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The production and maintenance of an internal magnetic field in a compact space is a challenging
problem, and a versatile solution is being pursued. This is based on the property of a bulk hollow
superconductor to trap a magnetic field inside it, that is very interesting for fundamental physics
and industrial applications too. Our goals are to provide an intense magnetic field in a small
region. Compactness, transportability, no power connections, capability of maintaining a high
magnetic field and shielding surrounding magnetic fields are the most attracting characteristics of
a MgB2 bulk. A preliminary feasibility study on a test cylinder showed very promising results.
We are upgrading the system for better controls and systematic studies of the required material
and geometry for application in transverse polarized nuclear targets for fundamental physics
investigations, and for the proposal of polarized nuclear fuel for test in fusion facilities.
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1. Introduction

Polarized nuclear substances require proper magnetic field in order to maintain their magneti-
zation. For this contribution the main purposes are in the field of spin effects studies in nuclear and
subnuclear physics,[1] and also for polarized fuel in fusion tests.[2] Hollow bulk superconductors
can host inside them polarized substances, providing the required holding fields and simultaneously
shielding external fields.[3, 4] This feature is an important improvement with respect to a con-
ventional coil–based solution, because it includes minimal space needed to fit in the experimental
environments, maximal field compactness, absence of heat load from current leads, and in the case
of MgB2 low mass and low atomic number, Z , therefore the reaction products, in the path of the
material, experience less energy losses.

Polarized hydrogen, or deuterium, targets require cryogenic environments, which can be also
exploited for the MgB2 cooling requirement.

Finally, the system can be moved from the preparation site and transported to the experiments,
or to the test facilities. The MgB2, as a superconductor, has suitable values of critical current,
critical field, critical temperature Tc=39 K, and workability.[5]

2. Preliminary test on an MgB2 test cylinder and system commissioning

A preliminary feasibility study has been performed building a dedicated apparatus shown in
Fig. 1.[6] For the commissioning of the system a test cylinder of MgB2 was used, 97 mm long
with an outer diameter of 39 mm and a nominal thickness of two mm, which tapers at the edges to
one mm. The cylinder was produced by the Reactive Liquid Infiltration (RLI) process.[5]

Adetailed descriptionwith the results of the preliminarymeasurements has been published.[6] In
the following, a brief description of the main components of the commissioning apparatus is re-
ported, as a starting point for the recent upgrading. – The mechanical refrigerator: the supercon-
ducting cylinder was cooled by a cold–head (Edwards 6/30). The lowest temperature reached was
11.1 ± 0.1 K, but a stable operational temperature was usually ≈ 13 K. The cylinder temperature
is controlled by a resistive heater, clamped on the 2nd stage of the cold–head, and a CLTS-2B
temperature sensor(Micro–Measurements) glued on it, both managed by an Oxford Instruments
ITC-503S.[7] – The external magnet: an old VARIAN electromagnet (model V3603), nominal
maximum current of 180 A, powered by 110 A power supply (Agilent 6692A), remotely controlled
via a GPIB interface, provides a maximum field of 980 mT, as measured in the middle of the
poles by a Hall sensor (Arepoc HHP-NU), installed inside the cylinder. – The vacuum system: the
vacuum system consists of two cylindrical chambers, in stainless steel and in aluminum (5A and
5B in Fig. 1). The stainless chamber, 5B, has a DN100CF flange on the top for the cold–head, and
on the side a DN63CF for a turbo pump (Agilent Turbo-V 81-M), backed by a scroll pump (Varian
SH110) and two DN40CF flanges: one for a Penning gauge (Pfeiffer PKR 251), and the other for
a T connection for two feedthroughs, carrying wires for the Hall probes, temperature sensors, and
the heater. A Pirani gauge (Pfeiffer PRT81) is connected on the inlet of a scroll pump, backing
the turbo pump. The MgB2 cylinder fit in a copper cylinder holder (“cylinder–can”), fixed on the
copper rod, which is in turn connected to the 2nd stage (10 K nominal temperature) of the cold–head.
Surrounding this is a three mm thick cylindrical copper thermal shield, connected to the 1st stage
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Figure 1: Picture of the overview of the setup. Magnet: iron yoke (1), coils (2), iron poles (3). In a
nylon support (4), fixed to the poles, the bottom aluminum chamber (5B) of the vacuum system is inserted,
connected to a stainless steel chamber (5A) fixed to the yoke thanks to two arms, on which a ring is welded.
A cold–head (6) is placed on top of the vacuum chamber, a turbomolecular pump (7) is connected to one side.
Two additional service flanges are available for a pressure sensors (8), and electrical feedthroughs (9).

