑚

2

2

)
𝜙2(𝑥)+_𝜙4(𝑥)

 . (4)

Alternatively, without resorting to Wick rotation, we can work directly in Minkowskian signature−i.e.
we consider “real time" quantities−with an action given by

𝑆𝑀 = 𝑖
∑︁
𝑥∈Λ

𝜙(𝑥) 𝜙(𝑥+𝑎𝑒0)−
𝐷−1∑̀︁
=1

𝜙(𝑥) 𝜙(𝑥+𝑎𝑒`)+
(
𝐷+𝑚

2

2
−2

)
𝜙2(𝑥)+_𝜙4(𝑥)

 . (5)
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In either case (𝐸 for Euclidean and 𝑀 for Minkowskian), the action has the following general
structure

𝑆• = “polynomial in the fields 𝜙(𝑥𝑖)”

= 𝑆
next neigh.
• + 𝑆

(2)
• + _𝑆

(4)
• , • = 𝐸, 𝑀,

(6)

where 𝑆
next neigh.
• constitutes the interaction terms among adjacent lattice points, 𝑆 (2)

• the sum of
quadratic terms and 𝑆

(4)
• the sum of quartic terms.

Our goal is to develop a computational strategy for integrals of the following form

𝐼a1...a𝑁 =

∫
R𝑁

exp(−𝑆•)Φ, Φ = 𝜙a1 (𝑥1) . . . 𝜙a𝑁 (𝑥𝑁 ) 𝑑𝑁𝜙, • = 𝐸, 𝑀, (7)

where the indices a𝑖 are non-negative integers.
Once integrals in eq. (7) are known, then correlation functions on a lattice are given by (cf. eq. (2))

𝐺a1...a𝑁 =
𝐼a1...a𝑁

𝐼0...0
. (8)

Actually, for reasons that will become transparent later on, we will focus on a slightly more general
class of integrals: we introduce an auxiliary parameter in the action, dubbed “auxiliary flow” and
denoted by 𝑡, according to

𝑆•⇝ 𝑆𝑡 ,• = 𝑡 · 𝑆next neigh.
• + 𝑆

(2)
• + _𝑆

(4)
• , • = 𝐸, 𝑀. (9)

The case of our interest is the limit 𝑡 → 1, where eq. (9) reduces to eq. (6).

Let us conclude this preliminary section emphasizing that, while Euclidean correlators can be
computed via very efficient Monte-Carlo methods, Minkowskian correlators are more challenging
due to the oscillating behaviour of the integrand (cf. eq. (5)).

3. Twisted Co-Homology

Readers familiar with multi-loop calculus will certainly realize that the, a priori, infinite set
of integrals described by eq. (7) are not all independent: IBPs−loosely speaking the vanishing of
a total differential under the integral sign−guarantee the existence of linear relations among them.
The mathematical framework of twisted co-homology formalizes this idea. Let us consider an
(𝑁 − 1)−differential form b, simple algebraic manipulations show that

0 =

∫
R𝑁

𝑑
(
exp(−𝑆𝑡 ,•)b

)
=

∫
R𝑁

exp(−𝑆𝑡 ,•)∇−𝑑𝑆𝑡,•b, • = 𝐸, 𝑀, (10)

where we introduced
∇−𝑑𝑆𝑡,•b = 𝑑b − 𝑑𝑆𝑡 ,• ∧ b, • = 𝐸, 𝑀. (11)

Eq. (10) suggests that there is a huge redundancy while considering differential forms separately;
we can group them into equivalence classes, declaring that two differential forms are in the same
equivalence class if they differ by ∇−𝑑𝑆𝑡,•b for any b. Equivalence classes, denoted by ⟨Φ| are
elements of the twisted co-homology group H𝑁 . Mathematically we have

⟨Φ| : Φ ∼ Φ + ∇−𝑑𝑆𝑡,•b, ⟨Φ| ∈ H𝑁 =
Ker∇−𝑑𝑆𝑡,•
Im∇−𝑑𝑆𝑡,•

, • = 𝐸, 𝑀. (12)

3
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3.1 Basis of Differential Forms

