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Flow Oriented Perturbation Theory Alexandre Salas-Bernárdez

1. FOPT’s Feynman Rules for massless scalar QFT

1.1 Feynman rules for coordinate space amplitudes

Flow Oriented Perturbation Theory [1] provides an alternative perturbative decomposition of cor-
relation functions as

Γ(𝑥1, ..., 𝑥 |𝑉ext |) =
〈
0|𝑇 (𝜑(𝑥1) · · · 𝜑(𝑥 |𝑉ext |)) |0

〉
=

∑︁
(𝐺,𝝈)

1
Sym(𝐺,𝝈) 𝐴𝐺,𝝈 (𝑥1, . . . , 𝑥 |𝑉ext |) , (1)

where the sum runs over all topologically different directed graphs (digraphs), (𝐺,𝝈), i.e. graphs 𝐺
with a specified energy flow on each propagator (an orientation 𝝈). This representation is obtained
by performing all time integrations over internal vertices,

∫
𝑑𝑦0

𝑣 , of a given Feynman integral
corresponding to graph 𝐺 with internal (external) vertices 𝑉 int (𝑉ext) and edges 𝐸 ,

𝐴𝐺 (𝑥1, . . . , 𝑥 |𝑉ext |) =
(−𝑖𝑔) |𝑉 int |

(2𝜋)2 |𝐸 |

[ ∏
𝑣∈𝑉 int

∫
d4𝑦𝑣

] ∏
𝑒∈𝐸

1
−𝑧2

𝑒 + 𝑖𝜂
. (2)

In performing the time integrations, an individual covariant Feynman integral will be expressed
into its different energy flow-oriented components:

1
Sym𝐺

𝐴𝐺 (𝑥1, . . . , 𝑥 |𝑉ext |) =
∑︁
⟨𝝈⟩

1
Sym(𝐺,𝝈) 𝐴𝐺,𝝈 (𝑥1, . . . , 𝑥 |𝑉ext |) . (3)

The integral expression for 𝐴𝐺,𝝈 (𝑥1, . . . , 𝑥 |𝑉ext |) can be found using the following Feynman rules
[1]:

1. 𝐴𝐺,𝝈 = 0 if the digraph (𝐺,𝝈) is not energy-conserving, i.e. the completed digraph (𝐺,𝝈)◦
(found by joining all external vertices in the special vertex ◦) is not strongly connected.

2. Multiply by a factor of −𝑖𝑔 for each interaction vertex.

3. For each edge 𝑒 of 𝐺 multiply by a factor −𝑖
(8𝜋2 ) | ®𝑧𝑒 |

where ®𝑧𝑒 = ®𝑦𝑣 − ®𝑦𝑢 and ®𝑦𝑣 , ®𝑦𝑢 are the
coordinates of the internal or external vertices to which the edge 𝑒 is incident.

4. For each admissible energy-flow path, p, of (𝐺,𝝈) (i.e. for each energy cycle in the canonical
cycle basis of (𝐺,𝝈)◦) multiply by a factor of 𝑖/

(
𝛾p + 𝜏p + 𝑖𝜂

)
, where

𝛾p =
∑︁
𝑒∈p

|®𝑧𝑒 | (4)

is the sum over all edge lengths that are in the path p and 𝜏p is either the time passed between
the starting and ending external vertices of the path or vanishes if the cycle does not go
through the ◦ vertex.

5. For each internal vertex 𝑣 of the graph 𝐺 integrate over three-dimensional space
∫

d3®𝑦𝑣 and
multiply by 2𝜋.

We can summarize these Feynman rules as follows. For a given digraph (𝐺,𝝈) with cycle basis Γ,
where all interaction vertices in 𝐺 are internal vertices and vice-versa, we have

𝐴𝐺,𝝈 (𝑥1, . . . , 𝑥 |𝑉ext |) =
(2𝜋𝑔) |𝑉 int |

(−4𝜋2) |𝐸 |

( ∏
𝑣∈𝑉 int

∫
d3®𝑦𝑣

) (∏
𝑒∈𝐸

1
2|®𝑧𝑒 |

) ∏
p∈Γ

1
𝛾p + 𝜏p + 𝑖𝜂

. (5)

