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The inconsistency between the fixed-order (FO) and contour-improved (CI) representation of the
QCD corrections to the inclusive hadronic tau decay width limits the precision to which the strong
coupling can be determined from this process. It has recently been shown that subtracting the
infrared renormalon divergence related to the gluon condensate resolves the discrepancy. Here we
suggest to employ the gradient flow to define gauge-invariant regularized operators and to use the
corresponding condensates in the operator product expansion. The associated rearrangement of
the perturbative series results in automatic renormalon subtraction without the need to determine
explicitly the Stokes constants that normalize the divergent asymptotic series. Applying this
method to the gluon condensate, we find that the CI series is modified and now agrees with
the (unmodified) FO series. This conclusively demonstrates the preference for the fixed-order
approach, as has been advocated long ago.
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1. Introduction

The inclusive hadronic decay width of the τ-lepton supplies an important measurement of the
strong coupling αs(µ) (in the MS scheme) at the relatively low scale µ = mτ = 1.777GeV. It
can be computed systematically in perturbation theory in terms of the operator product expansion
(OPE) of the Adler function D(Q2) [1]. The perturbative coefficients are known to the five-loop
O(α4

s ) order [2] and the vacuum condensate and other power-suppressed corrections amount to
less than 5% of the perturbative correction. Making use of analyticity of the Adler function, the
inclusive hadronic τ decay width is computed from a weighted integral of the Adler function over
a circle in the complex Q2-plane. The result can be expanded in αs(mτ), a representation known
as fixed-order perturbation theory (FOPT). Alternatively, the contour integral of αs(Q2)n in the
Adler function expansion is computed exactly without re-expansion in αs(mτ). At first sight, this
contour-improved representation (CIPT) [3, 4] appears to be the method of choice, since it sums
potentially large “π2-terms” from the analytic continuation of logarithms into the complex plane.

However, the authors of Ref. [5] noted that contrary to expectation, the numerical difference
between the FO and CI approximations does not decrease as one adds successively more orders, and
traced the origin of the problem to the fact that QCD perturbative expansions are only asymptotic
series, specifically due the so-called renormalon divergence [6, 7]. Based on a plausible ansatz
for the Borel transform of the series expansion, it was shown that the FOPT series approaches the
Borel sum within its ambiguity, while CIPT does not, with the conclusion that CIPT should be
abandoned. (A mathematical analysis that explains this behaviour of CIPT has appeared shortly
before this talk [8].) Further analysis [9] showed that the numerical difference between FOPT and
CIPT is caused by the infrared (IR) renormalon pole related to the gluon condensate in the OPE
despite the fact that its contribution to the τ decay width is suppressed by the weight function that
relates the τ width to the Adler function.

The discrepancy between the FOPT and CIPT predictions for the hadronic τ width has been a
major limitation for the strong coupling determination, since a definitive resolution of the problem
should be such that both methods approach asymptotically the same value of the (appropriately
defined) Borel sum. A solution that meets this requirement was proposed recently [10, 11]. The idea
is to subtract the leading IR renormalon divergence from the Adler function series, very similar to
what is routinely done for the pole mass renormalon, where one defines (leading) renormalon-free
quark mass schemes (see the review [12]). The proposed subtraction scheme requires that one
first determines the normalization (Stokes constant) of the infrared renormalon, which can only
be done approximately in practice, since the Stokes constant is non-perturbative. The authors of
Refs. [10, 11] demonstrated that the subtraction has little effect on the FOPT series (due to the
above-mentioned suppression of the gluon condensate and the associated renormalon series), but
brings the CIPT series in line with the FOPT one asymptotically, in agreement with the earlier
interpretation [5] of the FOPT-CIPT discrepancy. In this method, one then combines the subtracted
series with the ill-defined MS-scheme gluon condensate to yield a (leading) renormalon-free Adler
function series and an unambiguous gluon condensate. Obtaining a non-perturbatively defined
gluon condensate by such a combination has been attempted earlier [13] but turned out to be
difficult in practice.

In this proceedings, we describe a renormalon subtraction procedure based on the gradient
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flow [14, 15] that circumvents the need to obtain the Stokes constant and simultaneously provides
a non-perturbative definition of the gluon condensate that can be implemented with existing lattice
QCD technology. We also report first results from our study [16] of the FO and CI hadronic τ decay
series in this method.

2. Gradient-flow renormalon subtraction and definition of condensates

The connection between the gluon condensate and the leading IR renormalon divergence in the MS
scheme series of the Adler function has been known for a long time [17, 18]. It is also well-known
that if the OPE was implemented with an explicit momentum cut-off, the IR renormalons in the
short-distance coefficients would disappear and the ambiguity in subtracting the power divergence
of the condensates would also be removed [19]. The reason why such procedures have not been
employed in practice is that simple cut-off definitions of the gluon condensate are not gauge-invariant
and further it would not be possible to compute the perturbative series (for the Adler function) to
the five-loop order in the presence of a cut-off.

