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1. Introduction

Perturbative Quantum Chromodynamics (QCD) calculations provide high-precision predic-
tions of the scattering of fundamental particles, especially at hadron colliders, and are therefore a
vital part of the Large Hadron Collider (LHC) physics program. Calculational complexity presents
a key limiting factor in producing these predictions and so the development of new computational
techniques is central to advancing the state of the art. In this conference proceedings paper, based
on our article [1], we explore whether future quantum computers could help perform perturbative
QCD calculations. In particular, as a first step towards this goal, we focus here on the simulation of
colour in perturbative QCD using a quantum computer.

Quantum computing was first proposed 4 decades ago [2, 3] and has been of great interest
over the years because for certain problems it promises large speed-ups. In particular, it promises
exponential speed-ups for prime factorisation [4] and quadratic speed-ups for generic unstructured
search problems [5] (of which Monte Carlo integration is an example). A further application is the
simulation of quantum systems: since quantum computers perform calculations by manipulating
the quantum states of a system, it is natural to use a quantum computer to simulate other quantum
systems. In particular, active fields of research exist studying methods to use quantum computers
to perform simulations of quantum chemistry [6, 7], condensed matter systems [8, 9], and lattice
QCD [10, 11].

In contrast to the many proposals in recent years for the quantum simulation of lattice QCD,
the quantum simulation of perturbative QCD has largely remained unexplored, with the exception
of some work on parton showers [12–15]. In this work we take the first steps towards the simulation
of generic perturbative QCD processes by presenting algorithms for the quantum simulation of
colour. Compared to the kinematic components of QCD calculations, colour is relatively simple
but it is still a good starting point since it presents some of the general challenges of using a quantum
computer to simulate perturbative QCD. The colour parts of calculations therefore provide a useful
simplified setup in which to develop general techniques, while allowing the results to be verified
against analytic expectations. One should note, however, that for a sufficiently complicated QCD
process, even the colour part would become non-trivial to calculate analytically, and in those cases
a quantum simulation of colour could be a valuable standalone result.

Research on this topic is timely. Although the idea of quantum computer has been around for
30-40 years with steady incremental progress on the hardware and software sides, recent years have
seen notable commercial interest and increased prospects for the emergence of practical machines
in the coming years. In particular, IBM has since 2019 produced a series of quantum computers
with several hundred qubits, albeit subject to hardware noise and without full connectivity, and over
the next few years the company aims to increase this to several thousand qubits and implement error
correction. Other companies such as Google and Microsoft have also invested in this area and are
aiming to produce an error-corrected general-purpose quantum computer within a decade. In light
of this, there have been various applications proposed in the experimental and theoretical branches
of high-energy physics [1, 12–37].

There are several specific motivations for applying quantum computing to simulate perturbative
QCD. One reason is that perturbative QCD requires the quantum-coherent summation of many
contributions (e.g. from many Feynman diagrams), and this is something that quantum computers
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are naturally suited to do because they are inherently designed to manipulate quantum superpositions
of states. It also follows that QCD processes with high-multiplicity final states, which are currently
described by parton showers, could be well-suited to these quantum computing techniques. More
generally, if perturbative QCD processes can be simulated on a quantum computer, then one could
subsequently use existing quantum algorithms that are known to give quantum speed-ups, for
example quadratic speed-ups when using quantum computers for Monte-Carlo integration.

2. Quantum circuits for colour

In this section we will describe quantum circuits for simulating colour in perturbative QCD.
We will work in the quantum circuit model of quantum computing, which is one of the most
widely used models. It is based on the concept of qubits, i.e. two-state quantum systems like
spin-half particles, which are represented on a quantum circuit diagram as horizontal lines. The
operations performed on them are called gates, analogously to the and and or gates used in classical
computing. Since quantum mechanical operations are linear, they are represented as matrices. A
single-qubit operation is represented by a 2-by-2 matrix, and in general an operation acting on 𝑛

qubits at the same time is represented by a 2𝑛-by-2𝑛 matrix acting on the 2𝑛 basis states of those 𝑛

qubits. The matrices must be unitary, since quantum mechanical operators are always unitary.
Let us start by briefly recalling how colour is calculated in QCD. Given a Feynman diagram,

the corresponding term in the amplitude contains a factor 𝑇𝑎
𝑖 𝑗

for each quark-gluon vertex, and
a factor 𝑓 𝑎𝑏𝑐 for each triple-gluon vertex, where 𝑇𝑎

