
P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC
Workloads

Maximilian Höb0,∗
0MNM-Team, Leibniz Supercomputing Centre and Ludwig-Maximilians-Universität
München, Germany

E-mail: hoeb@mnm-team.org

In this paper, we address the complex challenges that arise within existing high performance
computing (HPC) frameworks as we approach the exascale era. On one side, highly optimized,
heterogeneous hardware systems coexist with HPC-unexperienced scientists with increasing de-
mand for compute and data capacity. We propose containerization as a key concept to shift the
focus back to the actual domain science, enabling an efficient usage of the compute systems and
removing incompatible dependencies, unsupported subprograms or compilation challenges. To
this end, we provide a methodology to determine, analyze and evaluate characteristic parameters
of containerized HPC applications to fingerprint the overall performance of arbitrary containerized
applications. The methodology comprises the performance parameter definition and selection, a
measurement method to minimize overhead, and a fingerprinting algorithm to enable characteris-
tics comparison and mapping between application and target system. We apply the methodology
to benchmark applications to demonstrate its capability.

International Symposium on Grids & Clouds (ISGC) 2023 in conjunction with HEPiX Spring 2023
Workshop, ISGC&HEPiX2023
19 - 31 March 2023
Academia Sinica Taipei, Taiwan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:hoeb@mnm-team.org
https://pos.sissa.it/


P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

1. Introduction

Approaching the exascale era, complex challenges arise within the existing high performance
computing (HPC) frameworks. Highly optimized, heterogenous hardware systems on the one
side, and more often HPC-unexperienced scientists with a continuously increasing demand for
compute and data capacity on the other side. Bringing both together would enable a broad range
of scientific domains to enhance their models, simulations and findings while efficiently using the
existing and future compute capabilities. Those systems will continue to develop a more and more
heterogeneous landscape of compute clusters, varying classical computation and accelerator cores,
interconnects or memory and storage protocols and types. Adapting user applications to those
changing characteristics is laborious and prevents enhancing the core functions of the applications
while focusing on deployment and runtime issues. Consequently, containerization is one key
concept to shift the focus back to the actual domain science, removing incompatible dependencies,
unsupported subprograms or compilation challenges. Additionally, an optimized efficiency of the
compute systems’ usage is reachable, if system owners would be aware of the actual requirements
of the containerized applications.

This work in progress-paper bases on a methodology to determine, analyze and evaluate char-
acteristic parameters of containerized HPC applications to fingerprint the overall performance of
arbitrary containerized applications. The methodology comprises the performance parameter defi-
nition and selection, a measurement method to minimize overhead, and a fingerprinting algorithm
to enable characteristics comparison and mapping between application and target system. By apply-
ing the methodology to benchmark applications we aim to demonstrate its capability to reproduce
expected performance behavior. Future work will build prediction models of the application’s
resource usage within a certain trash-hold. Thereby, we will enable a twofold enhancement of
today’s HPC workflows, an increase of the system’s usage efficiency and a runtime optimization of
the application’s container. The system’s usage efficiency will be enabled by container selection
and placement optimizations based on the container fingerprint, while the runtime will profit from
a streamlined, target-cluster-oriented allocation and deployment to optimize time-to-solution.

The most prospective technology to overcome endless adaptions of the application’s program
code is containerization, which offers portability among heterogeneous clusters and unprecedented
adaptability to target cluster specifications. Containers like Singularity1, Podman2 or Docker3 are
well known for cloud usage and micro-service environments. During the last years containers
like Apptainer4 or Charliecloud5 became also widespread in certain HPC domains, since their
capabilities to include high data throughput, intra- and inter-node communication, as well as the
overall scalability increased enormously.

We base our approach on the EASEY (Enable exASclae for EverYone in [1]) framework,
which can automatically deploy optimized container computationswith negligible overhead. Todays
containers are natively not able to automatically use all given hardware at best, since the encapsulated
application varies on computing, memory or communication demands. An added abstraction layer,

1https://sylabs.io

2https://podman.io

3https://docker.com

4https://apptainer.org

5https://hpc.github.io/charliecloud/

2

https://sylabs.io
https://podman.io
https://docker.com
https://apptainer.org
https://hpc.github.io/charliecloud/


P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

Compute

Nodes
 Interconnect
 Persistent

Storage
GPU
 CPU


Batch System


SLURM
 PBS
 MPI



Containerized

Applications


EASEY

CLIENT


EASEY

MIDDLEWARE
 Data


Service


Deployment

Service


Information

Service


Container

Service


Intermediate
Storage


Build

Service


Container

Service



EASEY

ANALYZER


AI-inspired

Analyses


Benchmark

Leveling


Low-Level 

Measuring


...


