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1. Introduction

The calculation of high-order Feynman integrals is crucial for the current and future precision
physics programs at particle accelerators [1]: to this end, modern methods have evolved that go
much beyond a direct evaluation. These developments began with the discovery of Integration-
by-Parts (IBP) identities in dimensional regularization [2, 3], and the introduction of the method
of differential equations [4–6]: calculations are now typically tackled with automatic algorithms
combining these ideas [7]. Further developments have involved an enhanced understanding of the
role of generalised unitarity, and of the linear functional spaces where classes of Feynman integrals
reside [8–11], and an optimised use of dimensional regularization [12]. A vast amount of work
along these lines has significantly expanded the range of processes for which high-order calculations
are possible, and has much deepened our mathematical understanding of Feynman integrals [1, 13].

Interestingly, the historical exploration of Feynman integrals via IBPs and differential equations
predates these recent developments. Indeed, the projective nature of Feynman parameter integrands
and the monodromy properties of Feynman integrals attracted early attention from mathematicians
and physicists already in the late 1960’s [14–17]. Around that time, in particular, Tullio Regge and
his collaborators explored the monodromy properties of various classes of Feynman integrals [17–
20], offering several insights that align with (and predate) contemporary findings. For example
Regge argued, already at the time [17], that Feynman integrals belong to a class of generalised
hypergeometric functions, and proposed that these functions should satisfy differential equations of
the Picard-Fuchs type.

Although actual computational algorithms didn’t emerge from these studies, Barucchi and
Ponzano [21, 22] constructed an explicit implementation of Regge’s ideas, applicable to one-loop
diagrams. The corresponding Feynman integrals, in parametric form, were organised into sets
connected by difference equations, akin to currently used IBPs; linear systems of homogeneous
differential equations in the Mandelstam invariants were then derived, mirroring the known one-loop
monodromy structure.

This note, summarising the results presented in [24], builds on the work of Regge and collabora-
tors, to propose a projective framework for deriving IBP identities and systems of linear differential
equations for Feynman integrals, directly in parameter space. The framework accommodates di-
mensional regularisation, extends to infrared-divergent integrals, and generalises naturally beyond
on loop. Interestingly, our results also underscore the role of boundary terms in IBP identities
within the projective framework: unlike the momentum-space approach in dimensional regulariza-
tion, these terms do not generally vanish in parameter space, and indeed they play a critical role in
connecting complex integrals to simpler ones.

We begin our note by setting up conventions for Feynman integrals in parameter form, in
Section 2. Next, in Section 3, we introduce projective forms, and we use their properties to
show how one can construct systems of difference equations for generic projective integrals. In
Section 4 we focus on Feynman integrals, and provide a general procedure to construct IBPs in this
context, developing the one-loop case in some detail as an example. Explicit one-loop examples
are presented in Section 5, and two-loop examples in Section 6. Finally, Section 7 briefly discusses
perspectives for future work.

2



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
5
8

Parameter-space Feynman integrals Lorenzo Magnea

2. Notations

Scalar Feynman integrals arise in loop-level perturbative calculations in any quantum filed
theory. In a momentum space formulation they take the form

𝐼𝐺 (𝜈𝑖 , 𝑑) = (𝜇2)𝜈−𝑙𝑑/2
∫ 𝑙∏

𝑟=1

𝑑𝑑𝑘𝑟

i𝜋𝑑/2

𝑛∏
𝑖=1

1(
−𝑞2

𝑖
+ 𝑚2

𝑖

)𝜈𝑖 , 𝑞𝑖 =

𝑙∑︁
𝑟=1

𝛼𝑖𝑟 𝑘𝑟 +
𝑚∑︁
𝑗=1

𝛽𝑖 𝑗 𝑝 𝑗 , (1)

where 𝑞𝑖 are the momenta flowing in each propagator, 𝑘𝑟 are the independent loop momenta, and
𝑝 𝑗 are the external momenta, while 𝑑 is the space-time dimension, and the integer exponents 𝜈𝑖

satisfy
∑

𝑖 𝜈𝑖 = 𝜈. The integration over loop momenta in Eq. (1) can be performed in full generality
by means of the Feynman parameter technique. Using the notations from Refs. [13, 25, 26], the
integral becomes