𝑖 𝑗
are the generators of su(3) in the defining

representation and 𝑓 𝑎𝑏𝑐 are the structure constants of su(3). For example, the quark self-energy
diagram shown on the left of Fig. 1 has colour factor

C =
∑︁

𝑎∈{1,...,8}
𝑖, 𝑗 ,𝑘∈{1,2,3}

𝑇𝑎
𝑖 𝑗𝑇

𝑎
𝑗𝑘𝛿𝑖𝑘 , (1)

where the Feynman rules require us to sum over intermediate states 𝑗 ∈ {1, 2, 3} and 𝑎 ∈ {1, . . . , 8},
and in this case we have further opted to trace over the initial colour 𝑖 and final colour 𝑘 of the quark
line.

Noting that the generators 𝑇𝑎
𝑖 𝑗

are linear operators (and are by convention written in terms of
the Gell-Mann matrices 𝜆𝑎 by defining 𝑇𝑎 = 1

2𝜆
𝑎) and that quantum gates are linear operators, it is

natural to ask whether the 𝑇𝑎
𝑖 𝑗

can be implemented as quantum gates and hence be used to simulate
the colour part quark-gluon interactions. We will find that the short answer is yes, but there are
complications. One relatively minor complication is that the matrices are not of the form 2𝑛-by-2𝑛,
required for the reasons stated above. A second, more important complication is that the Gell-Mann
matrices are not unitary (but are instead Hermitian), as can be immediately seen by observing that
most of them contain a row that is entirely zero. Details on the resolution of these issues can be
found in our article [1].

The key results of this work are two quantum gates, 𝑄 and 𝐺, which simulate the colour
parts of the quark-gluon and triple-gluon interactions respectively. Our intention is that these gates
can then be composed together, matching the factors appearing in a Feynman diagram calculation,
and hence simulate the colour part of the perturbative calculation of a scattering process. In this

3



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
8
7

Quantum algorithms for the simulation of perturbative QCD processes Herschel A. Chawdhry

i i

g

U

q

q̃

Rg Q Q R−1
g

Rq R−1
q

Figure 1: Example Feynman diagram (left) and a graphical representation of its corresponding circuit (right).

conference proceeding we will only give a high-level overview of how these gates are used, and
refer the interested reader to our article [1] for the detailed designs of these gates.

Since each gluon has 8 basis colour states, it can be represented by the 23 = 8 basis states of
3 qubits. The 3 basis colour states of a quark are represented by 3 of the 22 = 4 basis states of 2
qubits, the 4th state remaining unused. The 𝑄 gate acts on 3 qubits representing a gluon, 2 qubits
representing a quark line, and some extra qubits U (whose purpose will be described later). If
the gluon qubits are in a colour basis state |𝑎〉𝑔, where 𝑎 ∈ {1, . . . , 8}, and the quark qubits are in
a colour basis state |𝑘〉𝑞, where 𝑘 ∈ {1, 2, 3}, and if the qubits U are in a special reference state
|Ω〉U ≡ |0 . . . 0〉U , then 𝑄 acts in the following way:

𝑄 |𝑎〉𝑔 |𝑘〉𝑞 |Ω〉U =

3∑︁
𝑗=1

𝑇𝑎
𝑗𝑘 |𝑎〉𝑔 | 𝑗〉𝑞 |Ω〉U +

(
terms orthogonal to |Ω〉U

)
. (2)

Since quantum gates are linear operators, if the quark qubits (or gluon qubits, or both) are in
superpositions of colour basis states, possibly entangled with other qubits in the circuit, then 𝑄 acts
linearly on each basis component in the superposition.