The twisted co-homology group is a finite dimensional space, and, in the case at hand, it admits
a 3𝑁 -dimensional basis [1], whose representatives are chosen as

𝜙a1 (𝑥1) . . . 𝜙a𝑁 (𝑥𝑁 ), 0 ≤ a1, . . . , a𝑁 ≤ 2. (13)

This fact can be justified as follows. In the case of our interest, we can identify the following
qualitative behaviour

∇−𝑑𝑆𝑡,• ∝ −𝑑𝑆𝑡 ,• = −𝑐•
∑︁
𝑥∈Λ

𝜙3(𝑥) 𝑑𝜙(𝑥) + “lower degree”, • = 𝐸, 𝑀, (14)

where 𝑐• = 4_ in the Euclidean case (i.e. • = 𝐸) or 𝑐• = 4𝑖_ in the Minkowskian case (i.e. • = 𝑀)
and “lower degree” represents a linear combination of differential forms−monomials−of degree
strictly lower than 3, whose explicit expressions are not relevant for the discussion.
We can consider a certain differential 𝑁-form that is not in the basis, say for concreteness

Φ = 𝜙a1 (𝑥1) . . . 𝜙a𝑘 (𝑥𝑘) . . . 𝜙a𝑁 (𝑥𝑁 )𝑑𝑁𝜙, ∃ a𝑘 > 2; (15)

then we can always construct the corresponding (𝑁 − 1)-form as1

bΦ =
(−1)𝑘−1

𝑐•
𝜙a1 (𝑥1) . . . 𝜙a𝑘−3(𝑥𝑘) . . . 𝜙a𝑁 (𝑥𝑁 )𝑑𝑁−1𝜙, • = 𝐸, 𝑀. (16)

The key point is that we can systematically replace Φ with another representative within the same
equivalence class, according to

Φ ∼ Φ + ∇−𝑑𝑆𝑡,•bΦ = Φ −Φ + “lower degree", • = 𝐸, 𝑀. (17)

The leading terms in the r.h.s. in eq. (17) cancel, and we are left with a linear combination of
monomials whose degrees are strictly lower than the original one. By repeated application of
eq. (17) we land on a combination of basis elements.
Turning the argument around: given any Φ we can always construct a suitable IBP relation such
that the original object is replaced with a linear combination of “simpler” ones−i.e. monomials of
lower degree−:

∇−𝑑𝑆𝑡,•bΦ = 0 ⇒ Φ → “lower degree", • = 𝐸, 𝑀. (18)

Eq. (18) implies that the reduction onto basis elements is just a repeated substitution rule, which
can be implemented straightforwardly in computer algebra systems2.
We conclude this paragraph with an important observation: eq. (17) (or equivalently eq. (18))
always produces positive powers of the variable 𝑡−i.e. polynomials in 𝑡−in the r.h.s.

Let us consider simple lattices with 𝐿 = 2 points in each direction, for various dimensions
𝐷, such that the total number of lattice sites is 𝑁 = 2𝐷 . The dimension of the corresponding
co-homology group−i.e. the number of independent differential forms−is given by

D 1 2 3 4
𝑁 2 4 8 16

# differential forms 9 81 6 561 43 046 721
(19)

1We employ the notation 𝑑𝑁−1𝜙 = 𝑑𝜙(𝑥1) ∧ · · · ∧ 𝑑𝜙(𝑥𝑘) ∧ · · · ∧ 𝑑𝜙(𝑥𝑁 ), where 𝑑𝜙(𝑥𝑘) is omitted.
2See also [3] for efficient implementations of the reduction algorithm.
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3.2 Basis of Integrals

At this point, it is important to stress that there is another source of redundancy in the problem
at hand, namely symmetry relations. In order to appreciate this fact, let us consider the case of an
Euclidean action in 𝐷 = 1 with two points; its explicit expression reads

𝑆𝑡 ,𝐸 = −2𝑡𝜙(𝑥1)𝜙(𝑥2) +
(
1 + 𝑚2

2

)
(𝜙2(𝑥1) + 𝜙2(𝑥2)) + _(𝜙4(𝑥1) + 𝜙4(𝑥2)). (20)

It is straightforward to see that eq. (20) is invariant under the transformations