𝐼𝐺 (𝜈𝑖 , 𝑑) =
Γ(𝜈 − 𝑙𝑑/2)∏𝑛

𝑗=1 Γ(𝜈 𝑗)

∫
𝑧 𝑗≥0

𝑑𝑛𝑧 𝛿
©«1 −

𝑛∑︁
𝑗=1

𝑧 𝑗
ª®¬ ©«

𝑛∏
𝑗=1

𝑧
𝜈 𝑗−1
𝑗

ª®¬ U 𝜈−(𝑙+1)𝑑/2

F 𝜈−𝑙𝑑/2 , (2)

where the Symanzik polynomials U and F ,

U =
∑︁
T𝐺

∏
𝑖∈T𝐺

𝑧𝑖 , F =
∑︁
C𝐺

𝑠 (C𝐺)
𝜇2

∏
𝑖∈C𝐺

𝑧𝑖 − U
∑︁
𝑖∈I𝐺

𝑚2
𝑖

𝜇2 𝑧𝑖 , (3)

can be defined purely from the graph properties. To this end, let us denote by I𝐺 the set of the
internal lines of 𝐺, each endowed with a Feynman parameter 𝑧𝑖 . A co-tree T𝐺 ⊂ I𝐺 is a set of
internal lines of 𝐺 such that that the lines in its complement T𝐺 ⊂ I𝐺 form a spanning tree.
Similarly, consider subsets C𝐺 ⊂ I𝐺 with the property that, upon omitting the lines of C𝐺 from
𝐺, the graph becomes a disjoint union of two connected subgraphs. Each subset C𝐺 defines a cut
of graph 𝐺, and contains 𝑙 + 1 lines; an invariant mass 𝑠 (C𝐺) can be associated with each cut, by
squaring the sum of the momenta flowing in (or out) of one of the two subgraphs. The Symanzik
polynomial U is homogeneous of degree 𝑙, while the Symanzik polynomial F is homogeneous of
degree 𝑙 + 1, so that the integrand (measure included) is homogeneous of degree 0.

3. A projective framework

A crucial mathematical property of Feynman integrals is that their integrands are projective
forms in the space of Feynman parameters, which can be identified with PC𝑛−1. This property is
crucial for the characterisation of the function spaces to which the integrals belong, and to many
techniques for their explicit evaluation. The relevance of projective invariance was understood since
the earliest systematic studies of Feynman diagrams [17]. In this Section, we provide an extremely
concise summary of the relevant ideas.

In order to introduce projective forms, begin by considering a generic subset 𝐴, |𝐴| = 𝑎, of the
set 𝐷 = {1, . . . , 𝑁}, and define the 𝑎-form

𝜔𝐴 = 𝑑𝑧𝑖1 ∧ ... ∧ 𝑑𝑧𝑖𝑎 , (4)
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with 𝑖1 < . . . < 𝑖𝑎. One can show that 𝜔𝐴 integrates to the projective (𝑎 − 1)-form

𝜂𝐴 =
∑︁
𝑖∈𝐴

𝜖𝑖,𝐴−𝑖 𝑧𝑖 𝜔𝐴−𝑖 , 𝑑𝜂𝐴 = 𝑎𝜔𝐴 , (5)

where we introduced the signature factor

𝜖𝑘,𝐵 = (−1) |𝐵𝑘 | , 𝐵𝑘 = {𝑖 ∈ 𝐵, 𝑖 < 𝑘} . (6)

