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1. Introduction

Nowadays Monte-Carlo event generators typically feature automatic matching of parton show-
ers to next-to-leading-order (NLO) matrix elements. While these procedures have been devised
a long time ago, we focus here on their interplay with the logarithmic accuracy of the parton
shower. More precisely, we investigate the effect of three NLO matching schemes on the logarith-
mic structure of the NLL-accurate PanScales showers [1, 2], for the simple cases of 𝛾∗ → 𝑞𝑞 and
𝐻 → 𝑔𝑔 decays: POWHEG [3, 4] and MC@NLO [5] matching, as well as a multiplicative scheme
(internal matrix-element correction for the first shower emission). Ideally, the matching schemes
should retain the NLL accuracy of the showers; additionally, if performed correctly, we expect
NLO matching to augment that accuracy, and provide next-to-next-to-double-logarithmic (NNDL)
accuracy for the 2-jet rate and for global event-shape observables.

2. POWHEG matching

Multiplicative and MC@NLO matching straightforwardly achieve NNDL accuracy for global
event shapes, essentially because these two schemes do not modify the structure of shower emissions
when they are soft and/or collinear (i.e. deep in the infrared region). Details of the implementation
of the two schemes in the PanScales framework, as well as numerical evidence for NNDL accuracy,
are provided in Ref. [6].

In contrast, within POWHEG matching, the first emission is always handled externally by a
so-called “hardest emission generator" (HEG). As we will show, the handover to the parton shower
needs to be performed with care in order to reach NNDL accuracy. Schematically, the POWHEG
matching procedure is defined by the following formula:

d𝜎 = �̄�(ΦB) 𝑆heg(𝑣heg
Φ ,ΦB) ×

𝑅(Φ)
𝐵0(ΦB)

dΦ × 𝐼ps(𝑣heg
Φ ,Φ) , (1)

where 𝑣heg
Φ is the value of the ordering variable that corresponds to the phase-space point Φ for the

HEG. The normalisation factor �̄� is given by

�̄�(ΦB) = 𝐵0(ΦB) +𝑉 (ΦB) +
∫

𝑅(Φ)dΦrad , (2)

with 𝐵0(ΦB) the Born squared matrix element, 𝑉 (ΦB) the virtual 1-loop contribution, and 𝑅(Φ)
the real emission squared matrix element. The Sudakov form factor in Eq. (1) is

𝑆heg(𝑣,ΦB) = exp

[
−
∫
𝑣heg
Φ >𝑣

𝑅(Φ)
𝐵0(ΦB)

dΦrad

]
, (3)

and 𝐼ps(𝑣heg
Φ ,Φ) represents symbolically the iteration of shower emissions from 𝑣heg

Φ down to the
shower cutoff.

One comment about the choice of ordering variable is in order: in the standard POWHEG-BOX
implementation with transverse-momentum ordered showers (𝛽ps = 0 in a PanScales parameteri-
sation [2]), the ordering variables at a given phase-space point Φ, 𝑣heg

Φ and 𝑣ps
Φ , coincide when the

emission is soft and collinear. This is crucial in order to retain the leading-logarithmic accuracy of
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Figure 1: Lund plane [8] illustration of a kinematic mismatch in the hard-collinear region between the
contours of 𝑣heg for the HEG’s ordering variable (in red), and the parton shower’s 𝑣ps (in green). The
constraint on the observable is a flat contour (𝛽obs = 0, in black).

the shower. In the case of the PanScales showers, where we do not necessarily restrict ourselves
to transverse-momentum ordering (𝛽ps > 0), we use a generalised version of the Frixione-Kunzst-
Signer (FKS) map [7] that satisfies the same requirement, which we will call POWHEG𝛽 .1

2.1 Kinematic mismatches

Nevertheless, the contours of fixed 𝑣 might still differ in other regions of phase space (for
instance when the emission is hard and collinear). This mis-alignment can spoil the expected NNDL
accuracy of the matched parton shower. To support this statement with an analytic argument, let us
consider the case of the PanLocal shower with 𝛽ps > 0 (where the first matched emission is handled
by the HEG, with 𝛽heg = 𝛽ps), and an observable with 𝛽obs = 0 (such as the Cambridge √

𝑦23 3-jet
resolution scale). This situation is depicted in Fig. 1 for the example of the PanLocal shower.

