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1. Introduction

The first observation of gravitational waves by the LIGO-Virgo collaboration [1] started a new
era in the study of the universe. Understanding the systems that produce those feeble spacetime
perturbations which we detect is critical to make the most of the experimental programs of current
and future (third-generation) gravitational wave observatories. The gravitational wave signals for
compact binary systems can be described by three well-distinguished parts. First, the inspiral where
the compact objects are very far apart, then the merger where the gravitational fields become strong
(for example, when even horizons of coalescent black holes touch), and finally the rigndown where
an excited black hole evolves into a stable configuration.

Large amount of templates of these waveform signals are required to find gravitational wave
events in the data sets collected by experiments. Though nowadays numerical simulations of full
evolution in general relativity are possible, they are rather computationally expensive and so semi-
analytic models are required to interpolate among simulations in parameter space. One input that
these models take are the conservative potential of the compact binary systems during the inspiral
phase. In this presentation we focus on the calculation of those potentials as a post-Minkowskian
(PM) expansion, that is as a series expansion in Newton’s coupling 𝐺. Great efforts have been
devoted in recent years to compute higher-order terms in the PM expansion. For example, for spinless
systems, third-PM corrections have been computed [2–8] as well as fourth-PM corrections [9–12].

The computation of PM corrections to systems involving spinning black holes is of great interest
as it is expected that they will play a key role in analyzing a good fraction of detected gravitational
waves. In this presentation we focus on the third-PM calculation of the conservative potential for
a compact binary system including a spinning black hole [13]. Other recent activity include the
calculation of the scattering angle, momentum impulse and spin kick to fourth-PM order [14, 15]
(see reference therein for further details). It is expected [16] that with the increased sensitivity of
third-generation gravitational wave observatories up-to terms O(𝐺7) will be required to describe
signals, and so the development of techniques that can efficiently explore higher order correction is
a necessity.

We report on our usage of numerical techniques to compute the two-loop scattering amplitudes
necessary for our calculation. In particular we discuss the usage of the unitarity method [17–21],
in a numerical variant [22–26] which is well suited to deal with generic effective field theories, like
for example theories of gravity.

2. Scattering Amplitudes from Numerical Unitarity

We study the scattering process of a massive scalar particle with a massive vector (spin-1)
particle minimally coupled to gravity. This is described by the Lagrangian:

L =
√−𝑔

[
−2𝑅
𝜅2 + 1

2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 1

2
𝑚2

𝜙𝜙
2 − 1

4
𝑔𝜇𝛼𝑔𝜈𝛽𝐹𝛼𝛽𝐹𝜇𝜈 +

1
2
𝑚2

𝐴𝑔
𝜇𝜈𝐴𝜇𝐴𝜈

]
, (1)

where 𝜅 =
√

32𝜋𝐺 with 𝐺 Newton’s constant, 𝜙 is a scalar field, 𝐴𝜇 a vector field, 𝑔𝜇𝜈 is the metric,
𝑅 the Ricci scalar, and 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. We study the elastic process

𝐴(𝑝1, 𝜖1) + 𝜙(𝑝2) → 𝜙(𝑝3) + 𝐴(𝑝4, 𝜖4) ,
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with 𝑝2
1 = 𝑝2

4 = 𝑚2
𝐴
, 𝑝2

2 = 𝑝2
3 = 𝑚2

𝜙
, and where 𝜖1,4 are the corresponding polarization vectors of the

vector particles. We compute the scattering amplitudes, for given polarization choices, numerically
employing the Caravel framework [27]. We do this over momentum configurations with values
on a particular number field, that of a finite field with a large cardinality. This allows to employ
these numeric evaluations to reconstruct the associated analytic expressions (see e.g. [28, 29]). The
implementation of Feynman rules from the Lagrangian above has been made with the help of the
package xAct [30, 31].