We propose to define the gradient-flow regularized gluon condensate as the matrix element
of the product of the corresponding fields at finite flow time t. The basic idea is general, and
applies to other matrix elements of local operators appearing in the OPE. It works because the
gradient-flowed fields are smeared fields and composite operators of flowed fields do not need
operator renormalization. The power-divergences of local higher-dimension operators reappear as
singular terms as t → 0. Thus, gradient-flowed local operators are naturally defined with a cut-off
or order 1/

√
t with the crucial advantage that gauge-invariance is preserved. The gradient-flowed

gluon condensate is identical to the so-called action density

E(t) ≡
g2
s

4
〈0|G̃A

µν(t)G̃
Aµν(t)|0〉 , (1)

where the matrix-valued field strength is defined in terms of the flowed gluon field [14]

G̃µν(t) = ∂µBν(t) − ∂νBµ(t) − igs
[
Bµ(t), Bν(t)

]
(2)

by the standard expression. The action density has been studied non-perturbatively on the lattice as
a function of the flow parameter t [14]. For small flow time, its OPE is given by

E(t) = π2

(
C̃1(t)

t2 + C̃G2(t)〈
αs
π

G2〉 + O(t)

)
. (3)

The most singular term 1/t2 corresponds to the quartic power divergence of the local operator
G2 = GA

µνGAµν and its mixing into the unit operator with coefficient C̃1(t), which can be computed
perturbatively in the strong coupling. The next term involves the usual local gluon condensate,
which we define as the scale-invariant gluon condensate

〈
αs
π

G2〉 ≡
β(αs)

πβ0αs
〈0|GA

µνGAµν |0〉 . (4)

The coefficient C̃1(t) has been computed to O(α2
s ) in [14] and O(α3

s ) in [20], the coefficient C̃G2(t)
is known to next-to-next-to-leading order (NNLO) O(α2

s ) from [21].
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3. Gradient-flow renormalon-subtracted Adler function

The Adler function is defined in terms of the vector-current two-point function, and expanded as

D(s) = −s
dΠ(s)

ds
=

Nc

12π2

∞∑
n=0

an
µ

n+1∑
k=1

k cn,k lnk−1 −s
µ2 =

Nc

12π2

∞∑
n=0

cn,1 an
Q

=
Nc

12π2

[
1 + aQ + 1.64a2

Q + 6.37a3
Q + 49.08a4

Q + . . .
]
. (5)

Here s = −Q2 and aµ = αs(µ)/π (cn,n+1 = 0 except for n = 0). The series is known up to the
five-loop order [2]. The numerical values refer to the relevant case with n f = 3 massless quark
flavours. Including the leading gluon condensate correction in the OPE, we may write

D(Q2) =
Nc

12π2

(
C1(Q2) +

CG2(Q2)

Q4 〈
αs
π

G2〉 + O(1/Q6)

)
. (6)

The coefficient function C2
G(Q

2) of the gluon operator is known to O(αs) [22] and NNLO O(α2
s )

[23]. The expansion of C1(Q2) given by the second line of (5) is an asymptotic series. The leading
divergence arises from an ultraviolet (UV) renormalon. Its normalization (Stokes constant) turns
out to be numerically small. At intermediate perturbative orders, the dominant component of the
asymptotic expansion is of IR origin. The corresponding IR renormalon series takes the form

CIR
1 (Q

2) = CG2(Q2)
µ4

Q4

∑
n

αn+1
s (µ)K

(
−
β0
a

)n
n! nb

(
1 +

s1
n
+O(1/n2)

)
, (7)

where a = 2 is related to the dimension of the gluon condensate operator, b, s1 to the QCD beta
function, and K is the unknown Stokes constant. The relation is a consequence of the fact that the
Adler function is an observable, hence the ambiguity in defining the sum of the asymptotic series
must be fixed by whatever scheme one chooses to define the gluon condensate non-perturbatively.

Since the action density provides such a definition, the IR renormalon divergence of C̃1(t)must
have exactly the same form as (7) with CG2(Q2) replaced by C̃G2(Q2). We therefore solve (3) for
〈
αs

π G2〉, and eliminate it from (6) to obtain

D(Q2) =
Nc

12π2

( [
C1(Q2) −

r
t2Q4 C̃1(t)

]
︸                       ︷︷                       ︸

renormalon cancels

+
r

Q4
E(t)
π2︸    ︷︷    ︸

nonpert. defined

+ O(1/Q6)

)
(8)

with
r =

CG2(Q2)

C̃G2(t)
=

2π2

3

(
1
6
−

35
24

αs(µ)

π
+ O(α2

s )

)
. (9)

The key advantage of (8) over (6) is that the subtraction solves both problems of the standard OPE:
the perturbative series in square brackets is free of the leading IR renormalon divergence, while
the leading non-perturbative correction is now well-defined and can be computed directly on the
lattice.

