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1. Introduction

The Large Hadron Collider (LHC) is entering the high-precision era with the High-Luminosity
plan (HI-LHC). This project will enable experimental collaborations to measure many interesting
observables at percent level precision. In order to be able to compare the experimentalmeasurements
with theoretical predictions, it is mandatory to achieve a theoretical uncertainty on the same level of
the experimental one. One of the ingredients that are needed in order to achieve this goal are next-
to-next-to leading order (NNLO) QCD corrections. While a lot progress has been done recently
in this framework, QCD corrections at NNLO are still not available for all the most interesting
observables at LHC.

One of the observables for which NNLO QCD corrections are yet to be obtained is the top
quark pair production in association with a jet. As the top quark is the heaviest particle in the
Standard Model (SM) of particle physics, it has many important implications for the nature of
the fundamental forces. In particular many properties of the SM are sensitive to the value of the
top quark mass as, for example, the stability of the SM vacuum whose precision measurement is
a high priority at the (LHC). The standard process which is exploited to measure the top quark
mass at the LHC is top quark pair production. This process is known with vey high precision both
theoretically and experimentally [1, 2]. However, it has been recently argued that top quark pair
production in association with a jet is even more sensitive to the top quark mass [3–5]. The state-
of-the-art for the theoretical predictions of this process is represented by the next-to-leading order
(NLO) QCD corrections [6, 7], along with complete decay information and interfaces with a parton
shower [8–12]. However, in order to match the experimental precision, see for example [13, 14],
next-to-next-to-leading order (NNLO) corrections are required.

In order to be able to perform a full NNLO prediction for this observable several computational
difficulties have to be overcome. One of the major obstacles is the computation of the required two-
loop scattering amplitudes. Recently a great progress has been made in the calculation of scattering
amplitudes for 2 → 3 processes [15–34], which led to a number of NNLO QCD theoretical
predictions [35–40]. Yet, the amplitudes necessary to perform a NNLO theoretical prediction for
top quark pair plus a jet production at LHC represent a substantial step forward with respect to
the current state-of-the-art. Indeed, the top quark mass which appear in the internal propagators
is responsible for a significant growth in the complexity of the computation. This feature affect
both the algebraic complexity in the amplitude reconstruction, and the analytic complexity of the
Feynman integrals.

In this context, I report on the recent progress made in the computation of two-loop Feynman
integrals relevant for the NNLO QCD corrections to ?? → CC̄ 9 [41]. This project builds upon
previous work where the authors computed the one-loop helicity amplitudes expanded up to O(Y2)
in the dimensional regulator [42], which are needed for the NNLO correections. In [41] the authors
studied the master integrals associated to a five-point pentagon-box topology with one internal
massive propagator, that contributes to top-quark pair production in association with a jet in the
leading color QCD planar limit. The computation represents a step forward in complexity with
respect to the five-point massless [15, 17, 43–46] and one off-shell external leg cases [47–51].

The master integrals have been computed exploiting the differential equation method [52, 53].
The system of differential equations has been written with respect to a canonical basis of master
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integrals [54]. A major bottleneck for this computation is the solution of a large system of
Integration-by-Parts (IBP) relations [55, 56]. In order to overcome this issue finite fields arithmetic
[57–59], as implemented in the FiniteFlow library [59], has been employed. We obtained a semi-
analytic solution for the master integrals through the generalised power series method [60–62], as
described in [62] and implemented in the Mathematica package DiffExp [63]. In order to solve
the system of differential equations semi-analytically, we used high precision numerical boundary
conditions obtained by means of the Mathematica package AMFlow [64], which implements the
auxiliary mass flow method [65–67]. Finally, we also derived the analytic representation of the
alphabet for the system of differential equations. Interestingly, the structure of the alphabet has the
same analytic structure as in the five-point massless [15] and in the one-mass [47] cases.

The outcome of the work presented in [41], and summarised in the present proceeding, is
two-fold. First, we obtained a solution for the master integrals under study which has the potential
for phenomenological applications, as it has been done for other processes [42, 47, 50, 68–74].
Moreover, the study of the analytic structure of the alphabet solution is a fundamental step in
order to achieve a complete analytic representation. As a consequence, the work presented in [41]
represents a fist step toward an analytic computation for the NNLO QCD corrections to top quark
pair production in association with a jet in the QCD leading color planar limit.