We employ the unitarity method [17–21] to compute the needed scattering amplitudes. We
start by writing an ansatz for the scattering amplitude:

M =
∑︁
Γ∈Δ

∑︁
𝑖∈𝑀Γ

𝑐Γ,𝑖 IΓ,𝑖 ,

where the sum is over all the master integrals {IΓ,𝑖}, here classified by a propagator structure Γ and
a set of master integral indices 𝑀Γ. In the unitarity method we exploit analytic properties of the
scattering amplitudes to extract directly the coefficients {𝑐Γ,𝑖}. Furthermore, in an approach well
suited for numerical calculations, we introduce an ansatz of the amplitude’s integrand M(ℓ𝑙) as

M(ℓ𝑙) =
∑︁
Γ

∑︁
𝑘∈𝑄Γ

𝑐Γ,𝑘
𝑚Γ,𝑘 (ℓ𝑙)∏

𝑗∈𝑃Γ
𝜌 𝑗

. (2)

The outer sum runs over all propagator structures Γ encountered in the amplitude. Given our
interest in classical effects, the set of propagator structures is considerably reduced with respect to
the full quantum amplitude [2, 3]. In Fig. 1 we show all required structures at the two-loop order.
The 𝜌 𝑗 are inverse propagators present in Γ, and the functions {𝑚Γ,𝑘 (ℓ𝑙)} parametrize all integrand
insertions (up to a given power counting in loop momenta). Finally, the coefficients 𝑐Γ,𝑘 contain all
the process-specific information and are functions of the external kinematics and the dimensional
regularization [32] parameter 𝜖 = (4 − 𝐷)/2.

Figure 1: Topologically inequivalent propagator structures contributing to the classical two-body potential.
Blue and red lines each represent a massive particle, while black lines denote massless graviton exchanges.

The family of functions {𝑚Γ,𝑘 (ℓ𝑙)} is labelled by a set of indices 𝑄Γ. In principle, any
complete set (up to a given power counting in the loop momenta) of linearly independent functions
can be employed for the ansatz. Typically we use three types of sets. Consider the adaptive
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loop-momentum parametrization for a given propagator structure Γ:

ℓ𝑙 =
∑︁
𝑗∈𝐵𝑝

𝑙

𝑣
𝑗

𝑙
𝑟 𝑙 𝑗 +

∑︁
𝑗∈𝐵𝑡

𝑙

𝑢
𝑗

𝑙
𝛼𝑙 𝑗 +

∑︁
𝑖∈𝐵𝑐𝑡

𝑛𝑖

(𝑛𝑖)2𝛼
𝑙𝑖 +

∑︁
𝑘∈𝐵𝜖

𝑛𝑘𝜇𝑘
𝑙 , (3)

where we have split the 𝐷-dimensional Minkowski space into four pieces. First, 𝐵𝑝

𝑙
represents

the scattering plane spanned by external momenta connected to ℓ𝑙. Second, 𝐵𝑐𝑡 is the so-called
common-transverse space, the part of the 4-dimensional Minkowski space transverse to all external
momenta attached to the propagator structure Γ. Then 𝐵𝑡

𝑙
is the missing transverse piece to complete

the 4-dimensional Minkowski space with the two previous subspaces, and finally we introduce a
parametrization of the 𝜖-dimensional space with 𝐵𝜖 . The vectors 𝑣

𝑗

𝑙
, 𝑢 𝑗

𝑙
, 𝑛𝑖 , and 𝑛𝑘 , span their

corresponding spaces, and the variables left are the corresponding parameters to characterize the
loop momenta. In particular the 𝑟 𝑙 𝑗 and 𝜇𝑘

𝑙
can be associated to inverse propagators of Γ.

Then when parametrizing a given integrand for a propagator structure Γ we can construct the
bases:

1. Tensor basis: where we construct from all monomials (up-to corresponding power counting)
of the type (𝛼𝑙 𝑗) ®𝑎 (𝛼𝑙𝑖) ®𝑏 with 𝑗 ∈ 𝐵𝑡

𝑙
and 𝑖 ∈ 𝐵𝑐𝑡 . The vectors ®𝑎 and ®𝑏 are the non-negative

integer exponents of the monomials.

2. Scattering-plane tensor basis: starting from the tensor basis before, we replace all monomials
containing variables in 𝐵𝑐𝑡 by corresponding functions which integrate to zero using one-
loop-like surface terms (see e.g. [24]).

