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1. Introduction

The renormalization scale and scheme ambiguities are important sources of errors,
which greatly affect the results of the Conventional Scale Setting (CSS) in perturbative QCD
calculations. Given the high precision reached by the experiments at LEP and SLAC [1-5]
in the measurement of the event shape variables and accuracy achieved by higher order
calculations from next-to-leading order (NLO) calculations [6-11] to the next-to-next-to-
leading order(NNLO) [12-16] and including resummation of the large logarithms [17, 18],
the elimination of the uncertainties related to the scheme and scale ambiguities is crucial in
order to improve the results and to test the Standard Model to the highest possible precision.
In the particular case of the three-jet event-shape distributions the conventional practice
of CSS leads to results which are in conflict with experimental data and the extracted
values of o deviate from the world average [19]. A solution to the renormalization scale
ambiguity problem is provided by the Principle of Maximum Conformality (PMC) [20-
28]. This method provides a systematic way to eliminate renormalization scheme-and-scale
ambiguities from first principles by absorbing the g terms that govern the behavior of
the running coupling via the renormalization group equation. This procedure is scheme-
independent and leads to results free from divergent renormalon terms [29]. The PMC
procedure is consistent with the standard Gell-Mann—Low method in the Abelian limit,
N, — 0[30] and can be considered the non-Abelian extension of the Serber-Uehling [31, 32|
scale setting, which is essential for precision tests of QED and atomic physics. It should be
emphasized that in a theory of unification of all forces, electromagnetic, weak and strong
interactions, such as the Standard Model, or Grand Unification theories, one cannot simply
apply a different scale-setting or analytic procedure to different sectors of the theory. The
PMC offers the possibility to apply the same method in all sectors of a theory, starting
from first principles, eliminating the renormalon growth, the scheme dependence, scale
ambiguities while satisfying the QED Gell-Mann-Low scale-setting in the zero-color limit
N, — 0. We remark that PMC leads to scheme invariant results.

We refer to RS-scheme invariance as the invariance under the extended-renormalization
group and its equations (xRGE)'. Any other relation among different quantities defined in
different approximations or obtained using different approaches, that can have perturba-
tive validity in QCD, can be improved using the PMC and the residual dependence on the
particular definition of the "scheme" can be suppressed perturbatively by adding higher
order calculations. It can be shown that also in this case the results obtained are scheme-
independent (see Ref. [37]). We remark that in order to apply the PMC correctly, one
should be able to distinguish among the nature of the different n;-terms, whether they are

LA recent argument on PMC by Stevenson [33], based on the principle of minimum sensitivity (PMS),
is incorrect. Since the PMS is based on the assumption that all the unknown higher-order terms give zero
contribution to the pQCD series [34], its prediction directly breaks the standard renormalization group
invariance [26, 27], its pQCD series does not have normal perturbative features [35] and can be treated as
an effective prediction only when we know the series up to high enough orders and the conventional series
has already shown good perturbative features [36]. On the other hand, the PMC respects all features of the
renormalization group, and its prediction satisfies all the requirements of standard renormalization group
invariance [26, 27, 37, 38]. A detailed discussion on this point will be presented soon.
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related to the running of the coupling, to the running of masses or to UV-finite diagrams
and in a deeper analysis also to the particular UV-divergent diagram (as discussed in Refs.
[39, 40]). Once all ng-terms have been associated with the correct diagram or parameter,
conformal coefficients are RG invariant and match the coefficients of a conformal theory.
Moreover, given that the PMC preserves the RG invariance, it is possible to define CSR -
Commensurate Scale Relations|25] among the effective charges relating observables in dif-
ferent "schemes" preserving all the group properties. Applying the PMC and the CSRs,
one can relate effective couplings, as also conformal coefficients, leading to scheme indepen-
dent results for the observables. Applications of the PMC to different quantities (see Ref.
[41, 42]) have recently shown a direct improvement of theoretical predictions.

The recently developed Infinite-Order Scale-Setting using the Principle of Mazimum
Conformality (PMCy) has been shown to significantly reduce the theoretical errors in
Event Shape Variable distributions, highly improving also the fit with the experimental
data[39, 43-45]. An improved theoretical prediction on as with respect to the world average
has also been shown in Refs.[46, 47]. In this article we consider the thrust distribution in the
region of flavors and colors near the upper bound of the conformal window, i.e. Ny ~ 11/2N,
, where the IR fixed point can be reliably accessed in perturbation theory and we compare
the two renormalization scale setting methods, the CSS and the PMCy. In this region we
are able to deduce the full solution at NNLO in the strong coupling. We also compare the
two methods in the QED, N, — 0, limit of thrust.