(77 K nominal temperature). Thin indium foils were used in all thermal joints, taking accurate
care on good contacts along the 1st and 2nd stage. The aluminum chamber has an outer diameter
of 70 mm and a wall thickness of 3 mm; to thermally insulate the copper shielding from it, we use
sets of strips, made with three, or more, layers of Myoflex,[7] wrapped around the 62 mm diameter
copper shield. Two set of strips, about 2 cm wide, were wrapped around the cylinder–can and the
copper–rod extension of the 2nd stage, for the insulation of them from the copper thermal shield. The
pressure stays below 10−6 mbar at room temperature, and reaches 10−8 mbar, when the cold–head is
at the minimum temperature. – The control and the data acquisition: LabView and C routines are
used to control the heater via the Oxford ITC-503S, to monitor and record the temperature below
the cylinder–can, to control and record the power supply of the external magnet, to readout and
record pressure values (via the Pfeiffer TPG256A multigauge), to read out the temperature sensor
resistances (via the Keithley 199 System DMM/Scanner), and the magnetic fields (via the Arepoc
USB2AD controller). – Thermal cycle: about 7.5 h are required to cool from room temperature
(≈ 297 K) to about 13 K. This process is monitored by the RhFe sensor in contact with the bottom
side of the cylinder–can. Using the cold–head heater at full power (65 W), it takes about one hour
to heat the cylinder–can to 60 K, which is done after each test to ensure a complete transition of
the MgB2 cylinder from the superconductive to the normal state before the next cool down and test.
The trapped field disappears at Tc. One and a half hours are needed to cool back to about 13 K,
usually before ramping down, or up, the magnet, we wait at least one hour at the lowest temperature.

3



P
o
S
(
P
S
T
P
2
0
2
2
)
0
2
0

Superconducting MgB2 Cylinder Giuseppe Ciullo

2.1 Results of the feasibility study under commissioning

Although a test MgB2 cylinder was used, the results were promising. – The cylinder magne-
tization is obtained via the so called Field Cooling (FC) process, which implies that the cylinder is
cooled below Tc (≈ 39 K) in presence of an applied external magnetic field Bext . After the system
is stable at the minimum, or chosen, temperature (≈ 13 K, or higher) Bext is ramped to zero, while
the trapped field Btrapp of the MgB2 cylinder is measured. We obtained Btrapp=942 ± 1 mT at our
minimum operational temperature (≈ 13 K), applying Bext=980 mT. The performances for various
temperatures have been published.[6] Btrapp can be preserved for days, unless a temperature spike
recorded by RhFe sensor, due to instabilities in the cold–head, destroys it. This problem motivates
the choice of a better cooling system, because the spike reduces the performance of the cylinder,
and does not allow to pursue systematic studies. – The magnetic field shielding is obtained by
the so called Zero Field Cooling (ZFC) process, which requires to cool down the cylinder below
Tc and then to apply Bext , by ramping the magnet up to Bext=980 mT. The cylinder is able to
almost completely shield Bext , as just a small residual magnetic field was detected inside it.[6] The
ZFC processes showed higher sensitivity to the spike problems than the FC processes. – Mov-
ing the MgB2 cylinder: the planned scheme for using an MgB2 cylinder as magnetic field generator
and magnetic shield, after its preparation, requires it to be moved into the experimental apparatus.
Trial moves were performed: the vacuum chamber, containing the MgB2 cylinder, was removed
from the magnet by a crane with the system connected to the vacuum pumps, and the cold–head
powered during the test. The trapped field was maintained during removal and return with no
detectable field losses.[6]