2. Summary of the computation

We considered the pentagon-box Feynman integral topology in 3 = 4 − 2Y dimensions as
shown in figure 1. This can be written as,

�
09,010,011
01,02,03,04,05,06,07,08 =

∫
D3:1D3:2

�
09
9 �

010
10 �

011
11

�
01
1 · · ·�

08
8

(1)

where 01, · · · , 011 ≥ 0. The topology is defined by the following set of propagators, and numerators:

�1 = :
2
1, �2 = (:1 − ?1)2 − <2

C , �3 = (:1 − ?1 − ?2)2,
�4 = (:1 − ?1 − ?2 − ?3)2, �5 = :

2
2, �6 = (:2 − ?5)2,

�7 = (:2 − ?4 − ?5)2, �8 = (:1 + :2)2, �9 = (:1 + ?5)2,
�10 = (:2 + ?1)2 − <2

C , �11 = (:2 + ?1 + ?2)2, (2)

and the integration measure is:

D3:8 =
33:8

8c
3
2
4YW� . (3)

The momenta are considered outgoing from the graphs and the particles are on-shell, i.e. ?2
1 =

?2
2 = <

2
C for the top quark external legs, while ?2

3 = ?
2
4 = ?

2
5 = 0. The kinematics of the integrals is

described by six independent invariants ®G = {312, 323, 334, 345, 315, <
2
C }, where

38 9 = ?8 · ? 9 , (4)

and <2
C is the top quark squared mass. After performing IBP reduction [56, 75], as implemented in

the software LiteRed [76, 77] and FiniteFlow [59], we found a total number of 88 MIs (see [41]
for the complete list).
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Figure 1: The pentagon-box topology contributing to ?? → CC̄ 9 in the QCD leading color planar limit.
Black lines denote massless particles and red double-lines denote massive particles.

We wrote a system of differential equations for the MIs ®I(®G, Y) in canonical form [54]:

3 ®I(®G, Y) = Y 3�(®G) ®I(®G, Y), (5)

where 3 is the total differential with respect to the kinematic invariants, and the matrix �(®G) is a
linear combination of logarithms:

�(®G) =
∑

28 log(F8 (®G)). (6)

The 28 are matrices of rational numbers, and the alphabet {F8 (®G)} is made by algebraic functions
of the kinematic invariants ®G.

2.1 Canonical Basis

The canonical basis ofMIs ®I has been constructed starting from the observation of an emerging
pattern for 2→ 3 scattering amplitudes [15, 17, 18, 43, 45, 47, 48, 50, 78–80]. This feature implies
that we are able to rely on a good set of uniform trascendental (UT) candidate MIs as starting point
for the basis construction. Specifically, one can test candidates from the MIs basis for the massless
and one-mass five-point [44, 45, 47, 50] (for e.g. ?? → , + 2 9 and ?? → 3 9) cases, as well as
other integral topologies which involve internal massive propagators1.

Guided by this initial set of data, our approach relies on the possibility to perform IBP reduction
and evaluate the differential equations matrix over finite fields. Due to the presence of square roots,
we do not attempt to construct the canonical form directly. Instead we search for a linear form,
with respect to Y, which contains only rational matrices in the kinematic invariants. Indeed, the
square roots appearing in the UT basis can be absorbed in the normalisation of the integral basis2,
and therefore we can neglect them while evaluating the differential equations over finite fields. The
strategy adopted in [41] can be then summarised as follows:

1For example a large number of MIs for the two-mass four-point ?? → ,C scattering [81] appear as subtopologies
in our 88 integral system. This feature allowed us to reduce the number of completely unknown MIs in UT form to 40.

2This approach is discussed in Ref. [59].
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• Given a starting set of UT candidate MIs, we study the Y structure of the differential equations
from a univariate slice reconstruction. Specifically, we search for a linear form in Y

3 ®J (®G, Y) = 3

(
�̂(0) (®G) + Y�̂(1) (®G)

)
®J (®G, Y), (7)

where �̂(0) is a diagonal matrix;

• We study the homogenous part of the system of differential equations sector-by-sector, in
order to determine the correct normalisation for the MIs;

• If the starting choice of integral basis, for a given sector, does not satisfies a differential
equations of the form in Eq. (7), we make a different ansatz based on criteria described
below.

