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The JEDI experiment is dedicated to the search for the electric dipole moment (EDM) of charged 

particles using storage rings, which can be a very sensitive probe of physics beyond the Standard 

Model. In order to reach the highest possible sensitivity, a fundamental parameter to be optimized 

is the Spin Coherence Time (SCT), i.e., the time interval within which the particles of the stored 

beam maintain a net polarization greater than 1/e. To identify the working conditions that 

maximize SCT, accurate spin-dynamics simulations with the code BMAD have been performed 

on the lattice of a "prototype" storage ring which uses a combination of electric and magnetic 

fields for bending. This contribution will present an analysis of the mechanisms behind the 

decoherence, some techniques to maximize SCT through the optimization of second-order 

focusing parameters, and the exclusive beam and spin dynamics effects of the electric component 

of bending fields. 
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1  Introduction 

Of all the observable matter antimatter asymmetry in the universe only a small fraction is 

accounted for by the currently accepted Standard Model (SM). Assuming the CPT theorem to 

hold true, it appears that this asymmetry can only be explained by additional CP violating 

processes than those accounted for in the SM [1]. A noticeable manifestation of CP violation is 

the presence of an Electric Dipole Moment in a proton, whose magnitude can indicate the 

existence of additional CP violation Beyond the Standard Model (BSM). While the SM predicts 

an EDM ≤ 10−31 𝑒 ∙ 𝑐𝑚, possible contributions from BSM theories could place it orders of 

magnitude higher. The current upper limit on the proton EDM is 7.9 × 10−25 𝑒 ∙ 𝑐𝑚 [2]. 

The JEDI collaboration is currently working on performing this measurement using storage 

rings. EDM can be measured using a storage ring through precise observation of the interaction 

of particle spin with electric and magnetic fields. Since the EDM will point in the same direction 

as the spin, the presence of EDM will result in a torque on the particle in response to an electric 

field. The visible effect of this torque can be magnified using specially configured external electric 

fields. To achieve a precision higher than the current lower limit on the proton EDM, the 

construction of a dedicated storage ring would be needed [3] [4]. But before building such a ring, 

its feasibility must be demonstrated. So, to this end the JEDI collaboration will approach this 

problem in three stages [3]. The first stage involves experiments at the Cooler Synchrotron 

(COSY) in FZ, Jülich, with only magnetic bending fields. The second stage involves experiments 

in a prototype storage ring which uses a combination of electric and magnetic bending fields, 

featuring the possibilities of simultaneous counter-rotating beams and frozen spin. 

Once the prototype has established the proof-of-principle, the final stage can be initiated, 

which would involve the measurement of the proton EDM at a purely electric storage ring, which 

would have the targeted precision to do so. 

2 The Prototype EDM Storage Ring 

In a storage ring that confines particles with a velocity �⃗� using an electric field �⃗⃗� and a 

magnetic field �⃗⃗� such that the three vectors are mutually perpendicular, the spins of the particles 

would undergo precession with respect to their velocity vectors due to the presence of a magnetic 

dipole moment (MDM), and an electric dipole moment (EDM). The frequency of this precession 

for a particle of mass 𝑚 and charge 𝑞 is given by the Thomas BMT equation [5]: 

𝑑�⃗⃗�

𝑑𝑡
= −

𝑞

𝑚
[{[Ω⃗⃗⃗𝑀𝐷𝑀]

𝑟𝑒𝑙
} + {Ω⃗⃗⃗𝐸𝐷𝑀}] × �⃗⃗�

= −
𝑞

𝑚
[{𝐺�⃗⃗� + (𝐺 −

1

𝛾2 − 1
) �⃗� × �⃗⃗�} + {

𝜂

2
(�⃗⃗� + �⃗� × �⃗⃗�)}] × �⃗⃗� 

( 1 ) 

The values of �⃗⃗�, �⃗⃗� and the Lorentz factor 𝛾 can be set to make the relative precession due 

to the MDM ([Ω⃗⃗⃗𝑀𝐷𝑀]
𝑟𝑒𝑙

) vanish altogether. This is called “frozen spin” since in this 

configuration, the spin vector is aligned with the particle momentum at all times. Therefore, any 

torque on the particle’s spin is now solely due to the EDM, and will point radially, causing a 

gradual build-up of vertical polarization among particles in the ring. The rate of this build-up will 

be proportional to the magnitude of the particle’s EDM.  