As an example, for 𝐴 = {1, 2, 3} one finds

𝜂{1,2,3} = 𝑧1 𝑑𝑧2 ∧ 𝑑𝑧3 − 𝑧2 𝑑𝑧1 ∧ 𝑑𝑧3 + 𝑧3 𝑑𝑧1 ∧ 𝑑𝑧2 . (7)

Projective forms such as 𝜂𝐴 are homogeneous of degree 1 in each coordinate 𝑧𝑖 , and they can serve
as measures of integration for projective integrals. Indeed, parametric Feynman integrands can be
represented in the general form

𝛼𝑛−1 = 𝜂𝑛−1
𝑄

(
{𝑧𝑖}

)
𝐷𝑃

(
{𝑧𝑖}

) , (8)

where 𝐷
(
{𝑧𝑖}

)
and 𝑄

(
{𝑧𝑖}

)
are polynomials of degrees such that the form (measure included) is

homogeneous of degree 0. A well-known example is the integrand for the massless one-loop box
integral, which reads

𝜓3 (𝜆, 𝑟) =
(𝑧1 + 𝑧2 + 𝑧3 + 𝑧4)𝜆

(𝑟 𝑧1𝑧3 + 𝑧2𝑧4)2+𝜆/2 𝜂{1,2,3,4} . (9)

For finite integrals both 𝑃 in Eq. (8) and 𝜈 in Eq. (2) are integers. In the presence of divergences,
as is the case for the massless box, we can incorporate dimensional regularisation by allowing for
general values of 𝑑, and thus of 𝜆 in Eq. (9).

Two theorems naturally emerge within this projective framework. First of all, an essential
property of projective forms is the following [17].

Theorem 1. The boundary of a projective form is itself projective.

This theorem arises from the properties of the operator

𝑝 :
∑︁
|𝐴|=𝑞

𝑅𝐴(𝑧𝑖) 𝜔𝐴 →
∑︁
|𝐴|=𝑞

𝑅𝐴(𝑧𝑖) 𝜂𝐴 , (10)

mapping affine 𝑞-forms into projective (𝑞 − 1)-forms. It can be shown to satisfy

𝑝2 = 0 , 𝑑 ◦ 𝑝 + 𝑝 ◦ 𝑑 = 0 . (11)

Based on these properties, a proof of the theorem can be found in [24].
Next, it is possible to show that 𝛼𝑛−1 is a closed form, while 𝜂𝑛−1 is null on any surface defined

by 𝑧𝑖 = 0. A second theorem then follows

Theorem 2. Given two integration domains, 𝑂,𝑂′ ∈ C𝑛, if their image in PC𝑛−1 is the same
simplex, then

∫
𝑂
𝛼𝑛−1 =

∫
𝑂′ 𝛼𝑛−1.

This theorem, also known as Cheng-Wu theorem [23], allows, in practice, to set to zero any subset
of the 𝑛 parameters 𝑧𝑖 in the argument of the 𝛿 function in Eq. (2), providing a useful tool for
concrete calculations.
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4. Integration by parts in projective space

The correspondence between projective forms and parametric integrals is obtained from the
usual choice of chart in projective space identifying a coordinate symplex in R𝑛 with the choice∑𝑛

𝑖=1 𝑧𝑖 = 1. With this choice one finds simply∫
𝑆𝑛−1

𝜂𝑛−1
𝑄(𝑧)
𝐷𝑃 (𝑧) =

∫
𝑧𝑖≥0

𝑑𝑧1 . . . 𝑑𝑧𝑛 𝛿

(
1 −

𝑛∑︁
𝑖=1

𝑧𝑖

)
𝑄(𝑧)
𝐷𝑃 (𝑧) . (12)

We now show how the projective structure just introduced allows to easily construct sets of difference
equations connecting families of Feynman integrals, which play the role of the conventional IBP
identities usually derived in momentum space. To this end, consider the projective (𝑛 − 2)-forms