For the triple-gluon interaction, we have designed a gate 𝐺 acting on 3 registers, each of which
comprises 3 qubits to represent the colour of a gluon as before. Given 3 gluon registers 𝑔1, 𝑔2, 𝑔3

in colour basis states |𝑎〉𝑔1 , |𝑏〉𝑔2 , |𝑐〉𝑔3 , the 𝐺 gate acts in the following way:

𝐺 |𝑎〉𝑔1 |𝑏〉𝑔2 |𝑐〉𝑔3 |Ω〉U = 𝑓 𝑎𝑏𝑐 |𝑎〉𝑔1 |𝑏〉𝑔2 |𝑐〉𝑔3 |Ω〉U +
(
terms orthogonal to |Ω〉U

)
, (3)

where we include the same extra qubits U as above. The reason for including U can now be
seen: while multiplying by 𝑓 𝑎𝑏𝑐 is not a unitary operation, the inclusion of extra qubits U allows
a unitary operation (3) to be defined. We call these extra qubits the unitarisation register and in
our article [1] we give a detailed description of its usage. For now we just mention that the number
of extra qubits is very small (logarithmic in the number of vertices in the Feynman diagram). We
can then interpret eq. (3) to mean that when projected onto the special reference state |Ω〉U of the
unitarisation register, the equation simulates the colour interaction of 3 gluons.

3. Illustrative example

We will now work through a simple example in order to illustrate how the 𝑄 and 𝐺 gates can
be used. A generalisation to arbitrarily complicated cases will be given in sec. 4. Consider the
Feynman diagram shown in Fig. 1. It has one quark and one gluon. As mentioned above, we use 2
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qubits to represent the colour of the quark and 3 qubits to represent the colour of the gluon. There
is a complication: in order to be able to compute the trace, we introduce for each quark line a pair
of 2-qubit registers 𝑞 and 𝑞, rather than just a single 2-qubit register. The extra register 𝑞 is not
affected by the simulation gates 𝑄 or 𝐺, but instead exists solely to allow the compution of the
trace, as will be seen shortly.

We start the circuit in a reference state |Ω〉𝑔 |Ω〉𝑞 |Ω〉�̃� |Ω〉U , where |Ω〉𝑟 indicates that each
qubit of a register 𝑟 is in the state |0〉. We then apply a gate 𝑅𝑔 to the gluon register to rotate it into
an equal superposition of all 8 basis colour states:

𝑅𝑔 |Ω〉𝑔 =

8∑︁
𝑎=1

1
√

8
|𝑎〉𝑔 . (4)

The explicit form of 𝑅𝑔 can be found in the Appendix of ref. [1]. The gate 𝑅𝑞 (also defined in the
Appendix of ref. [1]) is now applied to the quark registers to place them into the following equal
superposition of states:

𝑅𝑞 |Ω〉𝑞 |Ω〉�̃� =

3∑︁
𝑘=1

1
√

3
|𝑘〉𝑞 |𝑘〉�̃� , (5)

where it should be observed that the 𝑞 and 𝑞 registers are entangled. Thus, after applying the 𝑅𝑔

and 𝑅𝑞 gates, the quantum computer is in the state

1
√

24

8∑︁
𝑎=1

3∑︁
𝑘=1

|𝑎〉𝑔 |𝑘〉𝑞 |𝑘〉�̃� |Ω〉U . (6)

We now perform the key simulation steps, where we apply two 𝑄 gates corresponding to the
two interaction vertices in the Feynman diagram in Fig. 1. We emphasise that 𝑄 does not act on
the 𝑞 register. We see from eq. (2) that after applying the 𝑄 gate once, the state of the quantum
computer becomes

1
√

24

∑︁
𝑎∈{1,...,8}
𝑗 ,𝑘∈{1,2,3}

𝑇𝑎
𝑗𝑘 |𝑎〉𝑔 | 𝑗〉𝑞 |𝑘〉�̃� |Ω〉U +

(
terms orthogonal to |Ω〉U

)
(7)

and after applying the second 𝑄 gate, the state becomes

1
√

24

∑︁
𝑎∈{1,...,8}

𝑖, 𝑗 ,𝑘∈{1,2,3}

𝑇𝑎
𝑖 𝑗𝑇

𝑎
𝑗𝑘 |𝑎〉𝑔 |𝑖〉𝑞 |𝑘〉�̃� |Ω〉U +

(
terms orthogonal to |Ω〉U

)
. (8)