𝜙(𝑥𝑖) → −𝜙(𝑥𝑖), 𝜙(𝑥1) ⇋ 𝜙(𝑥2). (21)

The former is a global Z2 symmetry, while the latter corresponds to a permutation of the lattice
points 𝑥1 and 𝑥2. On the one hand, differential forms are blind to symmetry relations, i.e.:

𝜙a1 (𝑥1)𝜙a2 (𝑥2) ≠ (−1)a1+a2 𝜙a1 (𝑥1)𝜙a2 (𝑥2) a1 + a2 odd,
𝜙a1 (𝑥1)𝜙a2 (𝑥2) ≠ 𝜙a1 (𝑥2)𝜙a2 (𝑥1);

(22)

on the other hand, symmetries give non-trivial relations among integrals; they imply

𝐼a1a2 = −𝐼a1a2 ≡ 0 a1 + a2 odd,
𝐼a1a2 ≡ 𝐼a2a1 .

(23)

Employing systematically such kinds of symmetries [3] the number of independent integrals
for 𝐷 dimensional lattices with 𝑁 = 2𝐷 points is summarized in the following table

D 1 2 3 4
𝑁 2 4 8 16

# independent integrals 4 13 147 66 524
(24)

We appreciate the drastic reduction comparing (19) and (24).

4. System of Differential Equations

Having at our disposal a reduction algorithm and symmetry relations, we can embed the set of
independent integrals into a vector

I =
(
𝐼1, . . . , 𝐼# indep. ints

)⊤
, (25)

and, in principle, derive the corresponding system of first order DEQs with respect to each parameter
that appears in the action

𝑑

𝑑 (•) I(𝑚2, _, 𝑡) = 𝐴•(𝑚2, _, 𝑡) I(𝑚2, _, 𝑡), • = 𝑚2, _, 𝑡. (26)

While considering a system of differential equations such as the one in eq. (26), we face (at
least) two problems: the (eventual) presence of singularities along the integration path and the
determination of the boundary vector I0. It turns out that focusing on the system of DEQs with

5
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respect to the auxiliary parameter 𝑡 is particularly convenient. We will elucidate this claim in the
next paragraph.

As we explained above, one of the features of our reduction algorithm is that it only produces
polynomials in 𝑡. Therefore, the matrix controlling the system of DEQs with respect to the variable
𝑡 takes the following form

𝐴𝑡 (𝑚2, _, 𝑡) =
𝑗max∑︁
𝑗=0

A 𝑗 (𝑚2, _) 𝑡 𝑗 , (27)

where A 𝑗 (𝑚2, _) are sparse matrices with rational dependence on (𝑚2, _) and 𝑗max is a positive
integer whose value is not important for the discussion3. Eq. (27) has poles only at 𝑡 = ∞, and it
is therefore convenient to integrate the differential equations along the segment 𝑡 ∈ [0, 1] where
singularities are absent. The value 𝑡 = 1 is our target point (cf. eq. (9)), while at 𝑡 = 0 the lattice
action drastically simplifies

𝑆𝑡=0,• = 0 · 𝑆next neigh.
• + 𝑆

(2)
• + _𝑆

(4)
• , • = 𝐸, 𝑀; (28)

there is no interaction among different lattice points, and 𝑁-dimensional integrals factorize into
products of one-fold integrals (which can be expressed even in closed analytic form): the determi-
nation of the boundary vector I0 is therefore trivial.

Combining all the elements together, we can outline a computational strategy for the numerical
evaluation of the integrals via differential equations−as the reader familiar with multi-loop calculus
may recognize, our approach is inspired by the “auxiliary mass flow" method [11] in the context of
Feynman integrals−:

• Given input and fixed values (𝑚2, _) compute the boundary vector I0;

• The matrix 𝐴𝑡 (𝑚2, _, 𝑡) is holomorphic in C (as a function of 𝑡), then also I(𝑚2, _, 𝑡) is
holomorphic in C (as a function of 𝑡) [12]; it takes the following form

I(𝑚2, _, 𝑡) =
∞∑︁
𝑘=0

I𝑘 (𝑚2, _)𝑡𝑘 (29)

• Plugging eq. (29) into the differential equation (cf. eq. (27)), derive the recurrence relation

I𝑘 (𝑚2, _) = 1
𝑘

𝑗max∑︁
𝑗=0

A 𝑗 (𝑚2, _) I𝑘− 𝑗−1(𝑚2, _); (30)

• Truncate the recursion in eq. (30) at the desired 𝑘max; the corresponding expressions evaluated
at 𝑡 = 1 yield the full set of integrals in the basis for the values (𝑚2, _) given in input.