2. Two-loop solution and the perturbative conformal window

The strong coupling dependence on the scale can be described introducing the S-
function given by:
1 das(Qz)
_— s)s ]_
4m dlog Q2 Blas) (1)

B(as) = - (j;j)zzo (52)" s )

n—

and

Neglecting quark masses, the first two S-terms are RS independent and they have been
calculated in Refs. [48-52]:

11 4
= — — =TprN
Bo 5 Ca = TRy, (3)
34 5
61 = 303—4 <3CA+CF> TRNf, (4)

2
where Cp = %, Cs = N. and Tr = 1/2 are the color factors for the SU(3) gauge

group [53].

In order to determine the solution for the strong coupling as at NNLO, it is convenient to
introduce the following notation: x(u) = a;gr“), t = log(u?/ud), B = 3B and C = %%,
¥ = —%. The truncated NNLO approximation of the Fq. 1 leads to the differential
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equation:

dx
= = _B2?(1 .
p z°(1+4 Cx) (5)

An implicit solution of Eq. 5 is given by the Lambert W (z) function:
weV =z, (6)

with: W = (% - 1). The general solution for the coupling is:

x*

1+wW’

o e o\ z*B
L = esl < _ 1> (“2) . (8)
Zo Ho

We shall discuss here the solutions to Eq. 5 with respect to the particular initial phenomeno-
logical value z¢g = as(Myz)/(27) = 0.01876 £+ 0.00016 given by the coupling determined at
the Z° mass scale [19]. This value introduces an upper boundary on the number of flavors:
Ny = 2*7(z9) = 15.222 £ 0.009, which narrows the range for the IR fixed point discussed
by Banks and Zaks [54]. The only physically accessible range is Ny < N ,since for Ny > N [
we no longer have the asymptotically free UV behavior. In the range Ny < N } we have
B > 0, C' > 0 and the physical solution is given by the W_; branch (i.e. the solution of
Eq. 6 with =% < 2 < 0 and W < —1), while for N} < Ny < Ny the solution for the
strong coupling is given by the Wy branch (i.e. the solution of Eq. 6 with z > 0 and
W > 0); a detailed description of the Lambert solutions is given in Ref. [55]. Where the
values ]\_f}) = 1—21NC7 N} = %, with ]\_f}) > Z\_f}, are the zeros of By, 81 respectively. The
two-dimensional region in the number of flavors and colors where asymptotically free QCD
develops an IR interacting fixed point is colloquially known as the conformal window of
pQCD. In general, IR and UV fixed points of the S-function can also be determined at
different values of the number of colors IV, (different gauge group SU(N)) and Ny extend-
ing this analysis also to other gauge theories [56]. An extension of the perturbative QCD
coupling and its S-function in the IR region can be found in Ref. [57].

3. The thrust distribution according to /Ny

The thrust distribution and the event shape variables are a fundamental tool in order
to probe the geometrical structure of a given process at colliders and for the measurement
of the strong coupling a; [58]. Thrust (7') is defined as

where the sum runs over all particles in the hadronic final state, and p; denotes the three-
momentum of particle i. The unit vector 7 is varied to maximize thrust 7', and the cor-
responding 7 is called the thrust axis and denoted by 7ip. The variable (1 —T') is often
used, which for the LO of 3-jet production is restricted to the range (0 <1 -7 < 1/3). We
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have a back-to-back or a spherically symmetric event respectively at 7' =1 and at 7' = 2/3
respectively.

In general, a normalized IR-safe single-variable observable, such as the thrust distri-
bution for the ete™ — 3jets [59, 60], is the sum of pQCD contributions calculated up to
NNLO at the initial renormalization scale pg = /s = My:

1 Odo(po) _ {1‘0' OdAo (o) +x2,0d§o(ﬂo)

oot dO dO 0 dO
0dC o (1
a3 ) 1 oG} (10)

where x(u) = as(p)/(27), O is the selected event shape variable, o the cross section of the
process,

Otot = 00 (1 + x0Ator + .’L%Btot +0 (Oéi)) , (11)

is the total hadronic cross section and Ao, Bo,Co are respectively the normalized LO,
NLO and NNLO coeflicients:

ZO == AOv
Bo = Bo— AiAo, (12)
60 = CO — AtotBO - (Btot - At20t) AO’

where Ao, Bo, Co are the coefficients normalized to the tree-level cross section og calculated
by MonteCarlo (see e.g. the EERAD and Event2 codes [12-16]) and Ay, Biot are:

3

Atot - §CF7
. CF 3 50 3 9
Btot = 4 Nc+ 4CF 2 (1]- 8((3)) 80F7 (13)

where ( is the Riemann zeta function. In the case of conventional scale setting, the renor-
malization scale is set to ug = /s = Mz and theoretical uncertainties are evaluated using
standard criteria. In this case, we have used the definition given in Ref. [13] of the parameter
d; we define the average error for the event shape variable distributions as:

5= L g manu(oi(n) = min, (03(4) "
- 20i(pn = Mz)

where ¢ is the index of the bin and N is the total number of bins, the renormalization scale
is varied in the range: p € [Mz/2;2Myz]. We use here the two-loop solution for the running
coupling as(Q). According to the PMCqo (for a detailed analysis see Ref. [39, 44, 45]),
Eq. 10 becomes:

1 Odo(p1, fur, po

- 10 ) = {51 +om+omnr+ (’)(o/sl)} , (15)




Elimination of QCD Renormalization Scale and Scheme Ambiguities Leonardo Di Giustino

where the o are normalized subsets given by:

o1 = Acons - 21,
o = (Bcoonf + NAtotAcons) - 711 — NAsot Acons - T4
_AtotAConf * LTI,
onr = (CConf — AiotBcons — (Biot — A%ot)AConf) : 1‘3, (16)

where Aconf, Bcoonf, Ccons are the scale-invariant conformal coefficients (i.e. the coefficients
of each perturbative order not depending on the scale pg) while x1, 11, o are the couplings
determined at the PMCq scales: ur, firr, Mz respectively. The PMC, scales are given by:

1
= /s-else 2B (1-T)<0.33, (17)
1 . BConf
\/g-efsc 2 €00 Bgon 1 Atot Aiong (1-T)<0.33,
Y- 1
HIr = Vs - e300 (1-T)>0.33, (18)

where the fs. is a general scheme factor which is fs. = 0 for the QCD case in MS-scheme.
Normalized subsets for the region (1-7") > 0.33 can be simply achieved by setting Acons = 0
in the Eq. 16. Results for the thrust distribution calculated using the NNLO solution for
the coupling o (), at different values of the number of flavors, Ny, is shown in Fig. 1.

05 - ALEPH
N NNLO - CSS * DELPH
; = OPAL
—_— NNLO-PMCoo
0.4 |/ I + L3
— N\ * SLD
[ N )
4 h
,\%/
303
S o . ® N =5
o A 1
£ . ® Ny =6
ol o
40.2 ® Ni=9
® Ni=12
® Ni=15
0.1
: I
0.0 ‘ =
0.05 0.1¢ 0.1% 0.2¢ 0.25 0.3 0.35 0.4

1-T

Figure 1: Thrust distributions for different values of Ny, using the PMC,, (solid line) and the
CSS (dashed line) [45]. The Green shaded area is the results for the values of Ny taken in the
conformal window. The experimental data points are taken from the ALEPH, DELPHI,OPAL, L3,

SLD experiments [1-5].

A direct comparison between PMCy (solid line) and CSS (dashed line) is shown at
different values of the number of flavors. We notice that, despite the phase transition (i.e.
the transition from an infrared finite coupling to an infrared divergent coupling), the curves
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given by the PMCy, at different Ny, preserve with continuity the same characteristics of the
conformal distribution setting Ny out of the conformal window of pQCD. We notice that
by decreasing Ny, the peak increases and this is mainly due to larger values of the 3y, 51
coefficients, obtaining a better match with the data for values in the range 5 < Ny < 6. The
position of the peak of the thrust distribution is well preserved varying Ny in and out of the
conformal window using the PMCq,, while there is constant shift towards lower values using
the CSS. These trends are shown in Fig. 2. We notice that in the central range, 2 < Ny < 15,
the position of the peak is exactly preserved using the PMC., and overlaps with the position
of the peak shown by the experimental data. Theoretical uncertainties on the position of
the peak have been calculated using standard criteria, i.e. varying the remaining initial
scale value in the range Mz /2 < o < 2Myz, and considering the lowest uncertainty given
by the half of the spacing between two adjacent bins. Using the definition given in Eq. 14,