This looks somewhat like the desired colour factor, but it is not immediately accessible. In particular,
the state contains a sum over 𝑎 but each term 𝑇𝑎

𝑖 𝑗
𝑇𝑎
𝑗𝑘

multiplies a distinct state |𝑎〉𝑔 of the gluon
register, which means that the desired summation

∑
𝑎 𝑇

𝑎
𝑖 𝑗
𝑇𝑎
𝑗𝑘

has not yet been performed.
In order to perform the sum, we first observe by inverting eq. (4) that 𝑅−1

𝑔 acting on any state∑8
𝑎=1 𝑐𝑎 |𝑎〉𝑔 of the gluon register would produce the state

𝑅−1
𝑔

8∑︁
𝑎=1

𝑐𝑎 |𝑎〉𝑔 =

(
1
√

8

8∑︁
𝑎=1

𝑐𝑎

)
|Ω〉𝑔 +

(
terms orthogonal to |Ω〉𝑔

)
, (9)
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effectively averaging over the coefficients of the 8 colour states |𝑎〉𝑔. Similarly, it can be seen by
inverting eq. (5) that 𝑅−1

𝑞 acting on any state
∑

𝑖,𝑘∈{1,2,3} 𝑐𝑖𝑘 |𝑖〉𝑞 |𝑘〉�̃� of the 𝑞 and 𝑞 registers would
produce the state

𝑅−1
𝑞

∑︁
𝑖,𝑘∈{1,2,3}

𝑐𝑖𝑘 |𝑖〉𝑞 |𝑘〉�̃� =

(
1
√

3

3∑︁
𝑖=1

𝑐𝑖𝑖

)
|Ω〉𝑞 |Ω〉�̃� +

(
terms orthogonal to |Ω〉𝑞 |Ω〉�̃�

)
, (10)

effectively performing a trace over quark colours. Note that tracing over external colours is not
essential, but we have chosen to do so in order to allow each Feynman diagram to be validated by
comparing a single number to the output of our quantum circuits.

Thus, after applying the 𝑅−1
𝑔 and 𝑅−1

𝑞 gates to the state produced in eq. (8), we obtain the state

1
24

©«
∑︁

𝑎∈{1,...,8}
𝑖, 𝑗∈{1,2,3}

𝑇𝑎
𝑖 𝑗𝑇

𝑎
𝑗𝑖

ª®®®¬ |Ω〉𝑔 |Ω〉𝑞 |Ω〉�̃� |Ω〉U +
(
terms orthogonal to |Ω〉𝑔 |Ω〉𝑞 |Ω〉�̃� |Ω〉U

)
. (11)

It can be observed in this state that the coefficient of the original reference state |Ω〉𝑔 |Ω〉𝑞 |Ω〉�̃� |Ω〉U
encodes the colour factor (1) of the diagram. This result can be generalised to arbitrarily more
complicated diagrams by adding more qubits and more 𝑄 and 𝐺 gates, as will be explained in the
next section. We note that the procedure described in this example can be applied at the level of
either an unsquared diagram or a squared diagram, since for colour calculations the Feynman rules
remain the same in both cases.

4. Calculating the colour factor of arbitrary Feynman diagrams

It is straight-forward to generalise the illustrative example from sec. 3 to now calculate colour
factors for Feynman diagrams with arbitrary numbers of quarks and gluons. Given an arbitrary
Feynman diagram with 𝑁𝑞 quark lines and 𝑁𝑔 gluons, the procedure is as follows:

1. Create a quantum circuit with a 3-qubit gluon register 𝑔 for each gluon, a pair of 2-qubit
quark registers 𝑞, 𝑞 for each quark line, and a single unitarisation register U.