Figure 1: Updated EASEY layered architecture

although enabling many programming models and languages to be executed on very different
hardware, is not able tomake use of all provided hardware features. An enhancedEASEY framework
will support distinct optimization tunings by determining the containers runtime characteristics.

The remainder of the paper is divided into three sections. Section 2 gives an overview on the
EASEY framework. The enhanced EASEY Analyzer is presented in Section 3. The fingerprinting
algorithm and the characterization is detailed in Section 4, which will also present the initial
measurements and evaluation. Section 5 concludes the paper.

2. EASEY Background

In [1] we introduced a deployment framework, which enables scientist to easily convert a
docker container to a charliecloud container while including specific target system dependencies
and libraries.

This is especially important since more and more HPC-unexperienced scientist want and need
to use supercomputing facilities, because their own smaller system are no longer capable of their
own computation. With them reaching out to large and vey large clusters different hurdles need to be
overcome. The main goal of the before mentioned paper and its framework was to enable scientists
to focus on their actual scientific work within their domain and reduce deployment overhead where
possible. Since it is mandatory for any application on such high performance systems to adapt at
least in some parts to the target system, this work was earlier done manually between application
support experts and the developers. With EASEY we are able to add several optimizations while
transferring the initial docker file to a charliecloud container.

3



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

The initial architecture of the EASEY framework as presented in [1] was updated with a new
layer, the EASEY ANALYZER and is displayed in Figure 1 on page 3. Together with the existing
building bricks it was integrated in the layered HPC architecture. On the upper layer, Applications
and Users, the so called EASEY CLIENT is the starting point for any process and responsible for
the transformation of the original dockerfile-based container. Within this transformation process
the user or application owner can configure data mount points and detail the inclusion of the target
system’sMPI library for example. In this mandatory, json-based configuration file, it is also possible
and necessary to detail deployment several specifications:

• Job Specification: job meta-data like name or id

• Data Specification: source, protocol, authentication and mount-point

• Deployment Specification: number of nodes, ram, cores-per-task, asks-per-node and clock-
time

• Execution Specification: serial or mpi-based execution commands inside the container

With all these information a functional Charliecloud container can be build and additionally a
slurm- or pbs-based deployment script is created. Before the actual data processing and deployment
is started we introduce a new layer, the EASEY Analyzer. The tasks of the three submodules BPF
Analyzer, Benchmark Leveling and EASEY AI focus on the analysis and characterization of the
before created container and are detailed in Section 3.

The EASEY Middleware on the local resource management layer, as detailed in [1], is respon-
sibly for the preparation of the execution environment, the data stage-in or -out, and the actual
deployment through the local scheduler. It also offers monitoring information and status updates of
the execution. Any optimization of the bare metal, the hardware layer of the cluster underneath is
subject to future work as detailed in [1].

For more information on the details of the configuration of the EASEY workflow, we recom-
mend to study our original paper in [1]. In there we also presented related work to this approach.

3. EASEY Analyzer

Introducing logic modules into the EASEY framework accelerated the initial deployment tool
to complex framework capable of black-box analyzation and decision making. The new analyzer
layer displayed in Figure 1 on page 3 consists of three main elements:

• Low-Level Measuring

• Benchmark Leveling

• AI-inspired Analyses

Those modules are able to automatically analyze the characteristics of a container and map it to
the most likely target system. They can also be integrated in a logical workflow presented in Figure
2 on page 5. Included between the EASEY client and middleware, it offers within one iteration

4



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

Dockerfile

Configfile

EASEY
CLIENT

EASEY
MIDDLEWARE

Charliecloud
container

EASEY
ANALYZER

Container
Characterization

Figure 2: Schematic EASEY workflow of a job submission on a target system

the possibility for such a characterization and therefore, a direct recommendation on which kind of
system this container should be deployed.

Additionally, this layer offers a module consisting of several benchmarks to determine the
classification of the target system, which result will be used within the middleware to map container
and system.