In summary, computing lattice correlation functions via a system of DEQs boils down to sparse
matrix multiplication. For lattices of small size, such as the ones in (19) and (24), the calculation
can be performed with moderate computer resources: a desktop with 16 GB RAM.

3In the case of two lattice points in each direction−i.e. 𝐿 = 2−we have 𝑗max = 2𝐷 , where 𝐷 is the number of
dimensions.

6



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
2
0

Lattice Correlation Functions from Differential Equations Federico Gasparotto

Monte Carlo
analytic

D = 1

λ

G
11

21.510.50

0.5

0.4

0.3

0.2

0.1

0

Monte Carlo
analytic

D = 2

λ

G
11

00

21.510.50

0.3

0.25

0.2

0.15

0.1

0.05

0

Monte Carlo
analytic

D = 3

λ

G
11

00
00

00

21.510.50

0.2

0.15

0.1

0.05

0

Monte Carlo
analytic

D = 4

λ

G
11

00
00

00
00

00
00

00

21.510.50

0.1

0.08

0.06

0.04

0.02

0

Figure 1: The Euclidean correlation function 𝐺110...0 as a function of the coupling _ (with 𝑚2 ≡ 𝑚2 = 1) for
𝐷 = 1, 2, 3, 4. The blue curve is obtained through the solution of the system of differential equations. Red
dots are obtained via Monte-Carlo integration.

5. Results

We consider lattices with 𝐿 = 2 points in each direction. We focus on the correlator

𝐺110...,0 =
𝐼110...0
𝐼000...0

, (31)

meaning that we have one field at the origin and one field in the positive time-like direction.
Correlation functions as a function of _ for fixed 𝑚2 ≡ 𝑚2 = 1 in Euclidean signature for 𝐷 =

1, 2, 3, 4 dimensions are presented in Figure 1. Eq. (31) as a function of _ for fixed 𝑚2 ≡ 𝑚2 = 1
in Minkowskian signature for 𝐷 = 1, 2 and 𝐷 = 3, 4 dimensions are presented in Figure 2 and
in Figure 3 respectively. Whenever possible, we compared our results against data obtained via
Monte-Carlo integration, observing full agreement.

6. Conclusions

In this contribution, we discussed how methods developed in the context of perturbation theory
can be applied to the study of lattice correlation functions at the non perturbative level. Thanks to
IBPs identities−considered in the framework of twisted co-homology−and symmetry relations, it
was possible to identify a minimal basis of integrals and, in principle, derive a system of DEQs for
the above-mentioned basis with respect to each parameter that is present the action. We found it
convenient to introduce, in a suitable way, an auxiliary quantity, dubbed auxiliary flow 𝑡 and consider
the corresponding system of DEQs: this choice simplifies the solution and the determination of the
boundary constants. Even if we considered lattices of small size with two points in each direction,
our method is generally applicable to both Euclidean and Minkowskian signature.
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Figure 2: The Minkowskian correlation function 𝐺110...0 in 𝐷 = 1 (upper panel) and 𝐷 = 2 (lower panel) as
a function of the coupling _ (with 𝑚2 ≡ 𝑚2 = 1). The left plot shows the real part, the right plot shows the
imaginary part. The values of _ are in the range _ ∈ [0.07, 2] for 𝐷 = 1 and _ ∈ [0.1, 2] for 𝐷 = 2. The
blue curve is obtained through the solution of the system of differential equations. Red dots are obtained via
Monte-Carlo integration.
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Possible future directions may be oriented towards an optimization of our algorithm and setup
(having in mind more robust computer resources) and applications beyond a scalar _𝜙4 model: the
addition of chemical potential or the study of Yang-Mills theory, to mention a few.
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