3. Upgrading of the preliminary system for systematic studies

The feasibility studies on the test cylinder provided promising results both for FC and ZFC
procedures.[6] With the purpose of pursuing systematic studies, as a result we improved various
components of the feasibility system (Fig. 1), following the knowledge acquired in its commis-
sioning, and, in addition, having at disposal some cylinders with known production procedures.
The geometry of the cylinders is close to the tested one, and produced using boron powders with
different grain sizes. Cylinders were labeled as P40, P100, P160, since the grain size was smaller
than 40 µm, 100 µm and 160 µm respectively. As documented in a review publication[9] of the
inventor of the RLI production technique of the cylinders, the stability properties and super–currents
are connected to the grain size: roughly the lower the grain size of the boron precursor, the better
the transport performances, but the worse the stability.

We need to test the performances of the MgB2 bulk cylinders accurately for nuclear target
applications, knowing, not only the field in the center, but also along the radial coordinate, and
along the axial coordinate in the middle and at the edge of the cylinder, in order to estimate the
homogeneity in the region, where the target might be hosted inside the cylinder itself. In addition
of more Hall probes installed in the inner space of the cylinder, the FC and ZFC processes depend
on temperature, therefore we implement a read out of the temperature inside the cylinder too, useful
also for the correction of Hall sensor sensitivity, which is temperature dependent too. The heart of
the upgrading consists mainly in: a new–cold head (Fig. 2), a new sensors’ holder (Fig. 3), which
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will be installed inside the cylinder, and a new mechanical design, which allows to easily exchange
the cylinders.

Figure 2: Drawing of the upgrading of the cold–head to match the system of Fig. 1 for systematic studies.
Left side picture: a – supplementary chamber has been added connected on the the top flange 5A in Fig. 1;
b – new cold–head (1st stage in transparence, 2nd stage visible); c – adapter for the new cold–head to the
previous extension; d – new extension: d.a – heater pits machined directly on the extension; e – cylinder–can,
e.a – cylinder; e.b – bolts for removing the bottom cover of the cylinder-can, for the exchanging the cylinder.
Right side picture: f – top part of the thermal shield connected to the 1st stage; g – bottom part of the shield.

The improvements following the previous description are listed in same order: – The mechan-
ical refrigerator: a new cold–head (RDK-415D from SHI Gryogenics Group) is installed, with a
nominal temperature of 40 K (1st stage for 35 W of heating power) and of 4 K (2nd stage for 1.5
W of heating power). – The external magnet: a new supply, 200 A / 50 V (CAEN-OCEM model
NGPS 200-50 Enhanced), controlled via a LAN connection, allows us to feed the maximum current
supported by the magnet up to 168 A, providing a field of 1 200 mT. – The vacuum system: in order
to host the new cold–head a new stainless steel chamber (a in Fig. 2) has been installed, hosting
two DN63CF and two DN40CF flanges, for servicing the connections for the new sensors. The
chamber is connected to the previous upper stainless steel chamber (5A in Fig. 1) and host the
new cold–head on the top flange. The wire connections for the magnetic field and the temperature
sensors are connected on Sub-D-15 DN40CF feedthrough fixed on the servicing flanges of the new
chamber (a in Fig. 2). The previous vacuum system remains unchanged. For the exchanging of
the cylinder we remove the new chamber, which hosts the cold–head and all connections for the
sensors (Fig. 2). We remove the thermal shielding (f and g), open the bottom cover (e.b), remove the
installed cylinder (e.a) and install the new one. – Temperature measurements: the temperature is
monitored by the same calibrated rhodium–iron (RhFe) sensor fixed below the bottom cover (e.b in
Fig. 2) of the cylinder–can, and by the new calibrated cernox sensor, installed on the sensors’ holder
(Fig. 3). The hall probe sensitivity is affected by the temperature, therefore the knowledge of the
temperatures of the sensors’ holder allows corrections with respect to the calibrated data (given for
297 K). – Control and data acquisition: the labview and C–routines are upgraded to control and
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read the new sensors, we add new temperature sensors on the Keithley 199 System DMM/Scanner,
and the new hall probes on the Arepoc USB2AD controller. For distinguishing the Hall probes we
use in subscript acronyms, indicating probe positions and magnetic fields measured: the first letter
indicates the position along the axial coordinate (middle, or edge), the second one indicates the
position with respect to the radial coordinate (center, or radial), the last one indicates the orientation
of measured magnetic field (longitudinal, or transverse) with respect to the axial coordinate as
shown in Fig. 3.