Once the first (matched) emission at Φ is performed by the HEG, we hand over to the PanLocal
shower with a starting scale 𝑣heg

Φ , as in Eq. (1). Clearly, part of the phase space is double-counted
(see the green shaded triangles in Fig. 1). In double-logarithmic counting, we expect the probability
for the observable 𝑂 to be below some threshold 𝑒𝐿 , to be Σ(𝑂 < 𝑒𝐿) = 𝑒−�̄�𝐿

2 . We find that if the
red and green contours do not match in the hard-collinear region, this is instead

Σ(𝑂 < 𝑒𝐿) = 𝑒−�̄�𝐿
2
[
1 + 2(𝑒−�̄�𝛽ps𝐿

2 − 1)�̄�Δ + O(N3DL)
]
. (4)

Thus the presence of an extra factor (proportional to a term Δ) spoils the result at the NNDL
level. For the kinematic mismatch illustrated in Fig. 1, the factor Δ represents the effective size of
the mismatch region in the Lund plane (green shaded triangles). In the case of POWHEG as HEG
in conjunction with the PanLocal shower, for instance, we can evaluate this factor analytically, and
find

�̄�Δ = �̄�Δkin =
2𝐶𝐹𝛼𝑠

𝜋
· 4𝜋2 − 15

24
. (5)

1The generalised kinematic map is given in detail in Appendix C of Ref. [6]
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(a) (b)

Figure 2: Schematic illustration of the issue associated with gluon asymmetrisation. (a) For a Born gluon
splitting to 𝑔𝑔 or 𝑞𝑞, a given physical point 𝑋 in the Lund plane (marked with a red cross) can be reached
with two different values of the ordering variable 𝑣. (b) Because two different values of 𝑣 contribute to the
(non-)emission probability down to a given point, part of the Sudakov at a given physical phase-space point
(the black cross, for instance) has not been accounted for after the HEG’s first emission (the red curve). A
second contribution is supposed to be generated by the parton shower: if the de-symmetrisation parameter is
different in the HEG and in the shower, the full contribution is not generated correctly.

As already identified e.g. in Refs. [3, 9], kinematic mismatches between the definition of the
ordering variable of the HEG, versus that of the parton shower, can be corrected by vetoing shower
emissions in regions already covered by the HEG (e.g. in the green shaded triangles of Fig. 1).
Vetoing of shower emissions in those regions restores NNDL accuracy (see numerical tests in
Section 3).

2.2 Partitioning mismatch in gluon splitting function

A second subtlety arises with the use of POWHEG matching if gluons are present in the
Born event. The issue appears because parton showers (as well as the FKS map in POWHEG, for
example) typically partition the full 𝑔 → 𝑔𝑔 splitting function,

1
2!
𝑃𝑔𝑔 (𝜁) = 𝐶𝐴

(
𝜁

1 − 𝜁
+ 1 − 𝜁

𝜁
+ 𝜁 (1 − 𝜁)

)
, (6)

such that there is only one divergence when the emitted gluon becomes soft (𝜁 → 1), breaking the
symmetry in the momentum fraction 𝜁 ↔ 1 − 𝜁 . In PanScales, for instance, the de-symmetrised
splitting function takes the form:

1
2!
𝑃

asym
𝑔𝑔 (𝜁) = 𝐶𝐴

[
1 + 𝜁3

1 − 𝜁
+ (2𝜁 − 1)𝑤𝑔𝑔

]
, (7)

where the parameter 𝑤𝑔𝑔 fixes the shuffling of finite terms between one singular region and the
other. The full splitting function is recovered in the sum, 1

2 (𝑃
asym
𝑔𝑔 (𝜁) + 𝑃

asym
𝑔𝑔 (1 − 𝜁)) = 𝑃𝑔𝑔 (𝜁).

A NNDL failure similar to that of Section 2.1 arises if the HEG does not de-symmetrise the
gluon splitting function in the same manner as the parton shower. The situation is depicted on the
Lund plane of Fig. 2. As illustrated here, a given physical phase-space point (marked by a red cross)
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can be reached by contours with two different values of the ordering variable, 𝑣1 (on the diagonal
branch corresponding to a value of 𝜁 > 1/2) and 𝑣2 (on the flattening branch, corresponding to
𝜁 < 1/2). The total radiation intensity (normalised to 1 for the purpose of illustration) is given
by the sum of two contributions, whose relative values depend on how the splitting function was
de-symmetrised:

1 = 𝑓𝑋,1(𝑤𝑔𝑔) + 𝑓𝑋,2(𝑤𝑔𝑔) . (8)

In the case of a combination of HEG and shower, as shown in Fig. 2b, a certain fraction of the
Sudakov 𝑓𝑋,1(𝑤heg