𝜔𝑛−2 ≡
𝑛∑︁
𝑖=1

(−1)𝑖 𝜂{𝑧}−𝑧𝑖
𝐻𝑖 (𝑧)

(𝑃 − 1)
(
𝐷 (𝑧)

)𝑃−1 , (13)

where 𝜂{𝑧}−𝑧𝑖 denotes the projective volume form in PC𝑛−2, obtained by omitting the coordinate
𝑧𝑖 , and 𝐻𝑖 (𝑧) are polynomials with a degree chosen (together with 𝑃) to ensure projectivity.
Differentiating these forms generates (at the integrand level) a set of identities among parametric
integrals, which correspond to those obtained via integration by parts. One finds

𝑑𝜔𝑛−2 =
1

(𝑃 − 1)
(
𝐷 (𝑧)

)𝑃−1 𝜂{𝑧}

𝑛∑︁
𝑖=1

𝜕𝐻𝑖 (𝑧)
𝜕𝑧𝑖

−
𝜂{𝑧}(
𝐷 (𝑧)

)𝑃 𝑛∑︁
𝑖=1

𝐻𝑖

𝜕𝐷 (𝑧)
𝜕𝑧𝑖

. (14)

Eq. (14) plays a central role in our method. By suitably choosing the polynomials 𝐻𝑖 (𝑧), it allows
to close systems of linear differential equations for Feynman integrals that can be used to compute
them, just as usually done in the momentum space approach. We emphasise that these identities
apply for any number of loops or external legs. In the remainder of this section, we will discuss a
concrete implementation at the one-loop level developing the ideas of Ref. [21].

At one loop, parametric integrals have the general form

𝐼𝐺 (𝜈𝑖 , 𝑑) =
Γ(𝜈 − 𝑑/2)∏𝑛

𝑗=1 Γ(𝜈 𝑗)

∫
𝑧 𝑗≥0

𝑑𝑛𝑧 𝛿

(
1 − 𝑧𝑛+1

) ∏𝑛+1
𝑗=1 𝑧

𝜈 𝑗−1
𝑗[ ∑𝑛+1

𝑖=1
∑𝑖−1

𝑗=1 𝑠𝑖 𝑗 𝑧𝑖𝑧 𝑗

]𝜈−𝑑/2 , (15)

where we introduced the notations

𝑧𝑛+1 ≡
𝑛∑︁
𝑖=1

𝑧𝑖 , 𝜈𝑛+1 ≡ 𝜈 − 𝑑 + 1 , (16)

and for the Mandelstam invariants we use

𝑠𝑖 𝑗 =
(𝑞 𝑗 − 𝑞𝑖)2

𝜇2 (𝑖, 𝑗 = 1, . . . , 𝑛) , 𝑠𝑖,𝑛+1 = 𝑠𝑛+1,𝑖 ≡ −
𝑚2

𝑖

𝜇2 . (17)

We now make the simplest and natural choice in Eq. (14), picking the polynomials 𝐻𝑖 (𝑧) to coincide
with the numerator of the relevant integral, for each value of 𝑖. Thus we pick

𝐻𝑖 = 𝛿𝑖ℎ
©«

𝑛∏
𝑗=1

𝑧
𝜈 𝑗−1
𝑗

ª®¬
(

𝑛∑︁
𝑘=1

𝑧𝑘

)𝜈−𝑑
= 𝛿𝑖ℎ

𝑛+1∏
𝑗=1

𝑧
𝜈 𝑗−1
𝑗

, (18)
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for ℎ = 1, . . . , 𝑛. Applying this choice produces a one-loop ‘integration-by-parts’ identity that can
be written as follows [21]:

𝑑𝜔𝑛−2 +
𝑛+1∑︁
𝑘=1

(𝑠𝑘ℎ + 𝑠𝑘,𝑛+1) 𝑓
(
{R − 𝑘}0 , {𝑘}1

)
=

𝜈ℎ − 1
𝜈 − (𝑑 + 1)/2 𝑓

(
{ℎ}−1 , {R − ℎ}0

)
(19)