Once the whole system of differential equations is in the form of Eq. (7) we can rotate it into
canonical form:

I8 = #8 9 (®G)J9 , (8)

where #8 9 (®G) is a diagonal matrix which contains the square roots of the kinematic invariants. Such
matrix satisfies the differential equation:

�̂(0) − 1
2
#23# (−2) = 0. (9)

The canonical form of the differential equations can then be written as:

3 ®I(®G, Y) = Y3
(
# (®G) �̂(1) (®G)#−1(®G)

)
®I(®G, Y) (10)

As anticipated, if the starting integral basis does not satisfies a differential equations of the
form in Eq. (7) we change the starting ansatz. This is done accordingly to a set of criteria inspired
by patterns observed in previously studied cases:

• For two and three external legs MIs the choice of candidates can involve scalar integrals with
dotted denominators;

• For four external legs MIs the choice of candidates can involve scalar integrals with dotted
denominators or the numerators �9, �10, �11;

• For five external legs, canonical MIs candidates can involve scalar integrals with the numer-
ators �9, �10, �11 and local integrand insertions `8 9 ,

where `8 9 are defined from the splitting of the loop momenta into four dimensional and (−2Y)
dimensional components,

:8 = :
[4]
8
+ : [−2Y ]

8
, `8 9 = −: [−2n ]

8
· : [−2n ]

9
. (11)

I conclude the present discussion with some remarks. First, given the high number of kinematic
invariants, and the large size of the IBPs systems to solve, it is important to ensure that the maximum
numerator rank and number of dotted propagators is minimised. As second remark, I mention that
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the method exploited to build a canonical basis might still require some work on the sub-topologies
contribution to the differential equations for a given sector. Indeed, we found that some sectors
required additional rotations in sub-sectors. However, this step was particularly simple in our cases.
Interestingly, such feature did not appear in any of the most complicated five-point topologies,
where the UT integrals can be constructed exploiting just local numerator insertions.

2.2 Analytic structure

Even though the system of differential equations has been integrate semi-analytically exploiting
the generalised series expansion method, we studied the alphabet structure of the solution. This
aspect is crucial for understanding the analytic solution and it is the first step towards constructing
a well defined special function basis for the set of MIs under consideration.

The system of differential equations can be written in terms of d-logarithmic forms using an
alphabet which is made of 71 letters F8:

3 ®I(®G, Y) = Y 3�(®G) ®I(®G, Y), �(®G) =
71∑
8=1

28 log(F8 (®G)). (12)

In order to identify the alphabet we adopted a strategy along the lines of the one described in Refs.
[82–84], which we briefly summarise. As first step we identify the set of rational letters inside the
alphabet. This can be done by looking at the denominators in the differential equations system.
The remaining letters are, therefore, algebraic in the kinematic invariants (i.e. they contain square
roots). To obtain this set of letters we proceed as follows. We determine the linear relations in
the total derivative matrix 3�(®G) and we find a minimal set of independent one forms. Then, for
each independent entry of the derivative matrix one determines which square roots appear in the
denominators. Finally, it is possible to construct an ansatz using free polynomials in the variables
38 9 which depends on the square roots in the one-form under study. The form of the ansatz depends
on the number of square roots, e.g. if there is just one square root we can use an ansatz of the kind,

Ω(0, 1) :=
0 +
√
1

0 −
√
1
, (13)

and in the case of two square roots,

Ω̃(0, 1, 2) :=
(0 +
√
1 +
√
2) (0 −

√
1 −
√
2)

(0 +
√
1 −
√
2) (0 −

√
1 +
√
2)
. (14)

While it is always possible to expand the form of Eq. (14) into one similar to Eq. (13), the structure
in Eq. (14) is preferable. Indeed, the polynomial degree of the unknown variable 0 is lower as
noted in Ref. [47].