3.1 Low-Level Measuring

Profiling the runtime behavior of an unknown application is still ongoing research. Adding
to this challenge a container framework makes it even more complex. The Berkeley Paket Filter
(BPF) or the extended Berkeley Paket Filter (eBPF) offer a low-level tap point to extract necessary
measurements and data while executing the application [2].

BPF was developed for UNIX to improve network monitoring application performance. As
described in [3] BPF has been part of the Linux kernel since its original implementation, and
has been continuously improved, leading to eBPF with a network specific architecture. eBPF is
designed to be a general-purpose filtering system and can be used for applications such as packet
filtering, traffic control/shaping, and tracing. The eBPF instructions are mapped to real assembly
instructions of the underlying hardware architecture, and eBPF programs are verified to ensure they
cannot compromise or block the kernel. eBPF programs are restricted to reading from and writing
to key-value stores called maps, which are areas in memory set up by user space helpers before the
eBPF program is loaded into the kernel. Data can then be accessed securely from user and eBPF
kernel space.

Within this paper we use eBPF to measure the compute and memory usage of the benchmarks
to gather data for the evaluation.

3.2 Benchmark Leveling

Determining the specifications of a target system builds the basis to perform a successful map of
characterized containers to different clusters. They are in most cases optimized systems for specific
computations and loads. Also one general purpose system might differ from another system, which
should be determined in its characteristics. Therefore, we consider it mandatory to also analyze
each target system included into the EASEY framework.

5



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

In this first stage of this analysis framework we focused only on CPU- and memory-heavy
micro benchmarks. On the target systems, we executed two benchmarks based on the seven dwarfs
presented in [4].

3.3 AI-inspired Analyses

Based on the measurements and data gathered from the Low-Level Measuring also predictions
based on machine learning modules can be includes. At this stage we did not include any prediction
of the performance. This artificial intelligencemodule is subject to futurework and can be exchanged
by any logical module which is able to analyze the input data to extrapolate its charateristics.

4. Fingerprinting

The overall performance of a containerized applications is difficult to classify, since many
applications very in the usage of the available hardware during its execution. Many different
phases can be observed while analyzing a long running application. Our approach for such a
characterization is a fingerprint of the container execution, determined in four dimensions.

4.1 Characterization

We define four main dimension we consider for the performance characterization:

1. Compute

2. Memory

3. Network

4. I/O

Compute characterizes the usage of the available CPUs, which can vary extremely during the
execution of HPC applications.

Memory investigates the relative usage of the available memory on the system. Due to the
host system’s memory usage, a trash hold has to be defined, which enables to focus only on the
application’s memory consumption.

Network is defined as the communication between nodes. Although HPC application are also
parallelized within one node, this dimension focuses only on the actual combination over the
interconnect.

I/O might also be considered as a combination of network and memory, however, we determined
many applications are directly affected by I/O and added it as a fourth dimension. In future as-
sessment, we will consider whether this dimension is mandatory or can also be expressed as a
conditional dimension of the others.

6



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

To enable the classification to be comparable, we have defined only four possible levels for
each dimension. Each level is represented by an integer, since it is mathematically evaluated at a
later stage.

Table 1: Dimensional levels of the Fingerprinting Evaluation

Level Compute Memory Network I/O
0 //////none //////none none //////none
1 scarce ///////scarce scarce scarce
2 moderate moderate moderate moderate
3 extensive extensive extensive extensive

In Table 1 on page 7 the four dimensions of the evaluation are displayed for each dimension.
As it can be seen, for Compute and I/O the level none is crossed out, since we do not consider
applications having no compute or no I/O part. As mentioned in the section before, memory needs
to be determined relatively to the memory usage of the host system. Therefore we consider here
only two dimensions, implicating a memory usage above a certain trash hold. Experiments need to
prove that this approach is valid.

Compute
Memory

Network

I/O

moderate

scarce

moderate

extensive

moderate

scarce

extensive

none

moderate
scarce

extensive

extensive

Figure 3: Dimensional Star of the Fingerprinting Evaluation’s Dimensions

7



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

Figure 3 on page 7 shows a characterization of an application having a moderare compute level
(2), a moderate memory level (2), an extensive network level (3) and a moderate I/O level (2). The
resulting vector of this characterization can be specified as:

©­­­­«
2><?DC4

<4<>AH

=4CF>A:

�/$

ª®®®®¬
=

©­­­­«
2
2
3
2

ª®®®®¬
This vector representation can be extended with more classifications to a matrix representation

of the fingerprint. However, it is work in progress to determine efficient but still significant time
steps, in which those single measurements are combined. It is also subject to future work to compare
mean values to time progressive interval mean values as well as the length of the corresponding
intervals.