+ 𝜈 − 𝑑

𝜈 − (𝑑 + 1)/2 𝑓
(
{𝑛 + 1}−1 , {R − {𝑛 + 1}}0

)
,

where, following Ref. [21], we introduced an index notation such that, for the function

𝑓
(
{𝜈1, . . . , 𝜈𝑛+1}

)
≡ 𝑓

(
{R}

)
= 𝜂{𝑧}

∏𝑛+1
𝑗=1 𝑧

𝜈 𝑗−1
𝑗(∑𝑛+1

𝑖=1
∑𝑖−1

𝑗=1 𝑠𝑖 𝑗 𝑧𝑖𝑧 𝑗

)𝜈−𝑑/2 , (20)

we can raise or lower the exponents 𝜈𝑖 by adding {−1, 0, 1} in the subsets I, J and K of set R
respectively, and we denote the resulting function by

𝑓
(
{I}−1 , {J}0 , {K}1

)
. (21)

Note that the exponent of the denominator in Eq. (20) is adjusted accordingly, to maintain projective
properties. Note also that the action of raising and lowering exponents according to the convention
in Eq. (21) is subject to a constraint, arising from the definition of U in Eq. (3). Specifically, the
following sum rule holds

𝑛∑︁
𝑖=1

𝑓
(
{R − 𝑖}0 , {𝑖}1

)
= 𝑓

(
{R − {𝑛 + 1}}0 , {𝑛 + 1}1

)
. (22)

As we will see in the next section, Eq. (19) and Eq. (22) can be used to close systems of differential
equations, leading to the determination of the one-loop Feynman integrals under study. Two-loop
examples will be discussed in Section 6.

5. One-loop examples

In this section, we present two explicit examples of the use of Eq. (19). Consider first the
massless one-loop box integral, setting 𝑡/𝑠 ≡ 𝑟 and with all momenta incoming. Using dimensional
regularisation, we define

𝐼box ≡ Γ(2 + 𝜖)
∫
𝑆𝑛−1

𝜂{𝑧}
(𝑧1 + 𝑧2 + 𝑧3 + 𝑧4)2𝜖

(𝑟𝑧1𝑧3 + 𝑧2𝑧4)2+𝜖 ≡ Γ(2 + 𝜖) 𝐼 (1, 1, 1, 1; 2𝜖) , (23)

where for the box family of integrals we use the notation 𝐼 (𝜈1, 𝜈2, 𝜈3, 𝜈4; 𝜈5). Differentiating with
respect to 𝑟 raises two indices by one unit, as in

𝜕𝑟 𝐼 (1, 1, 1, 1; 2𝜖) = −(2 + 𝜖) 𝐼 (2, 1, 2, 1; 2𝜖) (24)
𝜕𝑟 𝐼 (2, 1, 2, 1; 2𝜖) = −(3 + 𝜖) 𝐼 (3, 1, 3, 1; 2𝜖) . (25)

According to a theorem by Barucchi and Ponzano [21], for any one-loop diagram a system of
differential equation can be set up, involving the desired integral, plus the ones obtained by lifting

6
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an even number of propagators by 1. For the massless box, following this construction we find that
a closed system of differential equations can be obtained for the integrals1{

𝐼 (1, 1, 1, 1; 2𝜖), 𝐼 (2, 1, 2, 1; 2𝜖), 𝐼 (1, 2, 1, 2; 2𝜖), 𝐼 (2, 2, 2, 2; 2𝜖)
}
. (26)

The system is obtained by using identities generated by Eq. (19), such as, for example,