In the following, we discuss the perturbative expansion of the subtracted Adler function. Both,
the Adler function and the subtraction term are known to rather high orders from the perspective of
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multi-loop computations, but there is a slight mismatch as the subtraction term is available only to
O(α3

s ). In previous studies of the behaviour of the perturbative expansion [5], it proved instructive
to merge the exactly known low-order coefficients with the asymptotic behaviour to model the series
expansion to all orders. For the Adler function, an estimate of the O(α5

s ) coefficient is included,
and then c1, . . . c5 are employed to determine the five unknown parameters of the ansatz

B[D](u) = B[DUV
1 ](u) + B[DIR

2 ](u) + B[DIR
3 ](u) + dPO

0 + dPO
1 u (10)

for the Borel transform of the Adler function. The first three terms on the right-hand side incorporate
the first UV renormalon and first two IR renormalon singularities with unknown Stokes constants,
which together with dPO

0 , dPO
1 are chosen such that c1, . . . c5 are reproduced exactly from the

expansion of the Borel transform in u. We refer to [5] for the explicit expressions and details.
For the subtraction term, three low-order terms e1, e2, e3 in the expansion of E are available.

However, the series expansion of E has no UV renormalons, while the Stokes constant of the gluon
condensate renormalon series E IR

2 is tied to DIR
2 to effect the renormalon cancellation related to

the universal gluon condensate. Hence no further information is required to determine the three
parameters of the ansatz

B[E](u) = B[E IR
2 ](u) + B[E IR

3 ](u) + ePO
0 + ePO

1 u (11)

for the Borel transform of the series expansion of the subtraction term in terms of the three exactly
known coefficients e1, e2, e3.

For the following analysis we implement the above-described Borel transform model of [5],
generalized to 5-loop accuracy for the QCD beta-function and including the O(α2

s ) contribution to
CGG(Q2) [23]. The expression for r is included in the present preliminary analysis only to O(αs).
We set µ = mτ , αs(mτ) = 0.34, and the gradient-flow time to 8t = 20/m2

τ , which corresponds to a
low UV cut-off on the gradient-flow regularized gluon condensate at the limit of perturbativity.

In Figure 1 we show the cumulative partial sum to order n of the series expansion of the
perturbative correction to the Adler function, more precisely to ∆D , defined as

D(s) =
Nc

12π2 [1 + ∆D] . (12)

The upper (blue) points show the unsubtracted Adler function, which increases slowly with order
until after the 10th order the sign of the added terms begins to alternate as a consequence of the
dominance of the first UV renormalon. The sign alternation becomes visible only at such high
orders as the normalization of UV renormalons is suppressed in the MS scheme [24] as can be
checked explicitly in the so-called large-β0 approximation [25–27]. The renormalon-subtracted
Adler function (lower, orange points) hares this feature, as the subtraction term does not affect the
UV renormalon behaviour. We then observe that the main difference to the standard unsubtracted
series (5) is that in intermediate orders the subtracted series terms are very small and the partial
sum up to the 8th order almost coincides with the subtracted Adler functions at O(α2

s ).
The Adler function including condensate corrections should be independent of the subtraction

term, which suggests that the gradient-flow regularized gluon condensate differs significantly from
the standard one. The standard definition is ambiguous, but comparison with Figure 6 of [5] shows

5
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Figure 1: Unsubtracted and gradient-flow subtracted Adler-function series, summed to perturbative order n.

that the ambiguity is smaller than the difference between the two sets of points in Figure 1 near
the minimal term of the unsubtracted series at the fifth perturbative order. Nevertheless, for the
following analysis of the hadronic τ lepton width in the FO and CI expansion, the value of the
gradient-flow regularized gluon condensate is not important, since its contribution is suppressed by
two powers of αs relative to the Adler function.