We next illustrate the application of these rules in a specific example.
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Triangle example To illustrate the FOPT Feynman rules for covariant diagrams, we will consider
the following covariant graph

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑦3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

For the case where energy flows into the diagram through edge 𝑒1, this graph has 12 energy-
conserving orientations and 6 distinct configurations under the simultaneous replacement of 𝑥2 ↔ 𝑥3
and 𝑦2 ↔ 𝑦3. These are:

(𝑎) (𝑏) (𝑐) (𝑑) (𝑒) ( 𝑓 )

The first orientation (𝑎) is decomposed into its canonical cycle basis, {p1, p2, p3}, as

−→

p1 = {𝑒1, 𝑒4, 𝑒2} p2 = {𝑒1, 𝑒5, 𝑒3} p3 = {𝑒1, 𝑒5, 𝑒6, 𝑒2}

(6)

Using the energy-flow-oriented Feynman rules we obtain that this orientation equals

𝐴𝝈 (1) (𝑥1, 𝑥2, 𝑥3) =
𝑔3

(2𝜋)9

∫
𝑑3®𝑦1𝑑

3®𝑦2𝑑
3®𝑦3

( 5∏
𝑖=1

1
2|®𝑧𝑖 |

)
1

|®𝑧1 | + |®𝑧4 | + |®𝑧2 | + 𝑥0
2 − 𝑥0

1 + 𝑖𝜂
×

× 1
|®𝑧1 | + |®𝑧5 | + |®𝑧3 | + 𝑥0

3 − 𝑥0
1 + 𝑖𝜂

1
|®𝑧1 | + |®𝑧5 | + |®𝑧6 | + |®𝑧2 | + 𝑥0

2 − 𝑥0
1 + 𝑖𝜂

. (7)

1.2 FOPT representation of S-matrix elements

The FOPT representation of the S-matrix follows by applying a similar treatment of Feynman graphs
to S-matrix elements [1], so that an S-matrix element can be expressed as follows

𝑆({𝑝𝑖}𝑖∈𝑉ext
in
, {𝑝 𝑓 } 𝑓 ∈𝑉ext

out
) =

∑︁
(𝐺,𝝈)

1
Sym(𝐺,𝝈) 𝑆𝐺,𝝈 ({𝑝𝑖}𝑖∈𝑉ext

in
, {𝑝 𝑓 } 𝑓 ∈𝑉ext

out
) , (8)

where we sum over all FOPT graphs (energy orientations). In [1] we regard this representation as
the 𝑝-𝑥 representation of the S-matrix, since the external kinematics are given in momentum space,
whereas internal integrations are performed in coordinate space.
Picking a reference internal vertex𝑤 ∈ 𝑉 int of the graph. An S-matrix element for a given orientation
of a graph 𝐺 equals,

𝑆𝐺,𝝈 =
𝑍 |𝑉ext |/2(2𝜋)3(2𝜋𝑔) |𝑉 int |𝑖 |𝑉

ext |

(−4𝜋2) |𝐸 |𝑖 |Γext | 𝛿 (4)

( ∑︁
𝑎∈𝑉ext

𝑝𝑎

)
𝑠𝐺,𝝈 ({𝑝𝑖}𝑖∈𝑉ext

in
, {𝑝 𝑓 } 𝑓 ∈𝑉ext

out
) , (9)
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where 𝑍 are renormalization constants, and 𝑠𝐺,𝝈 = ({𝑝𝑖}𝑖∈𝑉ext
in
, {𝑝 𝑓 } 𝑓 ∈𝑉ext

out
) is the reduced S-matrix

element without trivial prefactors,

𝑠𝐺,𝝈 =

∫ [∏
𝑣∈𝑉 int\{𝑤} d3®𝑦𝑣∏

𝑒∈𝐸 int 2|®𝑧𝑒 |

] [∏
𝑎∈𝑉ext 𝑒−𝑖 ®𝑦𝑎 · ®𝑝𝑎

[∏c∈Γint 𝛾c]
F̂ {𝑝0

𝑎 }
𝐺,𝝈 (𝜸t + 𝑖𝜀1)

] �����
®𝑦𝑤=0

. (10)

In eq. (10), 𝛾c are the path lengths corresponding to paths that do not have external edges (which we
regard as cycles, Γint), ®𝑦 𝑎 are the internal vertices adjacent to vertex 𝑎, and F̂ {𝑝0

𝑎 }
𝐺,𝝈 (𝜸t + 𝑖𝜀1) is the

Fourier transform of the so called flow polytope, F {𝑝0
𝑎 }

𝐺,𝝈 . Here 𝛾t are the path lengths of truncated
routes rt, i.e. paths that do have external edges but with their length subtracted. We will elucidate
with the next example how to construct the flow polytope of a given orientation.