𝑟 𝐼 (3, 1, 3, 1; 2𝜖) +
∫

𝑑𝜔𝑛−2 =
2

3 + 𝜖
𝐼 (2, 1, 2, 1; 2𝜖) + 2𝜖

3 + 𝜖
𝐼 (3, 1, 3, 1;−1 + 2𝜖) . (27)

where the integral of 𝑑𝜔𝑛−2 gives a vanishing boundary term, since

𝑧2
1𝑧3 (𝑧1 + 𝑧2 + 𝑧3 + 𝑧4)2𝜖

(3 + 𝜖) (𝑟𝑧1𝑧3 + 𝑧2𝑧4)3+𝜖
(
𝑧2𝑑𝑧3 ∧ 𝑑𝑧4 − 𝑧3𝑑𝑧2 ∧ 𝑑𝑧4 + 𝑧4𝑑𝑧2 ∧ 𝑑𝑧3

) �����
𝜕𝑆𝑛−1

= 0 . (28)

The system of differential equations obtained in this way can be written as

𝜕𝑟b ≡ 𝜕𝑟

©«
𝐼 (1, 1, 1, 1; 2𝜖)
𝐼 (2, 1, 2, 1; 2𝜖)
𝐼 (1, 2, 1, 2; 2𝜖)
𝐼 (2, 2, 2, 2; 2𝜖)

ª®®®®¬
=

©«
0 −(2 + 𝜖) 0 0
0 − 3+𝜖

𝑟
0 − 3+𝜖

𝑟

0 0 0 −(3 + 𝜖)
0 − 1

(3+𝜖 )𝑟 (1+𝑟 )
1

(3+𝜖 )𝑟 (1+𝑟 ) − 1+𝜖 +3𝑟
(3+𝜖 )𝑟 (1+𝑟 )

ª®®®®¬
b . (29)

This system can be brought to canonical form by using (for example) the technique of Magnus
exponentiation [31]. It can then be solved by iteration, and the solution, consistently with the
literature [27], is given by

𝐼box =
𝑘 (𝜖)
𝑟

[
1
𝜖2 − log 𝑟

2𝜖
− 𝜋2

4
+ 𝜖

(
1
2

Li3(−𝑟) −
1
2

Li2(−𝑟) log 𝑟 + 1
12

log3 𝑟

− 1
4

log(1 + 𝑟)
(
log2 𝑟 + 𝜋2

)
+ 1

4
𝜋2 log 𝑟 + 1

2
𝜁 (3)

)
+ O(𝜖2)

]
, (30)

with 𝑘 (𝜖) = 4 − 𝜋2

3 𝜖2 − 40𝜁 (3)
3 𝜖3.

The difference equations generated in parameter space by Eq. (19) effectively include also
dimensional-shift identities, and they connect the desired integrals to lower-point integrals through
non-vanishing boundary terms. As an example, consider the following identity for five-point
integrals:∫
𝑆{1,2,3,4,5}

𝑑𝜔3 + 𝑠13 𝐼 (1, 1, 2, 1, 1; 2𝜖) + 𝑠14 𝐼 (1, 1, 1, 2, 1; 2𝜖) =
2𝜖

2 + 𝜖
𝐼 (1, 1, 1, 1, 1;−1 + 2𝜖) , (31)

with

𝑑𝜔3 = 𝑑

[
− 𝜂{2,3,4,5}

(𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5)2𝜖

(2 + 𝜖) (𝑠13𝑧1𝑧3 + 𝑠14𝑧1𝑧4 + 𝑠24𝑧2𝑧4 + 𝑠25𝑧2𝑧5 + 𝑠35𝑧3𝑧5)2+𝜖

]
. (32)

1It is well-known that a basis of master integrals for the massless box requires only three integrals. Here we are
simply illustrating the Barucchi-Ponzano construction, which in this case yields an over-complete basis, and we have
not attempted optimisations. On the other hand, the method correctly predicts the size of the basis for the most general
one-loop diagram, as recently confirmed by Refs. [28–30].
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The integration of this form using Stokes theorem produces a non-vanishing boundary term, corre-
sponding to the one-loop box integral with one external leg off-shell. Specifically, one finds∫