Figure 3: The new sensors’ holder for the temperature sensor (cernox) and the magnetic field sensors (Hall
probe). S1mcl–middle center longitudinal, S2mct–middle center transversal, S3mrt–middle radial transverse,
S4ect–edge center transverse, S5ecl–edge center longitudinal, S6ert–edge radial transverse.

3.1 Commissioning of the upgraded system

As a new result of using the new cold–head, cooling down from room temperature (≈ 297 K),
we reach a temperature on the RhFe sensor TRhFe ≤ 8 K ± 0.1 K in 3.5 h, and on the cernox sensor
Tcernox ≤ 15 K ± 0.1 K in 5.5 h, faster than before, and with the evidence of the presence of thermal
equilibrium also inside the cylinder.

The new heaters hosted in pits (d.a in Fig. 2), machined directly on the extension of the 2nd

stage, with a CLTS sensor on it for its control and monitoring by the Oxford Instruments ITC-
503S.[7], give us a better and more comfortable control on the temperature and reduce drastically
the time required for heating the cylinder and bringing it back at the required working temperature.
As a result, we can study the behavior of the cylinder as a function of the temperature, as shown in
Fig. 4, where without power on the heaters, we recorded three flux jumps.

We performed measurements setting the heater temperature at 9 K, 11 K, 13 K and then 15
K, before preventing the flux jumps. And in Fig. 5 we report the last measurements where flux
jumps are not present and the penetrating field is lower, showing a better performance of shielding.
In conclusion, the system is well tuned for the investigation on the characteristics of the available
cylinders, or on other ones produced after our accurate investigations of their performances, which
allow us to provide answers on the requirements for the applications in our research interests.
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Figure 4: Ramp up of the magnet after ZFC: magnetic field values (continuous lines) and temperature values
(dashed lines).

Figure 5: Ramp up of the magnet after ZFC. The penetrating field values are smaller than those in Fig. 4.

References

[1] D. Carman et al. Nucl. Instr. Meth. A 967 (2020) 163898.

[2] R. Engels et al. Phys. Rev. Lett. 124 (2020) 113003.

[3] D. Frankel et al. IEEE Trans. Magn. 15 (1979) 1349.

[4] J. F. Fagnard, et al. Supercond. Sci. Technol. 25 (2012) 104006.

[5] J. J. Rabbers et al. Supercond. Sci. Technol. 23 (2010) 125003.

[6] M. Statera et al. Nucl. Instr. Meth. A 882 (2018) 17.

[7] Oxford Instruments Direct Cryospares – www.cryospares.co.uk.

[8] G. Giunchi et al. Int. J. Mod. Phys. B 17 (2003) 453.

[9] G. Giunchi in MgB2 Superconducting Wires: Basics and Applications edited by R. Flükiger
(World Scientific, 2016, Singapore).

7


	Introduction
	 Preliminary test on an MgB2 test cylinder and system commissioning
	Results of the feasibility study under commissioning

	Upgrading of the preliminary system for systematic studies
	Commissioning of the upgraded system


