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pySecDec is a computer tool to evaluate Feynman integrals and their weighted sums (amplitudes)
using the method of sector decomposition and numerical integration. The new release of pySecDec
version 1.6 comes with a significant performance boost (3x–9x in common scenarios), and new
features to make the evaluation and asymptotic expansion of amplitudes and integrals easier and
faster. In this article we briefly review these features.
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1. Introduction

Matching the increasingly precise experimental measurements at the Large Hadron Collider and
other colliders on the theoretical side requires the calculation of higher-order corrections to scattering
amplitudes. One of the key elements of that is the calculation of multi-loop Feynman integrals;
this is a challenging task, and analytic expressions for many phenomenologically relevant classes
of integrals at two loops and beyond are not available—instead numeric and semi-analytic methods
are used.

One of the well established methods of numerical evaluation of Feynman integrals is sector
decomposition [1, 2]. This method has been continuously refined over the years, and so have been its
implementations, the most prominent of which are pySecDec [3–6] (together with its predecessor
SecDec [7, 8]) and Fiesta [9].

Recently pySecDec version 1.6 has been released [3].1 In this article we shall walk through the
new features of this release, their motivations and benefits, demonstrating the expected performance
and capabilities of pySecDec. These new features include:

• a new evaluator codenamed Disteval, achieving a 3x–9x speedup across a wide variety of
amplitudes and integrals, and providing the possibility of integration distributed over multiple
computers (Section 2);

• a new probabilistic method of constructing Quasi Monte Carlo (QMC) lattices used in
integration, called median QMC rules [10], that allows for unlimited size of integration
lattices (previously capped at about 7 · 1010), does not sacrifice quality on average, and
automatically helps with a phenomenon we have named unlucky lattices that is spoiling the
practical convergence properties of QMC integration (Section 3);

1One can find pySecDec documentation at https://secdec.readthedocs.io, and the source code repository
together with the examples at https://github.com/gudrunhe/secdec.
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Figure 1: Diagrams used in subsequent figures. Diagrams b and c correspond to hexatriange and
elliptic2L_physical examples distributed with pySecDec.
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Figure 2: The time it takes different releases of pySecDec to integrate Figure 1a to 7 digits of precision.

• a new method of automatically introducing the minimal set of extra regulators that are required
by the expansion-by-regions procedure (Section 4);

• support for arbitrary arithmetic expressions in the coefficients of amplitudes, sparse coefficient
matrices, and amplitude names (Section 5).

2. The new evaluator Disteval

The first feature of version 1.6 is a major increase in performance. Over the last few releases
pySecDec has been consistently gaining performance, as can be seen in Figure 2. The sources of
these gains are:

• In version 1.5: adaptive sum sampling and automatic contour deformation adjustment [4].

• In version 1.5.6: microoptimizations in the integrand code decreasing the overhead of complex
numbers.

• In version 1.6: a new Randomized Quasi Monte Carlo integrator “Disteval”, that implements
the same algorithm as the old integrator (“IntLib”) based on the Qmc library [5], but generates
code that is 3x–9x faster both on CPUs and GPUs. This speedup is illustrated on Figure 3
and in Table 1, and is consistent with our benchmarks on many other integrals. The speedup
comes from many optimizations; the most important ones are:

– For CPU and GPU: the code of the integrands is generated together with the integrator
code, and is fully embedded into the integration loop. This gives us—and the compiler—
many possibilities for optimization, such as taking out common expressions out of
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Figure 3: Runtime versus requested precision when integrating Figure 1b with the old and the new integrators
of pySecDec 1.6 on NVidia A100.

Integrator\Accuracy 10−3 10−4 10−5 10−6 10−7 10−8

GPU Disteval 4.2 s 6.3 s 27 s 1.5 m 17 m 54 m
IntLib 22.0 s 22.0 s 110 s 6.7 m 50 m 263 m
Speedup 5.2 5.2 4.1 5.6 3.0 4.9

CPU Disteval 5.1 s 14 s 1.6 m 8.3 m 57 m 4.7 h
IntLib 20.8 s 86 s 14.2 m 62.2 m 480 m 43.1 h
Speedup 4.1 6.1 8.7 7.5 8.4 9.2

Table 1: Integration timings depending on requested precision on a GPU and CPU corresponding to Figure 3.

the loop, interleaving integer and floating point calculations for better CPU pipeline
utilization, allocating variables to registers, moving error handling out of the hot path,
etc.

– For CPU: better processor utilization via SIMD instructions; in particular the integrands
are made to operate on four 64-bit values at the same time, which translates into higher
saturation of the execution units on modern CPUs, especially if the user has enabled the
usage of the AVX2 and FMA instruction sets.2

– For GPU: we have largely eliminated stalls due to synchronization with the CPU by
performing summation of the samples directly on the GPU, and by performing most
operations asynchronously.

Additionally Disteval is able to distribute the work across different computers (hence its name):
any computer that can be reached via ssh can be added to the list of Disteval workers.