4. Hadronic tau decay series

Turning to the hadronic τ lepton width, we write the QCD contribution in the standard form

Rτ = − iπ
∮
|x |=1

dx
x
(1 − x)3 3 (1 + x) 2D(M2

τ x) = Nc

[
1 + δ(0) + power corrections

]
. (13)

The perturbative correction to the parton-model prediction Rτ = 3 is quantified by δ(0). From (5)
one finds

δ
(0)
FO =

∞∑
n=1

a(M2
τ )

n
n∑

k=1
k cn,k Jk−1 with Jl ≡

1
2πi

∮
|x |=1

dx
x
(1 − x)3 (1 + x) lnl(−x) (14)

in FOPT, and

δ
(0)
CI =

∞∑
n=1

cn,1 Ja
n (M

2
τ ) with Ja

n (M
2
τ ) ≡

1
2πi

∮
|x |=1

dx
x
(1 − x)3 (1 + x) an(−M2

τ x) (15)

in CIPT, resulting in the following expansions for the first four exactly known (in brackets: plus the
estimate of the fifth) terms:

δ
(0)
FO = 0.1082 + 0.0609 + 0.0334 + 0.0174 (+ 0.0088 ) = 0.2200 (0.2288) (16)

δ
(0)
CI = 0.1479 + 0.0297 + 0.0122 + 0.0086 (+ 0.0038 ) = 0.1984 (0.2021) (17)

6
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Figure 2: Perturbative correction δ(0) to the inclusive hadronic τ lepton width summed to order αn
s in FOPT

(blue), CIPT (orange) and renormalon-subtracted CIPT (green).

The observation that the partial sums do not approach each other upon adding successive terms
illustrates the FOPT-CIPT discrepancy.

We extend (14), (15) to include the subtraction term of the Adler function. It is important to
note that the subtraction term contributes to the FO coefficient only when it contains a ln Q2/µ2,
which can appear only through CG2 in r . As can be seen from (9), this happens only from
O(α2

s ). Hence, to the NLO r-order employed here, the unsubtracted and gradient-flow renormalon-
subtracted FO series for the hadronic τ decay width are identical. This reflects the mentioned
suppression of the gluon condensate contribution to inclusive tau decay. As a consequence, the
power correction stemming from the gluon condensate is a sub-percent effect numerically. To the
contrary, the gradient-flow subtraction contributes to the CI series from the first order in αs, which
demonstrates explicitly that the CI prescription is incompatible with the OPE. Numerically, the
renormalon-subtracted CI series reads in the first five orders:

δ
(0)
CI,RS = 0.1542 + 0.0362 + 0.0185 + 0.0118 (+ 0.0053 ) = 0.2207 (0.2259) (18)

Comparing this to the FO series (16), we observe that the two series are now close to each other from
the fourth order. Figure 2 shows the FO, CI and subtracted CI-RS series in higher orders adopting
the Borel function ansatz discussed above. This demonstrates conclusively that the renormalon-
subtraction via gradient flow solves the original FOPT-CIPT discrepancy in favour of FOPT as
advocated in [5]

5. Conclusion

The discrepancy between the fixed-order and contour-improved computation of the perturbative
QCD corrections to the inclusive hadronic τ-lepton decay width [5, 9] has limited the precision to
which the strong coupling can be determined from this process. The issue was recently resolved
by gluon-condensate renormalon subtraction [10, 11]. In the present work we suggested a new

7
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method to perform renormalon subtraction by defining the local operators in the OPE by their
gradient-flow representation at finite flow time t. The flow time acts as a gauge-invariant UV
cut-off. The rearrangement of perturbative corrections from the MS perturbative series into the
gradient-flow regularized operator automatically subtracts the IR renormalon divergence of the
series associated with the corresponding operator. The advantage of this method over previous ones
is that it avoids the determination of the normalization (Stokes) constant of the renormalon series
while simultaneously providing a non-perturbatively valid definition of the condensates, allowing
for a consistent addition of power corrections to the perturbative series. The flowed operators at the
required value of t can be computed on the lattice. The gradient flow separates the continuum limit
a → 0 on the lattice from the cut-off scale 1/

√
t defining the renormalon subtraction, and allows

one to define cut-off condensates in the continuum.
Applying this method to the gluon condensate, we find that the CI series for the hadronic

tau width is significantly modified despite the fact that the gluon condensate makes a numerically
negligible correction to the OPE for inclusive τ-lepton decay. Within the approximations employed
in the present study, the FO series remains unaltered by the subtraction due to the inclusive spectral
weight function that suppresses the gluon condensate by two powers of αs. Fig. 2 shows the three
series expansions (FO, CI, CI-renormalon subtracted) and conclusively demonstrates the preference
for the FO approach (as advocated in [5]), since the FO and subtracted CI series are in full agreement.

The present analysis should be refined by considering the dependence of the subtraction on
the renormalization scale µ and flow time t. In principle, r from (9) is already available to
O(α2

s ). Including this term causes a technical complication, since the subtraction term acquires
a logarithmic Q-dependence at this order, but has little numerical effect on the final result. The
details of this analysis will be presented in [16].
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