One such combination of fields is implemented for a ring with a bending radius of 12.25 𝑚. 

The proposed design [6], shown in Figure 1 consists of four unit-cells, each with two bending 

dipoles, 4 quadrupoles and 4 sextupoles to provide sufficient flexibility in beam optics. The 

quadrupoles present on the ring are categorized into three families: QF (2 per unit cell, focussing), 
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QD (1 per unit cell, defocussing) and QSS (1 per unit 

cell, in the straight section). The sextupoles are placed 

on the same locations as the quadrupoles and are 

categorized into similar families: SXF, SXD and 

SXSS. Each family of magnets have a common power 

supply for centralized control. During this study 

however, the QSS magnets were turned off. An RF-

cavity is also placed at one of the straight sections for 

bunching (longitudinal focussing) of particles. 

2.1 Spin Coherence time and Spin-Tune Error 

Assuming a bunch of 𝑛 particles are maintained 

in the storage ring, let �̂�𝑖(𝑡) be the unit vector in the 

direction of the 𝑖𝑡ℎ particle’s spin vector. The 

polarisation vector �⃗⃗�(𝑡) is [6]: 

�⃗⃗�(𝑡) =
1

𝑛
∑ �̂�𝑖(𝑡)

𝑛

𝑖=1

 ( 2 ) 

In a ring functioning in frozen-spin mode, if initially all particles distributed in phase space 

have their spins are aligned with their momenta (|�⃗⃗�(0)| = 1), the time 𝜏 taken for |�⃗⃗�(𝜏)| =
1

𝑒
 is 

defined as Spin Coherence Time (SCT). This quantity is ideal for evaluation of a storage ring for 

EDM measurements since very gradual polarization buildups would be noticeable only if the 

bunch remains spin-coherent. Therefore, longer SCT in a storage ring indicates a higher accuracy 

in potential EDM measurement. The spin tune spread Δ𝜃𝑥 measures the change in the direction 

of the polarisation vector from the reference particle in the plane of precession (here, assumed to 

be the ring plane): 

Δ𝜈𝑠(𝑡) =
𝑑

𝑑𝑡
(Δ𝜃𝑥(𝑡)) ≈

𝑑

𝑑𝑡
(𝑡𝑎𝑛−1 (

𝑃𝑥(𝑡)

⟦𝒔𝑧(𝑡)⟧
)) ( 3 ) 

Here, 𝑃𝑥 is the radial component of the polarization vector, and the hollow square brackets 

⟦ ⟧ indicate properties of the reference particle. Also interesting is the spin tune error Δ𝜈𝑥(𝑡), 

which is the rate of change of spin tune spread. 

2.2  The Parameter Space 

For the optimization of the Spin coherence time, the accessible parameter space consists of 

the field strengths 𝑘𝐹, 𝑘𝐷, of the two quadrupoles and 𝜒𝐹, 𝜒𝐷, 𝜒𝑆𝑆 of the three sextupoles, labelled 

according to their corresponding families. However, the evaluation of the lattice in this study was 

carried out from the perspective of the optical parameters of the beam: namely the betatron tunes 

in each transverse direction 𝑄𝑥, 𝑄𝑦, the chromaticities  𝜉𝑥, 𝜉𝑦, and the momentum compaction 

factors of the first and second order 𝛼0, 𝛼1. While these are determined by the field strengths, the 

parameter space of the optics, at least in the first order represents the exhaustive set of 

configurations which result in real solutions to the Hill’s Differential Equation (HDE) under the 

Courant-Snyder parameterization [8]. In other words, only dynamically “stable” beam 

configurations are included in the parameter space, represented in Figure 2. Scans in the second 

order, for a fixed first-order setting, reveal a bijective and linearly varying mapping between the 

space of sextupole field settings (𝜒𝐹, 𝜒𝐷, 𝜒𝑆𝑆) and second-order optical parameters (𝜉𝑥, 𝜉𝑦, 𝛼1). 

