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1. Introduction

If new physics does exist at the scales investigated by the Large Hadron Collider, it is more elusive
than expected [1, 2, 3]. Finding interesting results may be challenging using conventional methods
without substantially increasing the number of analyses. Thus, standard signal-driven search
strategies could fail in reaching new results, and unsupervised machine learning techniques could
fill this critical gap. Such applications, running in the trigger system of the LHC experiments, could
spot anomaly events that would otherwise go unnoticed, enhancing the LHC’s scientific capabilities.

In unsupervised machine learning, the most basic technique is an Auto-Encoder (AE) with a
bottleneck [4]. It is constructed using a network that translates a high-dimensional data representa-
tion onto itself to create an average or typical entity. Standard autoencoders are recommended for
unsupervised jet classification, but they are known to have problems in more general applications.
The AE learns to compress and rebuild the training data very well, but when new, untrained data
is run through the trained AE, it will produce a considerable loss or reconstruction error. By using
the AE, it is possible to search for data that differs significantly from training data or even training
data that is a small subclass of anomalous instances. In addition, the AE fails if the anomalous
data is structurally simpler than the dominant class because the AE can encode simpler data with
fewer features more efficiently. It is possible to overcome the disadvantages of AE by substituting a
different classification measure for the reconstruction error. A possible alternative approach to the
reconstruction error in the case of Variational Autoencoders (VAE) [5] is to derive a metric from
the latent space embedding.

To this end, we propose the use of the JointVAE model [6], capable of learning richer latent
representations, along with an implementation feasibility study targeted at FPGA acceleration to
achieve the lowest latency and resource consumption without compromising model accuracy. In
particular:

• We assume an unsupervised setting in which the JointVAE learns to discriminate the anoma-
lous top jets from the QCD ones, just by being trained on the background data: it is de-
signed to capture both continuous and discrete latent variables, being able to compress
high-dimensional image data to a much lower-latent representation.

• We compare the effectiveness of the latent-based anomaly detection scores, to determine
which of them enhances class separation the most. Anomaly searches in the latent space can
be particularly useful at the LHC, to reduce the amount of data to process thanks to learning
compact representations that preserve the topology of the events.

• We provide insights about the challenges and trade-offs required to compress a convolutional
auto-encoder model, targeting a deployment on an FPGA board. Compression has been done
by quantization to reduce the model size, latency, and energy consumption [7]. For the FPGA
implementation we adopt a tool based on High-Level Synthesis (HLS) named HLS4ML [8],
capable of accelerating small CNNs architectures for real-time machine vision tasks [9].

We expect VAEs will find many uses in science, outperforming classical or standard deep learning
baselines and even being able to solve challenges for physics beyond the Standard Model (BSM)
that were previously unsolvable. Ideally applicable in a wide spectrum of signal background
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discrimination through anomaly detection, this application is expected to produce excellent results
in a variety of fields.

1.1 Background

Auto-Encoders. Auto-Encoders (AEs) are self-supervised models made of two neural networks:
an encoder network, 𝑞𝜙, that compresses an input 𝑥 to a lower-dimensional latent representation 𝑧
(also called the bottleneck), and a decoder network, 𝑝𝜃 , that tries to reconstruct 𝑥 from the latent
codes, 𝑧. During training, AEs are supervised by their inputs (thus the name self-supervised) to
reconstruct them as closely as possible: 𝑥 = 𝑝𝜃 (𝑞𝜙 (𝑥)) such that 𝑥 ≈ 𝑥. For this purpose, common
loss functions are the mean squared error (MSE) or the binary cross-entropy1 (BCE), both summed
over pixel values and averaged over the batch dimension.

According to the dimensionality of the bottleneck, 𝑧, we distinguish among: over-complete,
complete, and under-complete auto-encoders, respectively, when |𝑧 | is larger, equal, or smaller than
the dimensionality of the inputs. Furthermore, the original AE formalism can be extended to cover
different data types, but also to ensure specific properties:

• Convolutional Auto-Encoder (CAE) [10]: able to handle rank-3 input tensors 𝐻 ×𝑊 × 𝐷,
having a height 𝐻, width 𝑊 , and depth 𝐷 axes. The CAE makes use of convolutional
layers: down-sampling occurs in the encoder (either by stridden convolutions or pooling),
and up-sampling in the decoder (by transposed convolutions, or un-pooling.) This results in
a convolutional bottleneck.

• Sparse Auto-Encoder (SAE) [11]: trained to produce sparse latent vectors. To ensure
sparsity, i.e. various components are learned to be zero, an 𝑙1-regularization (or Kullback-
Leibler divergence, KLD) penalty on the bottleneck is added to the total loss function, i.e.
L(𝜃) = Lreco(𝑥, 𝑥) + 𝜆∥𝑧∥1, where Lreco is the AE reconstruction loss, and 𝜆 is a (usually
small) hyper-parameter controlling the strength of the penalty.