2. Initialise each register 𝑟 to a reference state |Ω〉𝑟 in which each qubit is in the state |0〉.

3. For each gluon, apply 𝑅𝑔 to the corresponding register 𝑔.

4. For each quark line, apply 𝑅𝑞 to the corresponding pair of registers 𝑞, 𝑞.

5. For each quark-gluon vertex, apply a 𝑄 gate to the corresponding registers 𝑔 and 𝑞.

6. For each triple-gluon vertex, apply a 𝐺 gate to the 3 corresponding 𝑔 registers.

7. For each gluon, apply 𝑅−1
𝑔 to the corresponding gluon register.

8. For each quark, apply 𝑅−1
𝑞 to the corresponding pair of quark registers 𝑞, 𝑞.

6
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Just as with the illustrative example in sec. 3, the colour factor C for the diagram is now found
encoded in the final state of the quantum computer, which is

1
N C |Ω〉𝑎𝑙𝑙 +

(
terms orthogonal to |Ω〉𝑎𝑙𝑙

)
, (12)

where N = 𝑁
𝑛𝑞
𝑐

(
𝑁2
𝑐 − 1

)𝑛𝑔 and

|Ω〉𝑎𝑙𝑙 =
(
𝑛𝑔∏
𝑚=1

|Ω〉𝑔𝑚

) (
𝑛𝑞∏
𝑙=1

|Ω〉𝑞𝑙 |Ω〉�̃�𝑙

)
|Ω〉U . (13)

5. Validation

To validate our methods, we implemented our circuits in Python using the IBM Qiskit
framework. We used this to run our circuits on a simulated noiseless quantum computer. To verify
that the state (12) is indeed being correctly produced, we ran each simulation 108 times, measuring
the final state each time, and inferred the colour factor C from the fraction of times that the output
state was measured to be |Ω〉𝑎𝑙𝑙. While this is a simple and transparent way to verify the state (12),
it is not the most efficient way and we emphasise that more sophisticated measurement schemes
are possible such as quantum amplitude estimation [38–41], which offers a quadratic speed-up.
Nonetheless, it can be seen from the results in Table 1 that the measurements are fully consistent
with the analytical expectation of the colour factors.

6. Summary and Outlook

In these proceedings, based on our article [1] in which full details can be found, we have
designed quantum circuits to simulate the colours parts of perturbative QCD. As an example
application, we have shown how they can be used for calculating the colour factors of arbitrary
Feynman diagrams. This is a first step towards a full quantum simulation of perturbative QCD
processes.

Our work opens up several natural avenues for further exploration. Firstly, there is the interfer-
ence of multiple Feynman diagrams. Quantum computers are naturally well-suited to this task, due
to their ability to coherently manipulate quantum states, and we therefore believe that this extension
should be straight-forward. Secondly, one can try to implement the kinematic parts of Feynman
diagrams. This could re-use some of the ideas from this work, particularly the unitarisation register
for implementing non-unitary operations. However, one will also require methods to handle the
much larger Hilbert space associated with kinematics. Thirdly, one can eventually seek to combine
these components into a quantum computer-based Monte Carlo simulation of cross-sections in order
to obtain a quadratic speed-up over classical Monte Carlo simulations.
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Diagram Analytical Numerical

i i

𝐶𝐹𝑁 = 4 3.9988 ± 0.0012

i i
𝐶𝐹

2𝑁 = 16
3 5.331 ± 0.010

i i

𝐶𝐹

2 = 2
3 0.673 ± 0.010

a a

𝑁 (𝑁2 − 1) = 24 23.95 ± 0.03

i i

j j

(𝑁 2−1)
4 = 2 2.00 ± 0.03

i i

j j
0 0.0+0.5

−0.0

i i

𝐶𝐹𝑁 2

2 = 6 5.92 ± 0.08

Table 1: Colour factors for example Feynman diagrams. The first column depicts the Feynman diagrams,
with indices on external legs indicating identical colours. The central column states the analytical result
for the colour factor. The last column displays the numerical result for each colour factor obtained using
quantum simulations in the manner explained in sec. 5 of the text.
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