4.2 Initial Measurements

We base our measurements on compute and memory intensive benchmarks based on the
seven dwarfs. Those benchmarks have been execute in several configurations and the CPU and
memory usage have been recorded by kernel traces using eBPF. In Figure 4 on page 8 we show the
measurements and the according classifications from a combined execution of the same benchmark
using a different parallelism degree.

1

Memory classification based on eBPF measurements

Höb M. - Fingerprinting black-box HPC Containers

U
s
a
g
e

time

C
la
s
s

time

Figure 4: Measurement and Classification of Memory Usage over time

As it can be seen, the memory usage does not fall below a trash hold indicated by the red line
in the upper part of the figure. Removing this memory usage of the host system, we characterized
the application run for each individual time step. As mentioned in the section before, the length
and potential summation of time steps need to be investigated as future work.

The correlation between dimensions is also subject to investigation. Figure 5 on page 9 shows
the CPU usage classification and Figure 6 on page 9 shows the memory usage classification of
the same execution, measured in parallel. It can be seen, that the memory classification correlates
with an average of the CPU classification. This execution consists of eleven phases with the same
benchmark in different configurations and with different parallelism degrees.

8



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

1

Memory classification based on eBPF measurements

Höb M. - Fingerprinting black-box HPC Containers

C
la
s
s

time

C
la
s
s

time

Figure 5: Classification of CPU Usage over time

In Figure 5 on page 9 the classifications are not constant, since the CPUs usage differs from
one time step to another. However, if we would consider an average value over an distinct interval
(1/11), eleven single classifications can be made:

(2, 1, 2, 0, 0, 2, 2, 1, 2, 2, 0))

This average classification can also be detailed with several intervals of the single phases. How
these intervals need to be designed will be evaluated as future work.

1

Memory classification based on eBPF measurements

Höb M. - Fingerprinting black-box HPC Containers

C
la
s
s

time

C
la
s
s

time

Figure 6: Classification of Memory Usage over time

In contrast to the CPU classification, the memory classifications in Figure 5 on page 9 are
constant during each of the eleven phases of the execution:

(3, 1, 2, 0, 0, 3, 1, 0, 3, 2, 0))

Any correlation between this two dimensions need to be investigated statistically and the
number of classification levels as well as the intervals themselves will be put to the test. This will
include if and how regional usage behavior needs to be considered over the whole application’s
analysis.

5. Conclusion

In this paper we presented the initial work on the characterization of containerized applications
with unknown behavior. The presented fingerprinting approach is still work in progress and its
implementation into actual deployment systems. With our analyses of the measured benchmark
executionswe could demonstrate the potential of this approach. Futureworkwill focus on enhancing
the fingerprint generation algorithm, enabling an AI-inspired characterization and elaborate on an
efficient and effective mapping function of fingerprints from containerized applications to target
systems.

9



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
3

Performance Characterization of Containerized HPC Workloads Maximilian Höb

Acknowledgments

This work was supported by the student work of Tobias Celik for his Bachelor’s Thesis.

References

[1] M. Höb and D. Kranzlmüller, Enabling easey deployment of containerized applications for
future hpc systems, in Computational Science – ICCS 2020, V.V. Krzhizhanovskaya,
G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos et al., eds., (Cham),
pp. 206–219, Springer International Publishing, 2020.

[2] B. Gregg, BPF Performance Tools, Addison-Wesley Professional (2019).

[3] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak and G. Carle, Performance
implications of packet filtering with linux ebpf, in 2018 30th International Teletraffic
Congress (ITC 30), vol. 1, pp. 209–217, IEEE, 2018.

[4] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer et al., The
landscape of parallel computing research: A view from berkeley, .

10


	Introduction
	EASEY Background
	EASEY Analyzer
	Low-Level Measuring
	Benchmark Leveling
	AI-inspired Analyses

	Fingerprinting
	Characterization
	Initial Measurements

	Conclusion