𝑆{2,3,4,5}

𝜂{2,3,4,5}
(𝑧2 + 𝑧3 + 𝑧4 + 𝑧5)2𝜖

(𝑠24𝑧2𝑧4 + 𝑠25𝑧2𝑧5 + 𝑠35𝑧3𝑧5)2+𝜖 = 𝐼
(1)
box (𝑠25) , (33)

where in this case 𝑠25 is the mass of the off-shell leg. Using similar identities, dimensional-shift
relations for the one-loop pentagon [32] can easily be reproduced. One finds

2(2 + 𝜖) 𝐼 (1, 1, 1, 1, 1; 1 + 2𝜖) =

{
𝑠13𝑠24 − 𝑠13𝑠25 − 𝑠14𝑠25 + 𝑠14𝑠35 − 𝑠24𝑠35

𝑠13𝑠14𝑠25
𝐼
(1)
box (𝑠25)

− 𝑠13𝑠24 + 𝑠13𝑠25 − 𝑠14𝑠25 + 𝑠14𝑠35 − 𝑠24𝑠35
𝑠13𝑠24𝑠25

𝐼
(2)
box (𝑠13)

− 𝑠13𝑠24 − 𝑠13𝑠25 + 𝑠14𝑠25 − 𝑠14𝑠35 + 𝑠24𝑠35
𝑠13𝑠24𝑠35

𝐼
(3)
box (𝑠24)

+ 𝑠13𝑠24 − 𝑠13𝑠25 + 𝑠14𝑠25 − 𝑠14𝑠35 − 𝑠24𝑠35
𝑠14𝑠24𝑠35

𝐼
(4)
box (𝑠35)

− 𝑠13𝑠24 − 𝑠13𝑠25 + 𝑠14𝑠25 + 𝑠14𝑠35 − 𝑠24𝑠35)
𝑠14𝑠25𝑠35

𝐼
(5)
box (𝑠14)

}
+ 2𝜖 𝐼 (1, 1, 1, 1, 1;−1 + 2𝜖) . (34)

Since the integral in the last line is finite in 𝑑 = 4, this gives the well-known result stating that
the massless pentagon integral is given by a liner combination of box integrals, up to corrections
vanishing in four dimensions.

6. Two-loop examples

We now very briefly discuss the application of the method beyond one loop. A first interesting
case is given by the family of 𝑙-loop sunrise diagrams, i.e. diagrams contributing to a two-point
function, with two vertices connected by 𝑙 + 1 propagators, illustrated in Fig. 1. These integrals
have been extensively studied in recent years, since they provide a natural laboratory for multi-loop
calculation, and in particular, with massive legs, provide the simplest example of integrals involving
elliptic curves, and thus yielding functions beyond polylogarithms (see, for example, [33–43] and
references therein).

The first Symanzik polynomial for 𝑙-loop sunrise integrals is given by

U𝑙 =

𝑙+1∑︁
𝑖=1

𝑧1 . . . 𝑧𝑖 . . . 𝑧𝑙+1 , (35)

where 𝑧𝑖 denotes the omission of 𝑧𝑖 . Eq. (35) displays the high degree of symmetry of the graph,
while the second Symanzik polynomial F depends on the configuration of masses on the internal
legs. In the specific case of 𝑙 = 2 and equal internal masses, the Feynman parametric integral is

𝐼
(
𝜈1, 𝜈2, 𝜈3;𝜆4

)
=

∫
𝑆{1,2,3}

𝜂3 𝑧
𝜈1−1
1 𝑧

𝜈2−1
2 𝑧

𝜈3−1
3

(
𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1)𝜆4[

𝑟 𝑧1𝑧2𝑧3 − (𝑧1 + 𝑧2 + 𝑧3)
(
𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1

) ] 2𝜆4+𝜈
3

. (36)
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𝑧1

𝑧2

..

..

𝑧𝑛+1

Figure 1: Sunrise diagram at 𝑙 loops.