Triangle example To illustrate the 𝑝-𝑥 representation of the S-matrix we discuss here the contri-
bution to the S-matrix of the orientation (𝑎) in the triangle example above,

𝑝1

𝑝2

𝑝3

𝑦1

𝑦2

𝑦3

𝑒4

𝑒5

𝑒6

, (11)

where we now label the external vertex 𝑥𝑖 with its Fourier conjugate momentum 𝑝𝑖 . Our convention
is that we take 𝑝0

1 > 0 and 𝑝0
2, 𝑝

0
3 < 0. The routes of this digraph have been illustrated in eq. (6).

The three corresponding truncated routes are rt
1 = {𝑒4}, rt

2 = {𝑒5} and rt
3 = {𝑒5, 𝑒6}. Hence,

𝛾t
1 = |®𝑧4 |, 𝛾t

2 = |®𝑧5 |, 𝛾t
3 = |®𝑧5 | + |®𝑧6 |. Let 𝐸1, 𝐸2 and 𝐸3 be the energies that flow through the

respective route.
The flow polytope F {𝑝0

𝑎 }
𝐺,𝝈 for this digraph is defined by the conditions,

𝐸1, 𝐸2, 𝐸3 ≥ 0 , 𝐸1 + 𝐸2 + 𝐸3 = 𝑝0
1 , 𝐸1 + 𝐸3 = −𝑝0

2 , 𝐸2 = −𝑝0
3 , (12)

where one of the last three equations is redundant by overall momentum conservation. We can
give an interpretation to the energy-conservation condition of eq. (12) as follows: for each external
vertex 𝑣 ∈ 𝑉ext, enumerate the paths that start or end at that vertex, and correspondingly sum their
energies. Then, set the sum of such energies to be 𝑝0

𝑣 if the vertex is the starting vertex for such paths
or −𝑝0

𝑣 if it is an ending vertex. For the triangle orientation (𝑎), we can represent such constraints
graphically as follows:

𝐸1 + 𝐸2 + 𝐸3 = 𝑝0
1

𝐸1 + 𝐸3 = −𝑝0
2

𝐸2 = −𝑝0
3

𝐸1

𝐸2

𝐸3

4



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
2
6

Flow Oriented Perturbation Theory Alexandre Salas-Bernárdez

We can parameterize the polytope by setting 𝑬 = (𝐸1, 𝐸2, 𝐸3) = (𝐸,−𝑝0
3,−𝑝

0
2 − 𝐸) and let 𝐸 vary

between 0 and −𝑝0
2. The polytope F {𝑝0

𝑎 }
𝐺,𝝈 is therefore a line segment. Using this parameterization,

we can explicitly evaluate the Fourier transformation of the flow polytope associated to the digraph
above,

F̂ {𝑝0
𝑎 }

𝐺,𝝈 (𝜸t + 𝑖𝜀1) =
∫
F{𝑝0

𝑎 }
𝐺,𝝈

d𝑬 𝑒𝑖𝑬 · (𝜸t+𝑖 𝜀1) =

∫ −𝑝0
2

0
d𝐸 𝑒𝑖𝐸 (𝛾t

1+𝑖 𝜀)−𝑖 𝑝
0
3 (𝛾

t
2+𝑖 𝜀)−𝑖 (𝑝

0
2+𝐸 ) (𝛾t

3+𝑖 𝜀)