𝑔𝑔 ) has been accounted for by the HEG. The second contribution, 𝑓𝑋,2(𝑤ps
𝑔𝑔), is

the responsibility of the parton shower: if the de-symmetrisation parameter of the HEG is identical
to that of the shower, 𝑤heg

𝑔𝑔 = 𝑤ps
𝑔𝑔, then the two fractions correctly add up to one. If not, the situation

is similar to that of a double-counting or a hole in phase space, as for the kinematic mismatch issue
presented in Section 2.1.2

We find that the impact of such a de-symmetrisation mismatch on the logarithmic structure of
an observable (with 𝛽obs < 𝛽ps) is identical to Eq. (4), at NNDL. We derived the mismatch factor
�̄�Δ analytically, and find for the PanScales showers:

�̄�Δ = �̄�ΔPanGlobal
de-symm. =

[
(𝑤heg − 𝑤ps)

(
𝐶𝐴 − 𝑛 𝑓 𝑇𝑅

) ] −1
1 + 𝛽ps

, (9a)

�̄�Δ = �̄�ΔPanLocal
de-symm. =

[
(𝑤heg − 𝑤ps)

(
𝐶𝐴 − 𝑛 𝑓 𝑇𝑅

) ] 𝛽ps

1 + 𝛽ps
. (9b)

Note that the NNDL discrepancy vanishes exactly for 𝑛 𝑓 = 6. In the numerical tests of Section 3,
we will show the expected discrepancy for 𝑛 𝑓 = 0 (to avoid the artificial partial cancellation for
𝑛 𝑓 = 5).

As a final comment, both the kinematic and the de-symmetrisation mismatches generate extra
terms that effectively break the property of exponentiation. A more complete analysis (in particular
for the SoftDrop cross section) can be found in Section 3.1 of Ref. [6].

3. NNDL accuracy tests

Following a similar line of tests as in earlier PanScales work, we consider the probability for an
event-shape observable to be smaller than 𝑒𝐿 , Σ(𝛼𝑠, 𝐿) = Σ(𝑂 < 𝑒𝐿). To be considered accurate
at NNDL, the parton-shower prediction for the cumulative distribution of the observable, Σps, must
satisfy

𝛿NNDL = lim
𝛼𝑠→0
𝜉 fixed

Σps(𝛼𝑠,−
√
𝜉/𝛼𝑠) − ΣNNDL(𝛼𝑠,−

√
𝜉/𝛼𝑠)

𝛼𝑠ΣDL
= 0 , (10)

with 𝜉 = 𝛼𝑠𝐿
2. Details about the extrapolation procedure are given in Ref. [6]. In Fig. 3, the quantity

𝛿NNDL is plotted on the 𝑥-axis, for the PanLocal showers (dipole and antenna, with 𝛽ps = 1
2 ), as

well as for the PanGlobal shower (with 𝛽ps = 0, 1
2 ), without any 3-jet matching, for a set of global

event shapes (categorised by their values of 𝛽obs = 0, 1
2 , 1). The uncertainty bands are defined as a

combination of the statistical uncertainty, as well as a systematic uncertainty from the extrapolation

2In PanScales we also use a de-symmetrisation factor 𝑤𝑞𝑔 for the 𝑔 → 𝑞𝑞 splitting function. In the following we
will always choose 𝑤 = 𝑤𝑔𝑔 = 𝑤𝑞𝑔
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𝛼𝑠 → 0, added linearly. As is evident from Fig. 3, the pure showers are not NNDL-accurate, and
the discrepancy at NNDL is roughly of order O(1).
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Figure 3: Results of the NNDL accuracy tests at fixed 𝜉 = 𝛼𝑠𝐿
2 for the NLL-accurate PanScales showers,

without 3-jet matching, for 𝛾∗ → 𝑞𝑞.

Next, we consider POWHEG-style matching, using PanGlobal as the HEG (with 𝛽ps = 1
2 ), or

POWHEG𝛽 , matched to either PanGlobal (𝛽ps = 0, 1
2 ) or the PanLocal shower (𝛽ps = 1

2 ). Where
it is required we apply the kinematic veto discussed in Section 2.1, and we align the choice of
de-symmetrisation parameter between the HEG and the shower, as explained in Section 2.2. With
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Figure 4: Results of the NNDL accuracy tests for four HEG/shower combinations, for 𝛾∗ → 𝑞𝑞. Matched
results are similar for 𝐻 → 𝑔𝑔, as well as for the MC@NLO and multiplicative matching schemes. The
corresponding plots can be found in Ref. [6].