By choosing a suitable numerator in our master identity, Eq. (14),

𝐻 (𝑧) = 𝑧
𝜈1−1
1 𝑧

𝜈2−1
2 𝑧

𝜈3−1
3

(
𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1

)𝜆4 , (37)

one easily derives integration by parts identities, and one can build a linear system of differential
equations that closes (as expected) on the three master integrals, 𝐼 (1, 1, 1; 3𝜖), 𝐼 (2, 1, 1; 1 + 3𝜖),
and the one-loop tadpole integral 𝐼 (2, 2; 1 + 3𝜖). Interestingly, also in this case the non-vanishing
boundary term provides an inhomogeneous contribution to the system. It arises form the basis
integral ∫

𝑑𝜔1 =
1

2(1 + 𝜖)

∫
𝑆{1,2}

𝜂{1,2}
(𝑧1𝑧2) 𝜖[

− (𝑧1 + 𝑧2)
]2+2𝜖 =

(−1)2𝜖

2 + 2𝜖
Γ2(1 + 𝜖)
Γ(2 + 2𝜖) , (38)

corresponding to the massive one-loop tadpole. In two space-time dimensions, the sunrise integral
is finite and the linear system can be analysed for 𝜖 = 0. More precisely, as discussed in more detail
in [24], the first-order differential equations can be combined into a single second-order equation
for the equal-mass sunrise, which has long been known to be of elliptic type [33, 44, 45]. We find

𝑟

3
𝑑2

𝑑𝑟2 𝐼 (1, 1, 1; 0) +
(
1
3
+ 3
𝑟 − 9

+ 1
3(𝑟 − 1)

)
𝑑

𝑑𝑟
𝐼 (1, 1, 1; 0)

−
(

1
4(𝑟 − 9) +

1
12(𝑟 − 1)

)
𝐼 (1, 1, 1; 0) =

2
(𝑟 − 1) (𝑟 − 9) . (39)

It is important to note that the procedure we followed is not expected to generalise smoothly to
the two-loop sunrise diagram with unequal masses, since a straightforward application of Stokes’
theorem in that case must take into account the presence of singularities at the simplex boundaries:
the difference between the two cases is discussed in detail in Ref. [46]. We leave the analysis of
the general case to future work. On the other hand, we note that our method readily reproduces
the classic results of Ref. [3] for two-point, five-propagator integrals, which can be systematically
reduced to four-propagator integrals yielding simple combinations of Γ functions. Once again,
boundary terms play a distinctive role in parameter space, as discussed in detail in [24].

7. Perspectives

In this note, we have summarised the results of Ref. [24], where we introduced a projective
framework for deriving IBP identities and differential equations for Feynman integrals directly in
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parameter space, building upon very early work by Tullio Regge and collaborators [17–22]. Specif-
ically, we showed how these early techniques can be adapted to include dimensional regularization,
and how they can be generalised beyond one loop.

Comparing the parameter-space method to momentum-space approaches, it’s clear that the
organisation of calculations differs significantly. The integral bases and the resulting differential
equations generated by the projective framework are in general distinct from the conventional ones.
One notable aspect of this framework is the role played by boundary terms, which vanish in the
momentum-space approach. In this case, instead, they play a crucial role, linking complex integrals
to simpler ones. We note also that parameter-space integrands closely mirror the graph symmetries,
and circumvent issues related to loop-momentum routing and irreducible numerators, which can
complicate momentum-space algorithms. Importantly, the projective framework aligns closely with
the algebraic structures underpinning Feynman integrals, which may provide direction for future
progress.

The present work is largely a feasibility study: for the future, the goal is clearly to extend these
techniques to more complex integrals, including higher-loop and multi-scale examples, possibly
developing automated tools. Besides the obvious interest in direct physics applications, this will
allow for a necessary detailed comparison of parameter-space and momentum-space approaches,
including computational aspects.
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