= −𝑝0
2𝑒

−𝑖 𝑝0
3 (𝛾

t
2+𝑖 𝜀)−𝑖 𝑝

0
2 (𝛾

t
2+

1
2 𝛾

t
1−

1
2 𝛾

t
3+𝑖 𝜀) sinc

(
𝑝0

2(𝛾
t
1 − 𝛾t

3)
2

)
, (13)

where sinc(𝑥) = sin(𝑥 )
𝑥

. This expression is manifestly bounded as sinc(𝑥) ≤ 1.
Finally, the reduced S-matrix contribution of the digraph above is,

𝑠𝐺,𝝈 ({𝑝1}, {𝑝2, 𝑝3}) =
∫ [∏

𝑣∈{2,3} d3®𝑦𝑣
] [

𝑒−𝑖 ®𝑦2 · ®𝑝2−𝑖 ®𝑦3 · ®𝑝3
]

8|®𝑧4 | |®𝑧5 | |®𝑧6 |
F̂ {𝑝0

𝑎 }
𝐺,𝝈 (𝜸t + 𝑖𝜀1)

���
®𝑦1=0

, (14)

where we used the freedom guaranteed by translation invariance to fix one vertex position at the
origin, in this case ®𝑦1 = 0.

1.3 Feynman rules for cut diagrams

The FOPT Feynman rules for a digraph (𝐺,𝝈) with a cut C are:

1. The integral is 0 if the closed directed graph (𝐺,𝝈)◦ is not strongly connected or if the
admissible paths on the cut do not go from the ☼-side to the -side of the graph.

2. Multiply a factor of −𝑖𝑔 (𝑖𝑔) for each ☼-side (-side) interaction vertex.

3. For each internal vertex 𝑣 ∈ 𝑉 int of the digraph (𝐺,𝝈) integrate over 3-dimensional space
with the measure 2𝜋

∫
d3®𝑦𝑣 .

4. For each edge 𝑒 of the graph multiply a factor of ∓𝑖
8𝜋2 | ®𝑧𝑒 |

with a − sign for a ☼-side or a cut
edge, and a + sign for a -side edge.

5. For each entirely uncut directed admissible path, pℓ , of (𝐺,𝝈)◦ multiply a factor of

𝑖∑
𝑒∈pℓ |®𝑧𝑒 | + 𝜏pℓ + 𝑖𝜂

if pℓ consists entirely of ☼-side edges

𝑖

−∑
𝑒∈pℓ |®𝑧𝑒 | + 𝜏pℓ + 𝑖𝜂

if pℓ consists entirely of -side edges

where the sum in the denominator goes over all edges that are in the admissible path pℓ
and 𝜏pℓ is the time difference that has passed while going through the ◦ vertex, or 0 if the
admissible path does not go through the ◦ vertex, i.e. is a cycle.

6. For each directed admissible path pℓ of (𝐺,𝝈)◦ that passes the cut C, multiply a factor of

−2𝑖 |®𝑧𝑒C |(∑
𝑒∈p☼

ℓ

|®𝑧𝑒 | −
∑

𝑒∈p
ℓ

|®𝑧𝑒 | + 𝜏pℓ + 𝑖𝜂

)2
− ®𝑧 2

𝑒C

,

5



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
2
6

Flow Oriented Perturbation Theory Alexandre Salas-Bernárdez

where we sum over the uncut ☼-side and -side edges in pℓ , p☼
ℓ

and p
ℓ

, and where 𝑒C

denotes the unique edge of the admissible path that is on the cut. The edge is unique because,
once the path passes over the cut edge, the energy cannot flow back through the cut.

Example As an example we consider the cut integrals associated to the following graph,

𝑥1 𝑥2

𝑦1

𝑦2

𝑒1

𝑒2 𝑒3

𝑒4

𝑒5 (15)

We have the following three different admissible cuts (as permutations of the internal vertices result
in topologically indistinguishable graphs),

☼



☼  ☼  . (16)

Recall that in addition to the positivity requirements only energy flows from ☼ to  are allowed on
cut edges. Therefore only the following energy flows are compatible with the cuts and the positive
energy requirement:

(17)

(1𝑎) (1𝑏) (1𝑐)

(18)

(2𝑏) (2𝑐)

In the picture above, each row features only one orientation of the graph and each column a possible
cut. In this example, there are only two admissible paths compatible with a given cut. The cut
diagram (1𝑎) has the following three routes