3. Master-surface basis: through the usage of unitarity-compatible integration-by-parts (IBP)
relations [33] one can further reduce the left-over monomials of the previous basis by surface
terms [22] in such way that 𝑄Γ = 𝑀Γ ∪ 𝑆Γ with:∫

𝑑𝐷ℓ1𝑑
𝐷ℓ2

(2𝜋)2𝐷
𝑚Γ,𝑖 (ℓ𝑙)∏
𝑘∈𝑃Γ

𝜌𝑘
=

{
𝐼Γ,𝑖 for 𝑖 ∈ 𝑀Γ (master)
0 for 𝑖 ∈ 𝑆Γ (surface) (4)

The latter basis is particularly powerful as it trivializes the map between our amplitude integrand
ansatz and the integrated form in terms of master integrals. In Caravel we have an automated
approach to build the first two types of integrand parametrization and we have collected several
master-surface parametrization for amplitudes of interest (see e.g. [34] for more details).

A key factorization property of the integrand of an scattering amplitudes in field theory occurs
when we take internal (loop) propagators to on-shell limits. That is, when the inverse propagators
go to zero. In this limit equation (2) gives:∑︁

states

∏
𝑖∈𝑇Γ

Mtree
𝑖 (ℓΓ𝑙 ) =

∑︁
Γ′≥Γ
𝑘∈𝑄Γ′

𝑐Γ′ ,𝑘 𝑚Γ′ ,𝑘 (ℓΓ𝑙 )∏
𝑗∈ (𝑃Γ′/𝑃Γ ) 𝜌 𝑗 (ℓΓ𝑙 )

, (5)

where the sum on the RHS over Γ′ ≥ Γmeans for all propagator structures containing all propagators
or more of Γ. The momenta ℓΓ

𝑙
is such that all inverse propagators in Γ vanish. In the LHS of

this equation we have the product of all tree-level amplitudes characterized by the vertices of the
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diagram Γ. This important relation is called the cut equation [23] and is the one used to compute
the coefficients {𝑐Γ,𝑘} of an scattering amplitude. The process samples multiple values of ℓΓ

𝑙
and

through linear algebra techniques, returns all needed coefficients. This is the core of the so-called
numerical unitarity method [22–26].

Whenever we have scattering tensors in our integrand bases, we have employed IBP identities
produced with the Fire 6 [35] program. The resulting expression is expanded as a Laurent series
in small momentum transfer 𝑞2 and we also expand the corresponding master integrals accordingly
(using [36]). After functional reconstruction, we obtain final analytic expressions for our scattering
amplitudes. We refer the reader to the appendices of [13] for the corresponding analytic expressions.

3. Effective Field Theory and Classical Potential

We extract the classical potential through effective field theory (EFT) techniques [37–39]. For
that we employ the non-relativistic EFT described by the Lagrangian:

𝐿EFT =

∫
𝒌
𝜙†(−𝒌)

(
i𝜕𝑡 −

√︃
𝒌2 + 𝑚2

𝜙

)
𝜙(𝒌) +

∫
𝒌
�̂�†,𝑖 (−𝒌)

(
i𝜕𝑡 −

√︃
𝒌2 + 𝑚2

𝐴

)
�̂�𝑖 (𝒌) (6)

−
∫
𝒌 ,𝒌 ′

�̃�𝑖 𝑗 (𝒌, 𝒌′) �̂�†,𝑖 (𝒌′) �̂� 𝑗 (𝒌)𝜙†(−𝒌′)𝜙(−𝒌) ,

where the integration
∫
𝒌

is
∫

𝑑3𝒌
(2𝜋 )3 and the non-local function �̃�𝑖 𝑗 is the potential which we will

obtain according to matching conditions. The potential �̃�𝑖 𝑗 is decomposed in terms of spin operators,
which will produce the different linear (spin-orbit) and quadratic terms in the Lagrangian that we
will extract from our calculation.

p1

p2 p3

p4

Ṽ +

p1

p2 p3

p4

Ṽ Ṽ

p1 + `

p2 − `

+

p1

p2 p3

p4

Ṽ Ṽ Ṽ

p1 + `1 p1 + `2

p2 − `1 p2 − `2

Figure 2: These iterated bubble diagrams give the corresponding amplitude in the effective theory. The blue
or red lines represent either the scalar or vector particles.