Figure 1: The software generated floor plan 

of the prototype EDM ring. Dipoles are 

labelled with ‘EM’, quadrupoles 

corresponding to their family with ‘QF’, 

‘QD’ or ‘QSS’ and the cavity with ‘RF’. 



P
o
S
(
P
S
T
P
2
0
2
2
)
0
2
4

Optimization of Spin Coherence for EDM Measurements R. Shankar, P. Lenisa 

4 

 

Figure 2: The organization of the parameter space explored in this study. The space formed by the betatron 

tunes 𝑄𝑥, 𝑄𝑦  and the first-order momentum compaction factor 𝛼0 is the first-order (1°) space, and the one 

formed by the chromaticities 𝜉𝑥, 𝜉𝑦 and the second-order momentum compaction factor 𝛼1 is the second-

order (2°) space. A point in the first-order space is termed a working point, and one in the second-order 

space is termed a data point. 

3 Results 

Figure 3 demonstrates an instance of the time-development of the polarization as the particle 

bunch travels around the ring. 

 
From a detailed implementation of the Thomas-BMT equation on the prototype ring, it can 

be deduced that the change in the spin tune of an off-momentum particle stored in the ring would 

take the form (keeping terms up to the second order): 

Δ𝜈𝑠 = 𝐴𝛿 + 𝐵𝛿2 ( 4 ) 

, where 𝛿 =
Δ𝑝

𝑝⁄  is the momentum offset of the particle, and 𝐴 and 𝐵 are constants which 

depend on the Lorentz factor 𝛾, and the 𝐺-factor of the proton. Further, from the analyses in [9] 

and [10], the change in path length of the particle due to the contributions of both transverse and 

longitudinal motions is given by: 

Δ𝐿

𝐿
= −

𝜋

𝐿
(𝜖𝑥𝜉𝑥 + 𝜖𝑦𝜉𝑦) + 𝛼0𝛿 + 𝛼1𝛿2 = 𝛼1𝛿2 −

𝜋

𝐿
𝜖𝑥𝜉𝑥 −

𝜋

𝐿
𝜖𝑦𝜉𝑦 ( 5 ) 

…where the first-order longitudinal path-lengthening term is cancelled out in the long run 

by synchrotron oscillations. In general, path-lengthening effects manifest as an apparent speeding 

up of all particles with a non-zero emittance, which changes the effective Lorentz factor and thus 

the spin tune. This mechanism complements that of the momentum offset 𝛿 and can be observed 

in Figure 3 (right) showing the time development of the spin tune spread, where the local 

oscillations are due to the path-lengthening effect and the overall linear trend is due to the effective 

spin tune. Simulations at the origin (𝜉𝑥 = 0, 𝜉𝑦 = 0, 𝛼1 = 0) show a downward trend without 
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Figure 3: (left) A plot showing the decoherence of 1000 particles as a function of number of turns. (right) 

A plot showing the spin tune spread of the polarisation vector measured simultaneously. 
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local oscillations due to the effect of the 𝛿2 term in eq. ( 4 ). Measurements of the error in the spin 

tune measured at different points in the vector-space 𝜉 = (𝜉𝑥  𝜉𝑦 𝛼1) have shown that Δ𝜈𝑠 can be 

modelled as a scalar potential with a constant gradient, and that the set of all points with Δ𝜈𝑠 = 0 

forms a plane in this space. The plane thus represents the second order optical configurations 

where the path-lengthening effect cancels out the original spin tune error. 