3-jet matching enabled, we find agreement for all combinations of HEG/shower and observables at
NNDL accuracy (the results for 𝛾∗ → 𝑞𝑞 are shown in Fig. 4).

Finally, we compare the size of the NNDL discrepancy to the expectation computed in Sec-
tions 2.1, 2.2, in cases of a kinematic mismatch that remains uncorrected by the application of
the veto (for 𝛾∗ → 𝑞𝑞, Fig. 5a), or where the de-symmetrisation parameter for the gluon splitting
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Figure 5: Results of the NNDL accuracy tests (a) for PanGlobal and POWHEG𝛽 (as HEG) in conjunction
with PanLocal (both with 𝛽ps = 1

2 ), without the kinematic veto needed in hard-collinear regions, and (b) for
PanGlobal and PanLocal, where we use the same shower as HEG and for subsequent emissions, but where
the de-symmetrisation parameters of the gluon splitting functions are left mis-aligned, 𝑤heg ≠ 𝑤ps.

function is purposefully left mis-aligned (for 𝐻 → 𝑔𝑔, Fig. 5b). As predicted, NNDL tests fail for
observables with 𝛽obs < 𝛽ps, and the size of the observed NNDL discrepancy for 𝛽obs = 0 agrees
with the values computed from Eqs. (5), (9), shown as a dotted blue line (marked “exp.").

4. Phenomenology

Finally, we consider several matched showers in a physical context. Fig. 6 shows parton-level
distributions for the thrust 1 − 𝑇 at

√
𝑠 = 𝑚𝑍 (top panels) and for a SoftDrop ln 𝑘𝑇 /𝑄 distribution

at
√
𝑠 = 2 TeV (with 𝑧cut = 0.25 and 𝛽SD = 0, bottom panels). These plots feature our own

implementation of the Pythia 8 shower [10] (PSPythia8, leftmost column), the PanGlobal shower
(𝛽ps = 0, middle column) and the PanLocal dipole shower (𝛽ps = 1

2 , rightmost column); unmatched
showers are depicted in red, correctly-matched showers in blue, and the Powheg-matched PanLocal
shower without a proper kinematic veto, see Section 2.1, in green. The smaller panels show the
ratio of these curves to the PanGlobal 𝛽ps = 0 shower matched with the multiplicative scheme.

We also estimate scale uncertainties as an envelope of renormalisation scale variations (dashed
lines) and an uncertainty coming from shower emissions beyond the first, matched emission in
the hard region (dotted lines). Details can be found in Ref. [6]. The three main conclusions are
that (1) matched showers broadly agree in their central values within the uncertainty bands, (2)
NLL-accurate showers come with a much-reduced uncertainty band (by a factor ∼ 2 in comparison
with a LL-accurate shower) and (3) in particular in the case of the SoftDrop observable, the
NNDL-breaking effect of the hard-collinear kinematic mismatch (green, no-veto) drives the curve
significantly away from the correct result for moderately large values of the logarithm 𝐿.
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Figure 6: Thrust (top) and SoftDrop ln 𝑘𝑡/𝑄 (bottom) distributions, unmatched (red) and matched (blue), for
our PanScales implementation of the Pythia 8 shower (PSPythia 8 , left)) and two NLL showers: PanGlobal
with 𝛽ps = 0 (middle column) and PanLocal 𝛽ps = 1

2 (right).

5. Conclusions

We have investigated the interplay of NLO matching and parton-shower accuracy in the context
of simple two-body decays. The conclusion, namely that NLO matching can augment the NLL
accuracy of the shower to achieve NNDL accuracy for global event shapes, holds straightforwardly
for MC@NLO and our internal shower matrix-element correction. In the case of POWHEG, we
found that a careful alignment of the HEG and parton-shower contours is needed, not only in the
soft-collinear region, but also e.g. in the hard-collinear edges of phase space. A related issue arises
when two different contours contribute to the same phase-space point, such as when gluons are
present in the Born event. With the help of both analytic and numerical arguments, we have shown
that these kinematic and de-symmetrisation mismatches spoil the accuracy of the matched shower
at NNDL level (in fact, they even break the property of exponentiation more fundamentally).

We have also taken preliminary steps in the investigation of phenomenological results, and
observed a significant reduction of systematic uncertainties coming from the use of NLL-accurate
showers. These conclusions will be expanded upon in future work with the inclusion of further
higher-logarithmic contributions (NNLL), massive quarks, hadronisation/MPI and a proper tune of
the PanScales showers.
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