The EFT amplitude is extracted from iterated bubble diagrams according to [38]. Furthermore
the scattering amplitude, as well as the potential �̃�𝑖 𝑗 is expanded perturbatively in terms of 𝜅. These
expansions are written explicitly in [13]. We perform all calculations in the effective theory in
dimensional regularization around 3−2𝜖 dimensions. In this way all intermediate steps are properly
regularized and the matching procedure systematically removes infrared divergent contributions to
both the full theory amplitudes and to the effective theory amplitudes. This is the first time this type
of matching procedure has been performed including all dimensional regularization contributions.

After matching the full theory amplitude to the EFT amplitude, order-by-order and up to two
loops, we obtained the conservative potential with contributions up to third order in Newton’s
constant 𝐺. For brevity here we only include the spin-orbit term of the potential. Its corresponding
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coefficient in momentum space we write as 𝑐 (2)
𝐿+1, where the 𝐿 represents the loop order (𝐿 is zero

for the tree-level result, 1 for one loop, and 2 for two loops). This is decomposed as:

𝑐
(2)
𝐿+1 = 𝑐

(2)
𝐿+1,red + 𝑐

(2)
𝐿+1,iter +

𝑐
(1)
𝐿+1,red

𝑚2
𝐴
(𝛾1 + 1)

, (7)

where 𝛾1 = 𝐸𝐴/𝑚𝐴. The coefficients 𝑐
(1)
𝐿+1,red are the ones appearing in the analogous spinless

system. In the end, the full expression for the spin-orbit coefficient up-to O(𝐺3) is:

𝑐
(1)
1,red(𝒌

2) =
𝑚2

𝐴
𝑚2

𝜙

𝐸2𝜉

(
1 − 2𝜎2

)
, 𝑐

(1)
2,red(𝒌

2) =
3(𝑚𝜙 + 𝑚𝐴)𝑚2

𝜙
𝑚2

𝐴

4𝐸2𝜉
(1 − 5𝜎2) , (8)

𝑐
(1)
3,red(𝒌

2) =
𝑚2

𝐴
𝑚2

𝜙

𝐸2𝜉

[
−2

3
𝑚𝐴𝑚𝜙

(
arccosh(𝜎)
√
𝜎2 − 1

(
−12𝜎4 + 36𝜎2 + 9

)
+ 22𝜎3 − 19𝜎

)
−2(𝑚2

𝜙 + 𝑚2
𝐴)

(
6𝜎2 + 1

)]
+

3𝐸𝑚2
𝐴
𝑚2

𝜙

4𝐸2𝜉
(𝑚𝐴 + 𝑚𝜙)

(1 − 2𝜎2) (1 − 5𝜎2)
(𝜎2 − 1)

−
3𝑚4

𝐴
𝑚4

𝜙

𝐸2𝜉𝒌2 , (9)

𝑐
(2)
1,red(𝒌

2) = −
2𝜎𝑚𝜙

𝐸𝜉
, 𝑐

(2)
2,red(𝒌

2) =
𝑚𝜙 (4𝑚𝐴 + 3𝑚𝜙)𝜎(5𝜎2 − 3)

4𝐸𝜉 (𝜎2 − 1)
, (10)

𝑐
(2)
3,red(𝒌

2) =
𝑚𝜙

𝐸𝜉 (𝜎2−1)2

[
−2𝑚2

𝐴𝜎(3−12𝜎2+10𝜎4)−
(

83
6 +27𝜎2−52𝜎4+44

3 𝜎
6
)
𝑚𝐴𝑚𝜙

− 𝑚2
𝜙𝜎

(
7
2−14𝜎2+12𝜎4

)
+
(4𝑚𝐴+3𝑚𝜙)𝐸

4
𝜎(2𝜎2−1) (5𝜎2−3)