Following this strategy we have identified an alphabet which can be split into two subsets, W'

and W�, which are, respectively, rational and algebraic in the kinematic invariants. For the rational
letters we define,

W' := W ∪W) ∪W( , (15)

and for the algebraic letters
W� := W('−1 ∪W) ' ∪W('−2. (16)

6
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The rational set of letters W' can be furthermore divided into three subsets. The subset W is
made by letters which are linear combinations of the Mandelstam variables B8 9 = (?8 + ? 9)2. The
letters in the subset W) can be written as traces over W-matrices:

tr(8 9 · · · :) = tr(/?8 /? 9 · · · /?:). (17)

Finally, the rational letters in the third subset, W( , are related to the roots that appear in the
differential equations system:

W( :=
{
V2, (Δ1)2, (Δ2)2, 4(312 + 323 + <2

C )2(Δ3)2, (Δ5)2, (Δ4)2, (Δ6)2, tr2
5
}
, (18)

which are defined as follows:

V =

√
1 −

4<2
C

B12
,

Δ1 =
√

det� (?23, ?1), Δ2 =
√

det� (?15, ?2),

Δ3 =

√
1 −

4B45<
2
C

(B12 + B23 − <2
C )2
, Δ4 =

√
1 +

4B34B45<
2
C

B12(B15 − B23)2
,

Δ5 =

√
1 −

B45<
2
C

4315323
, Δ6 =

√
1 −

B34B45<
2
C

4315323B12
,

tr5 = 4
√

det� (?3, ?4, ?5, ?1) = tr(W5/?3/?4/?5/?1), (19)

where �8 9 (®E) = E8 · E 9 is the Gram matrix.
Similarly to the rational subset of letters, also the algebraic one W� can be split into three

subsets. The first one, W('−1, contains letters which can be written in terms of the quantity Ω as
defined above in Eq. (13). Instead, the letters associated to the subset W) ', contain dependence
on the Dirac W5 matrix. Therefore, they can be written as ratios of tr±(8 9 · · · :) objects, defined as

tr±(8 9 · · · :) =
1
2

tr((1 ± W5) /?8 /? 9 · · · /?:). (20)

The final subset, W('−2, is made by letters in terms of Ω̃ as defined above in Eq. (14).
I finish this discussion we the following consideration. The alphabet structure just presented

shows a similar pattern to the ones observed in other five-particle kinematic configurations [44, 47,
50, 85]. This feature suggests that it might exists a general alphabet structure for all polylogarihmic
two-loop integrals with five or fewer legs.

2.3 Numerical Evaluation

In order to validate our work we exploited the package DiffExp [63] to evaluate numerically
the MIs. This package implements the generalised power series method [62], which gives a semi-
analytical solution to the system of differential equations as an expansion around its singular points:

®I(C, n) =
∞∑
:=0

n :
#−1∑
8=0

d8 (C) ®I (:)8
(C), d(C) =

{
1, C ∈ [C8 − A8 , C8 + A8)
0, C ∉ [C8 − A8 , C8 + A8)

, (21)

7
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®I (:)
8
(C) =

∞∑
;1=0

#8,:∑
;2=0

2
(8,;1,;2)
:

(C − C8)
;1
2 log(C − C8);2 . (22)

In the previous equations C is a variable that parametrise the integration path in the kinematic
invariants space, C8 are singular points for the system of differential equations, A8 is the radius of
convergence of the series solution around C8 and 2 (8,;1,;2):

are matrices which depend on the system
of differential equations and the boundary conditions. Since we were interested in a numerical
evaluation of the MIs, the system of differential equations has been integrated using high-precision
numerical boundary conditions obtained with the package AMFlow [64], which implements the
auxiliary mass flow method [65–67]. The numerical solution obtained with DiffExp has been
checked for several points against an independent evaluation performed with AMFlow finding full
agreement for all the points under study.

The solution for the MIs presented in Ref. [41] has not been optimised for a realistic phase-
space integration. However, the successful applications of the generalised power series method
to phenomenological studies in Refs. [42, 47, 50, 68–74], offers hope that a phenomenologically
oriented improvement of the implementation previously discussed may be achievable in the near
future.
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