3. Quasi Monte Carlo lattices via median QMC rules

For a long time the recommended way of integration with pySecDec has been Randomized Quasi
Monte Carlo integration method [11] implemented via the Qmc library. Central to this method is

2The is done by setting CFLAGS to "-mavx2 -mfma" during compilation. Note however that some older CPUs do
not support AVX2, which is why instead of setting these flags by default we strongly recommend their usage.
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elliptic2L_physical, sector 8

Figure 4: Relative integration error for sector 8 from the elliptic2L_physical example (Figure 1c)
achieved by lattices of different size constructed via the CBC construction. A particularly unlucky lattice is
marked with a star.

the construction of the set of points on which to evaluate the integrands. For this Qmc uses rank-1
lattices, i.e. sets of points given by

®𝑥𝑖 =
⌊
𝑖 ®𝑔𝑛
𝑛

⌋
, 𝑖 = 1 . . . 𝑛, (1)

where ®𝑔𝑛 are the generating vectors of the lattice. These are constructed via the so-called component-
by-component (CBC) method [12]. This construction depends on the function space the integrands
are supposed to belong, and Qmc has been assuming a Korobov space with smoothness 𝛼 = 2 and
product weights.

This construction however does not guarantee optimal convergence for any given integral, only
for a class of integrals, and only asymptotically. In practice if one uses a sequence of lattices of
increasing size constructed via the CBC generating vectors, the integration error does not drop
down monotonically, but instead fluctuates, sometimes very significantly so.

Take a look at Figure 4 for an example: although the integration error generally scales as 1/𝑛1.5,
some lattices show much worse errors. We call these unlucky lattices. The result of integration on
one such unlucky lattice with 𝑛 ≈ 4.2 ·109 is marked with a star—this one is off the general trend
by at least 4 orders of magnitude! If this particular lattice is chosen during integration, pySecDec
will assume that this integral converges badly, and many more samples are needed to achieve the
requested precision, which will decrease the overall performance significantly.

It is important to note that the lattice at 𝑛 ≈ 4.2 ·109 is not bad per se: rather it is unlucky for
a given integrand, but may be completely normal for others. For example, Figure 5 demonstrates
the integration error for a different sector of the same integral as Figure 4, and the previously
unlucky lattice performs perfectly well. The source of the problem in our view is that the lattices
are precomputed for a class of integrands (via CBC), rather than being personalized for each one.

Another problem with the CBC construction is that it is computationally expensive and Qmc
authors have only been able to construct lattices up to 𝑛 ≈ 7·1010. This size might seem big, but a
server-grade GPU such as NVidia A100 can evaluate some integrands 1010 times per minute, and
in many examples reaching integration precisions of e.g. 10−8 requires more samples than this.
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Figure 5: Relative integration error for sector 9 from the elliptic2L_physical example (Figure 1c)
achieved by lattices of different size constructed via the CBC construction. A star marks the same lattice as
in Figure 4.

103 104 105 106 107 108 109 1010

Lattice size

101

100

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

Re
la

tiv
e 

er
ro

r

elliptic2L_physical, sector 8, median lattices, R=11
elliptic2L_physical, sector 8, CBC lattices

Figure 6: Same as Figure 4, but using lattices derived via median QMC rules. Because such lattices are
derived probabilistically (i.e. every time anew), we have made 15 measurements for each point, and the
bands on this plot indicate the range from the worst to the best results.

Fortunately, in [10, 13] a lattice construction was found that does not require specific assump-
tions about the function space the integrands belong to, and that works for arbitrary lattice sizes
without excessive computations. This construction works by selecting 𝑅 random generating vectors,
evaluating the integral on each of the corresponding lattices, and then accepting the median result.
This is the median QMC rules construction. It is proven to result in a lattice that is arbitrary close
to an optimal one with a probability that tends to 1 exponentially with increasing 𝑅, irrespective
of the smoothness class of the integrand. Our experience confirms this: take a look at Figure 6
where the same integrand as in Figure 4 is integrated on lattices constructed via the median lattice
construction; as can be seen the convergence is on average as good as the one with CBC lattices;
moreover the extremely unlucky lattices are avoided.

The median QMC rules construction is now available in pySecDec, both with the new and the
old integrators. Since it is rather new, it is not yet the default, but it can be activated by specifying
the number of lattice candidates 𝑅 via the lattice_candidates parameter.
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4. Minimal extra regulator construction for expansion by regions

Since version 1.5 pySecDec has the ability to perform asymptotic expansions [4] (i.e. expansions by
regions [14–17]) via the loop_regions() function. It is known that this procedure can introduce
spurious singularities, not regulated by the original dimensional regulator. These show up as 1/0
division errors, and are commonly regulated by either shifting the powers of the propagators from
their original values by some infinitesimal 𝜈𝑖 , or by introducing an additional factor of the form∏

𝑖 𝑥
𝜈𝑖
𝑖

into the Feynman parameterization. In both cases 𝜈𝑖 become extra regulators—or rather,
they are set to 𝜈/2, 𝜈/3, 𝜈/5, etc, and 𝜈 becomes a single extra regulator.