The Spin Coherence Time (𝜏) was estimated by fitting the data in Figure 3 (left) with the 

decoherence model derived in [11]: 

|�⃗⃗�(𝑡)| = |�⃗⃗�(0)| ([1 − √𝜋𝛾𝑠(𝑡)𝑒−𝛾𝑠
2(𝑡) erfi(𝛾𝑠(𝑡))]

2
+ 𝜋𝛾𝑠

2(𝑡)𝑒−2𝛾𝑠
2(𝑡))

1
2
 ( 6 ) 

Here, 𝑛 is the turn number and 𝛾𝑠(𝑡) = √2𝜋𝜎𝑡 is termed the “damping parameter” where 𝜎 

can be obtained from the fit. From this model, 𝜏 is obtained by solving |�⃗⃗�(𝜏)| = 1
𝑒⁄ . 

It was observed that the variation of  1
𝜏2⁄  across the space follows the distribution of a 

three-dimensional paraboloid, specifically a family of ellipsoids, 

1

𝜏2
=

1

𝜏0
2

+ 𝐿(𝜉𝑥 − 𝜉𝑥
𝑜)2 + 𝑀(𝜉𝑦 − 𝜉𝑦

𝑜)
2

+ 𝑁(𝛼1 − 𝛼1
𝑜)2 + 𝑂(𝜉𝑥 − 𝜉𝑥

𝑜)(𝜉𝑦 − 𝜉𝑦
𝑜)

+ 𝑃(𝜉𝑦 − 𝜉𝑦
𝑜)(𝛼1 − 𝛼1

𝑜) + 𝑄(𝛼1 − 𝛼1
𝑜)(𝜉𝑥 − 𝜉𝑥

𝑜) 

( 7 ) 

 

Figure 4: (a) Inverse-square of spin-coherence time almost exactly varies as a 2D paraboloid (or a family 

of concentric ellipses). The vertex of the paraboloid represents the optimized field setting in the chosen 2D 

slice. (b) A diagram showing a possible method to estimate the SCT maxima as the intersection point 

between the 𝛥𝜈𝑠 = 0 plane and the line joining the vertices of many 2D paraboloid fits. (c) A decoherence 

plot of the polarisation vector measured at the optimized point, showing almost no decoherence. 

…where 𝐿, 𝑀, 𝑁, 𝑂, 𝑃, 𝑄 are constants representing the geometric properties of the 

paraboloid, and 𝜉𝑥
𝑜, 𝜉𝑦

𝑜, 𝛼1
𝑜 are the coordinates of the optimized point where the spin coherence 

time reaches its maximum value (𝜏0) in a given quadrupole setting. This was also confirmed using 

2D paraboloid fits at different slices of the space as shown in Figure 4 (a). It was expected that 

the maximum spin coherence time would occur in a setting where the effective spin tune is zero, 

given that this is a frozen-spin lattice. The simulation results demonstrate that this is always true 

and can reliably be used to narrow down the search during optimization as shown in Figure 4 (b). 

Results of the optimization also show that the optimized settings always lie at negative 

chromaticities (like the example in Figure 4 (c)), which is contrary to the results at COSY [12], 

suggesting this may be an exclusive effect of the electric bending field. 

Finally, optimization using these principles was performed at several quadrupole settings 

which exhibit optical properties within the recommended range in terms of beam lifetime [12] for 

this lattice, and spin coherence times of above 1000 𝑠, which represents the target EDM 

sensitivity for the final lattice [3], was obtained at more than 10 points. 
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4 Conclusions 

This paper presents the results of proton simulations at a storage ring in frozen-spin mode 

achieved using a combination of electric and magnetic bending fields. The results have 

demonstrated the optimisation of spin coherence times of above 1000 seconds at several working 

points in the prototype lattice. Also established is a robust method of optimisation which has 

demonstrated universality of working point, with successful optimisations at more than 90% of 

working points examined. 

On the other hand, the study also highlights the limitations of this lattice in terms of optical 

flexibility, due to the placement of different sextupoles within the same straight section. Further 

studies shall explore new lattice configurations which could avoid these kinds of limitations. 
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