+4𝑚𝐴𝑚𝜙𝜎(𝜎2−6) (2𝜎2+1)
√︁
𝜎2−1 arccosh(𝜎)

]
, (11)

𝑐
(2)
1,iter(𝒌

2) = 0 , 𝑐
(2)
2,iter(𝒌

2) = 𝐸𝜉𝑐
(2)
1

𝜕𝑐
(1)
1

𝜕𝒌2 + 𝑐
(1)
1

©«𝐸𝜉
𝜕𝑐

(2)
1

𝜕𝒌2 +
𝑐

(2)
1

(
2𝐸2 𝜉

𝒌2 + 1
𝜉
− 3

)
2𝐸

ª®®¬ , (12)

𝑐
(2)
3,iter(𝒌

2) =
(
𝑐

(1)
1

)
2

(
−2

3
𝐸2𝜉2 𝜕2𝑐

(2)
1

𝜕 (𝒌2)2+
(
𝜉

(
3−𝐸2𝜉

𝒌2

)
−1

)
𝜕𝑐

(2)
1

𝜕𝒌2 +𝑐(2)
1

( 1
2𝜉 −2

𝐸2 +3𝜉−1
𝒌2

))
(13)

+𝑐(1)
1

(
𝑐

(2)
1

((
−3𝐸2𝜉2

𝒌2 +6𝜉−2
)
𝜕𝑐

(1)
1

𝜕𝒌2 −4
3
𝐸2𝜉2 𝜕2𝑐

(1)
1

𝜕 (𝒌2)2

)

+4
3
𝐸𝜉

(
𝜕𝑐

(2)
2

𝜕𝒌2 −2𝐸𝜉
𝜕𝑐

(1)
1

𝜕𝒌2

𝜕𝑐
(2)
1

𝜕𝒌2

)
+
𝐸2𝜉2

(
𝑐

(2)
1

)
2

2𝒌2 +𝑐(2)
2

( 2
3𝜉 −2

𝐸
+𝐸𝜉
𝒌2

)ª®®¬
−1

6
𝐸2𝜉2

(
𝑐

(2)
1

)
3+𝑐(2)

1

©«
2
3
𝐸𝜉

(
𝜕𝑐

(1)
2

𝜕𝒌2 −2𝐸𝜉

(
𝜕𝑐

(1)
1

𝜕𝒌2

)
2

)
+
𝑐

(1)
2

(
3𝐸2 𝜉

𝒌2 + 1
𝜉
−3

)
3𝐸

ª®®¬
+2

3
𝐸𝜉𝑐

(1)
2

𝜕𝑐
(2)
1

𝜕𝒌2 +4
3
𝐸𝜉𝑐

(2)
2

𝜕𝑐
(1)
1

𝜕𝒌2 ,

where 𝜎 =
𝑝1 ·𝑝2
𝑚𝐴𝑚𝜙

, 𝐸 = 𝐸𝐴 + 𝐸𝜙 and 𝜉 = 𝐸𝐴𝐸𝜙/𝐸2. As mentioned above these coefficients are
written in momentum space. One can convert to position space if desired by a Fourier transform.
We have provided all corresponding expressions as ancillary files to Ref. [13].
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We have performed a series of validation tests in our results. In particular our calculation
include spinless results which we have systematically compared to the literature [2, 3, 40–42].
Even more, we have compared to related results in the literature for spinning observables or for
post-Newtonian results and found agreement [43–49].

4. Conclusions

We have presented a calculation including up-to third-order corrections in the Newton’s constant
of the conservative potential for a compact binary system including a spinning black hole. The
calculation has been performed to all orders in velocity and including up to quadratic terms in spin.
We have employed the numerical unitarity method in order to extract analytic expressions for the
scattering amplitudes involving massive scalar and massive vector particles minimally coupled to
gravity. This framework is flexible enough to carry further calculations of interest to the future of
gravitational wave astronomy. In particular it is possible to explore higher spin terms, finite-size
effects, and even higher loop corrections.
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