For example, if one wishes to expand a box integral,

𝐼 (𝑚2, 𝑠, 𝑡) ≡ 𝑚

𝑝1

𝑝2 𝑝3

𝑝41

2

3

4 =

∫
d𝑥1 · · · d𝑥4 𝑈

𝛼 (®𝑥)𝐹𝛽 (®𝑥, 𝑚2, 𝑠, 𝑡)𝛿(1 − 𝑥1 − · · · − 𝑥4), (2)

asymptotically in small 𝑚2/𝑠 ratio, extra regulators 𝜈1, . . . , 𝜈4 might be introduced like so:

ebr[ 𝐼 ] = lim
𝜈1,2,3,4 → 0

ebr
[∫

d𝑥1 · · · d𝑥4 𝑈
𝛼 𝐹𝛽 𝛿(1 − 𝑥1 − · · · − 𝑥4) · 𝑥𝜈1

1 𝑥
𝜈2
2 𝑥

𝜈3
3 𝑥

𝜈4
4

]
, (3)

and the values of 𝜈𝑖 could be set to e.g. {𝜈, 𝜈/2, 𝜈/3, 𝜈/5}.
The introduction of extra regulators has a negative consequence in that the integral becomes

more complicated, and that many symmetries it might have had otherwise are spoiled, because each
propagator now has a unique exponent. For this reason, when calculating amplitudes consisting of
many integral, two questions are of practical interest:

1. Can we detect if an integral can be expanded as is, or if it needs extra regulators?

2. If it does need them, can we detect the minimal set of propagators that must be spoiled, as to
avoid spoiling the rest?

The answer to both is “yes”, and [4] provides a geometric construction of detecting the need
for extra regulators. Specifically, a set of vectors ®𝑛 𝑗 can be derived for any given integral,
such that for extra regulators ®𝜈 ≡ {𝜈𝑖} the integral is sufficiently regulated if ®𝑛 𝑗 · ®𝜈 ≠ 0 (∀ 𝑗).
Starting with pySecDec 1.6 we provide an implementation of this construction via functions
extra_regulator_constraints() and suggested_extra_regulator_exponent().

To continue the example of eq. (3), one can use extra_regulator_constraints() to obtain
the set of necessary conditions on 𝜈𝑖 . In this case those turn out to be

𝜈2 − 𝜈4 ≠ 0 and 𝜈1 − 𝜈3 ≠ 0. (4)

Then, suggested_extra_regulator_exponent() will give a suggested solution to these in-
equalities that maximizes the number of 𝜈𝑖 set to zero; in this case it is

𝜈𝑖 = {0, 0, 𝜈, −𝜈}. (5)

The overall result here is that instead of blindly introducing an extra factor like 𝑥
𝜈/1
1 𝑥

𝜈/2
2 𝑥

𝜈/3
3 𝑥

𝜈/5
4 ,

we only need to insert 𝑥𝜈3 𝑥
−𝜈
4 , and the integral will be well regulated after expansion by regions.
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This procedure can now be performed automatically by pySecDec: if the user specifies
the extra_regulator_name argument to loop_regions() without giving a corresponding
extra_regulator_exponent, an extra regulator will be automatically introduced in a minimal
way, or even skipped if the integral does not require it.

5. More general syntax for amplitude coefficients

Since version 1.5 pySecDec comes with an interface to evaluate weighted sums of integrals (i.e
amplitudes) in an optimized way: the sum_package() function. Previously this interface required
the coefficients to be passed in as products of polynomials in the dimensional regulator, however
this format is inconvenient in practice, as the coefficients often come from integration-by-parts
reduction as large expressions too complicated for further transformations.

In pySecDec 1.6 the format of the coefficients is relaxed, and they can be passed in as strings
containing arbitrary arithmetic expressions. These expressions are then parsed and evaluated via
GiNaC [18] during integration, and with Disteval this is even done in parallel, allowing for large
number of coefficients (i.e. large amplitudes) to be handled efficiently. In the same vein we we
avoid loss of numerical precision during intermediate calculation by performing the evaluation in
infinite precision arithmetics.

Additionally, sum_package() now accepts coefficient matrices as dictionaries of the form3

{"amplitude name": {integral index: "coeffcient", ...}, ...},

making it possible to give amplitudes names, and to efficiently specify sparse coefficient matrices,
since zero coefficients can be skipped in this notation.

6. Conclusions

pySecDec release 1.6 comes with multiple features targeted at faster and easier evaluation of
amplitudes and single integrals. The new integrator Disteval brings a significant performance
increase on both the CPU and the GPU. A new QMC lattice construction allows for higher sample
counts (meaning higher precision), and comes with builtin unlucky lattice mitigation—also needed
at high integration precisions. Support for arbitrary arithmetic expressions in amplitude coefficients
enables users to easily specify the coefficients of arbitrary size without preprocessing. An automatic
and minimal construction of extra regulators for expansion-by-regions gives a streamlined path to
asymptotic expansion of large number of integrals without manual interventions.

We hope that these features will prove useful to the audience at large, and will enable cal-
culations in high energy physics previously deemed too complicated. We also hope to continue
improving pySecDec for the benefit of the community.

Acknowledgements
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3The details of the usage are available in the pySecDec documentation. The new syntax is also illustrated in the
easy_sum and muon_production examples in the source repository.
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