−→

(1𝑎) p1 p2 p3

6
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Hence, applying the FOPT-cut Feynman rules from above to the cut diagram (1𝑎) results in the
following expression

𝐴(𝝈,C) (1𝑎) = −8
(2𝜋)2𝑔4

(8𝜋2)5

∫
d3®𝑦1d3®𝑦2

|®𝑧1 | |®𝑧2 | |®𝑧3 | |®𝑧4 | |®𝑧5 |
× (19)

× |®𝑧2 |
(−|®𝑧3 | + 𝜏 + 𝑖𝜂)2 − ®𝑧 2

2

|®𝑧5 |
( |®𝑧1 | − |®𝑧3 | + 𝜏 + 𝑖𝜂)2 − ®𝑧 2

5

|®𝑧4 |
( |®𝑧1 | + 𝜏 + 𝑖𝜂)2 − ®𝑧 2

4
. (20)

where we accounted for the admissible paths through the cut, 23, 153 and 14 via the appropriate
denominators, and 𝜏 = 𝑥0

2 − 𝑥0
1.

One can check that the remaining cut diagrams, which have a different sized cut from (1𝑎), will
have the same integral measure as (1𝑎) [1]. This implies that virtual and real IR divergences could
cancel locally in FOPT.

2. Massless fermion lines in FOPT

In this section we extend the FOPT framework to massless fermion lines. To do so we use that
the fermion propagator in coordinate space, 𝑆(𝑥), is related to the scalar propagator Δ(𝑥) by
𝑆(𝑥) = 𝛾𝜇𝜕

𝜇Δ(𝑥). This leads one to modify the intermediate steps of the derivation of FOPT by
considering the integral (to be contracted with 𝛾𝜇)

𝐼
𝜇
𝑒 =

∫
𝑑𝑧0

𝑒

𝑧
𝜇
𝑒 𝛿

(
𝑧0
𝑒 − 𝑥0

𝑒

)
(−𝑧0

𝑒
2 + ®𝑧 2

𝑒 + 𝑖𝜂)2
=

∫ +∞

−∞

𝑑𝐸𝑒

2𝜋

∫
𝑑𝑧0

𝑒

𝑧
𝜇
𝑒 𝑒

𝑖𝐸𝑒 (𝑧0
𝑗
−𝑥0

𝑒 )

(−𝑧0
𝑒 + ®𝑧𝑒 + 𝑖𝜂)2(𝑧0

𝑒 + ®𝑧𝑒 + 𝑖𝜂)2
, (21)

for each fermionic edge 𝑒 of a given diagram, where 𝑥0
𝑒 is the time component of the propagator’s

argument. We see that the integration in 𝑧0
𝑒, after proper closing of the contour of integration, will

pick up the residues of the two double poles at 𝑧0
𝑒 = ±(|®𝑧𝑒 | + 𝑖𝜂). These are:

• For spatial components of the numerator (dropping the 𝑖𝜂),

Res( 𝑓 ,±(|®𝑧𝑒 | + 𝑖𝜂)) = 𝜃 (±𝐸𝑒)𝑧𝑖𝑒
( 𝑖2|®𝑧𝑒 |𝐸𝑒 ∓ 2

(2|®𝑧𝑒 |)3

)
𝑒±𝑖𝐸𝑒 ( | ®𝑧𝑒 |∓𝑥0

𝑒) . (22)

• For the time component of the numerator,

Res( 𝑓 ,±(|®𝑧𝑒 | + 𝑖𝜂)) = 𝜃 (±𝐸𝑒)
(±𝑖𝐸𝑒

4|®𝑧𝑒 |

)
𝑒±𝑖𝐸𝑒 ( | ®𝑧 𝑗 |∓𝑥0

𝑒) . (23)

Hence, this integration produces, after defining the lightlike vector 𝑧𝜇
𝑒,𝜎𝑒=±1 = (±|®𝑧𝑒 |, ®𝑧𝑒),