CSS
0.06¢ 1

0.05- 1
4

£0.04/ pe
go.os EEs A
0.02/ iyt |

oottt T |

0.06} PMCco
0.05¢ %

Too AR

Figure 2: Comparison of the position of the peak for the thrust distribution using the CSS and the
PMCy vs the number of flavors, N¢. Dashed lines indicate the particular trend in each graph [45].

we have determined the average error, ¢, calculated in the interval 0.005 < (1 —T) < 0.4 of
thrust and results for CSS and PMC, are shown in Fig. 3. We notice that the PMC in
the perturbative and IR conformal window, i.e. 12 < Ny < J\_ff, which is the region where
as(p) < 1 in the whole range of the renormalization scale values, from 0 up to oo, the
average error given by PMCy tends to zero (~ 0.23 — 0.26%) while the error given by the
CSS tends to remain constant (0.85 — 0.89%). The comparison of the two methods shows
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that, out of the conformal window, Ny < 1:?1%/7];];37 the PMCy leads to a higher precision.
14;
o ® CSS
12
b = PMC,
10¢ .
8 -
—_— \\.\
|(Q 67 \\.\
4f .\\‘o\
...
N """'"""'""""'"*":7—\1»1-«1—:]:-&—‘
O . . . "l»,..
0 2 4 6 8 10 12 14

Figure 3: Comparison of the average theoretical error, §, calculated using standard criteria in the
range: 0.005 < (1 —T) < 0.4, using the CSS and the PMC, for the thrust distribution vs the
number of flavors, Ny [45].

4. The thrust distribution in the Abelian limit N, — 0

We consider now the thrust distribution in U(1) Abelian QED, which rather than being
infrared interacting is infrared free. We obtain the QED thrust distribution performing the
N. — 0limit of the QCD thrust at NNLO according to [30, 61]. In the zero number of colors
limit the gauge group color factors are fixed by Nga =1, Cr=1,Tp=1,C4 =0, N. =0,
Ny = N;, where N; is the number of active leptons, while the 3-terms and the coupling
rescale as Bn/C;?H and a; - Cp respectively. In particular By = —%NZ and B = —4N;
using the normalization of Eq. 1. According to this rescaling of the color factors we have
determined the QED thrust and the QED PMC, scales. For the QED coupling, we have
used the analytic formula for the effective fine structure constant in the MS-scheme:

Q%) = - (19)

(1 - aﬁeenﬁ(cy)) ’

with a1 = a(0)~! = 137.036 and the vacuum polarization function (II) calculated pertur-
batively at two loops including contributions from leptons, quarks and W boson. The QED
PMCq scales have the same form of Eqgs. 17 and 18 with the factor for the MS-scheme
set to fsc = 5/6 and the n regularization parameter introduced to cancel singularities in
the NLO PMCy, scale pyr in the N. — 0 limit tends to the same QCD value, n = 3.51.
A direct comparison between QED and QCD PMC,, scales is shown in Fig. 4. We note
that in the QED limit the PMCy, scales have analogous dynamical behavior as those cal-
culated in QCD, differences arise mainly owing to the MS scheme factor reabsorption, the
effects of the N, number of colors at NLO are also negligible. Thus we notice that perfect
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0.2 03 04
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0.0 0.1

Figure 4: PMC,, scales for the thrust distribution: LO-QCD scale (solid red); LO-QED scale
(solid blue);NLO-QCD scale (dashed red); NLO-QED scale (dashed blue) [45].

consistency is shown from QCD to QED using the PMCy method. The normalized QED

thrust distribution is shown in Fig. 5. We note that the curve is peaked at the origin,

T = 1, which suggests that the three-jet event in QED occurs with a rather back-to-back
symmetry. Results for the CSS and the PMCy, methods in QED are of the order of O(«)

and show very small differences, given the good convergence of the theory.

5. Conclusion

We have investigated for the first time the thrust distribution within the perturbative
conformal window of QCD and in QED and we have compared results obtained using both
the CSS and the PMC, scale setting. In the latter case the results are in perfect agreement
with the Gell-Man-Low scheme. Results for different values of the N; factor show that the
PMCq scale setting leads to higher precision and are in agreement with the data in a
wide range of the selected event shape variable. Moreover the thrust distributions in the
conformal window have similar shapes to those of the physical values of Ny and the position
of the peak is preserved when one applies the PMCy method. Thus, even though the peak
is a property directly related to the resummation of the large-logarithms in the low-energy
region |17, 62-66], the correct position of the peak can be considered in fact a conformal

property and it can be related to the use of the PMCy, scales.
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CSS (dashed blue) [45].
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