𝐼
𝜇
𝑒 =

𝑖

(2|®𝑧𝑒 |)3

∑︁
𝜎𝑒=±1

𝑧
𝜇
𝑒,𝜎𝑒

(
2|®𝑧𝑒 |

𝜕

𝜕 |®𝑧𝑒 |
− 2

3∑︁
𝑖=1

𝛿𝜇𝑖
) ∫ +∞

−∞
𝑑𝐸0

𝑒

(
𝜃 (𝜎𝑒𝐸

0
𝑒)𝑒𝑖𝐸

0
𝑒 (𝜎𝑒 | ®𝑧𝑒 |−𝑥0

𝑒+𝑖𝜂)
)
, (24)

where 𝜎𝑒 assigns ±1 to an edge 𝑒 for a positive or negative energy flow. This expression can be
treated similar to the scalar FOPT case.
Thus, the resulting Feynman rule is that each fermion line, 𝑒, contributes with an extra factor

𝛾𝜇
𝑧
𝜇
𝑒,𝜎𝑒

(2|®𝑧𝑒 |)2

(
2

3∑︁
𝑖=1

𝛿𝜇𝑖 − 2|®𝑧𝑒 |
𝜕

𝜕 |®𝑧𝑒 |

)
,

where we point out that two upper indices are repeated.
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3. Steps towards FOPT for massive scalar lines in arbitrary dimensions

Just as to the loop-tree duality [2–10], FOPT has similarities to Light-Cone Ordered Perturbation
Theory (LCOPT) [11], and most treatments in LCOPT can be extended to FOPT. In [11], the
inclusion of massive lines and the extension of LCOPT to arbitrary dimensions is performed by
using the dispersive representation of a scalar propagator of mass, 𝑚, in 𝐷 = 4 − 2𝜀 dimensions,

Δ(𝑧2, 𝑚) =

∫ ∞

0

𝑑𝑧′2

𝜋

Im Δ
(
𝑧′2 + 𝑖𝜂, 𝑚

)
−𝑧2 + 𝑧′2 + 𝑖𝜂

. (25)

The imaginary parts for the massless and massive scalar propagators in 𝐷 = 4 − 2𝜀 dimensions are
given in [11, 12]. Following this, one must modify eq. (2) as

𝐴𝐺 (𝑥1, . . . , 𝑥 |𝑉ext |) =
(−𝑖𝑔) |𝑉 int |

(2𝜋)2 |𝐸 |

[ ∏
𝑣∈𝑉 int

∫
d4𝑦𝑣

] [∏
𝑒∈𝐸

∫ ∞

0

𝑑𝑧′𝑒
2

𝜋

Im Δ
(
𝑧′𝑒

2 + 𝑖𝜂, 𝑚
)

−𝑧2
𝑒 + 𝑧′𝑒

2 + 𝑖𝜂

]
. (26)

With this representation, it is possible to perform the full treatment of FOPT to obtain that an
orientation, 𝝈, contributing to a graph 𝐺 in a massive scalar 𝐷-dimensional QFT equals

𝐴𝐺,𝝈 (𝑥1, . . . , 𝑥 |𝑉ext |) =

=
(2𝜋𝑔) |𝑉 int |

(−4𝜋2) |𝐸 |

( ∏
𝑣∈𝑉 int

∫
d3®𝑦𝑣

) (∏
𝑒∈𝐸

∫ ∞

0

𝑑𝑧′𝑒
2

𝜋

Im Δ
(
𝑧′𝑒

2 + 𝑖𝜂, 𝑚
)

2
√︁
|®𝑧𝑒 |2 + 𝑧′𝑒2

) ∏
p∈Γ

1
𝛾p + 𝜏p + 𝑖𝜂

. (27)

Where now each path length, 𝛾p, is modified as

𝛾p =
∑︁
𝑒∈p

(√︁
|®𝑧𝑒 |2 + 𝑧′𝑒2

)
. (28)

Thus, FOPT can be extended to massive lines and arbitrary dimensions by the inclusion of dispersive
integrals and by substituting |®𝑧𝑒 | →

√︁
|®𝑧𝑒 |2 + 𝑧′𝑒2 for each edge of a given diagram. These dispersive

integrals disappear when the massless and four-dimensions limits are taken, since the discontinuity
of Δ vanishes away from the lightcone and approaches a delta function, reproducing the known
results of [1]. The extensions of FOPT presented in these proceedings are part of ongoing research
[13].
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