• Denoising Auto-Encoder (DAE) [12]: in case the inputs are corrupted from Gaussian noise,
i.e. 𝑥 = 𝑥 + 𝜖 where 𝜖 ∼ N(0, 1), the DAE can recover the original, clean, input 𝑥 by
cancelling out the noise component, i.e. 𝑥 ≈ 𝑥. This type of autoencoder is useful for data
cleaning and denoising tasks, assuming an i.i.d. noise with zero-mean.

• Variational Auto-Encoder (VAE) [5]: is a probabilistic formulation of the AE through the
variational Bayesian method. Our proposed model for anomaly detection builds on VAEs,
which are discussed in more detail in section 3.1.

Anomaly Detection. The task of distinguishing anomalies or outliers that depart from the normal
(i.e. regular) data distribution is called anomaly detection (AD) [13]. Anomalies are data points
either corrupted (by malfunctioning sensors, or erroneous measurement or labelling), or rare, or
interesting events. Anomaly detection is a fundamental problem in many fields, including finance,
healthcare, and cybersecurity, as well as HEP.

Regarding HEP, the ideal data being the normality is represented by the set of background events
(assuming no signal contamination), whereas the signal(s) is treated as anomalous. To identify the

1Note that using BCE as a loss function requires each pixel to take a value between zero and one.
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signal, AEs are a suitable class of models to achieve that: the assumption is that the normal data is
expected to be reconstructed with a low error, while the anomalous, rare, or corrupted events get
a sufficiently higher prediction error. This setup is self-supervised in the sense that no class labels
are required, and in particular, we make use of only the normal data (i.e. our QCD background; see
section 2) to train our models with a reconstruction objective. In particular, autoencoders enable us
to follow two complementary strategies to implement anomaly detection:

• Reconstruction-based: Anomaly scores are defined from distance measures in the pixel
space, between the input image 𝑥 and its reconstruction 𝑥 = 𝑝𝜃 (𝑞𝜙 (𝑥)). Examples are scores
built from the MSE or BCE between 𝑥 and 𝑥.

• Latent-based: Scores for AD are defined by some notion of distance in the latent space,
in particular, such measures are now defined over latent vectors, which can also represent
learned probability distributions. In the context of VAEs and variants, a suitable approach is
to treat the KLD between the learned distribution and its prior as an anomaly score.

Both strategies have their advantages and disadvantages. For example, reconstruction-based scores
can be easier to interpret (e.g., via visual inspection of the reconstructions, or through image quality
metrics) and define (e.g., a common loss function or metric can be readily employed as an anomaly
score), but these are usually more expensive to compute since a forward pass of the whole model is
required: to compute the score, we have to first encode the image, and then decode it from its latent
vector. Conversely, latent-based anomaly scores only require a prediction of the encoder, being
faster and less resource intensive, although more difficult to design (an analytical formula may be
required) and interpret: even if lower dimensional than the input, the latent space can easily exceed
the number of dimensions that can be directly visualized, in such case dimensionality reduction
techniques like t-SNE [14] and UMAP [15, 16] can be quite helpful. In terms of discrimination
power both kinds of scores can be equally effective, in particular, KLD-based scores also have a
sound probabilistic interpretation.

2. Data Samples

For the following analysis, we utilized the same jet image representation used in a previous AE
study [1], the QCD and top jet samples were generated for the top-tagging challenge described in the
Reference [17]. The jets are generated using Pythia8 [18] with a centre-of-mass energy of 14 TeV,
without considering pile-up and multi-parton interactions. A fast detector simulation is performed
using Delphes [19]. The jets are defined using the anti-𝑘𝑇 algorithm [20, 21] in FastJet [22] with
a radius of 𝑅 = 0.8. In each event, only the leading jet with 𝑝𝑇 ranging from 550 to 650 GeV and
|𝜂 | < 2 is kept, and the top jets are required to be matched to a parton-level top within the jet radius
and all parton-level decay products to be within the jet radius. The jet constituents are defined using
the Delphes energy flow algorithm and the top 200 constituents from each jet are used for analysis.
The empty entries are zero-padded. We do not include particle ID or tracking information in our
analysis. For pre-processing, we follow a similar procedure as described in References [1, 23]. The
pre-processing is done at the constituent level before pixelization. The jet is first centred using the
𝑘𝑇 -weighted centroid, such that the major principal axis points upwards. Then, the image is flipped
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in both axes so that the majority of 𝑝𝑇 is located in the lower left quadrant. Next, the image is
pixelized into a 40×40 array, where the intensity is defined by the sum of 𝑝𝑇 of the constituents per
pixel. The pixel sizes are [Δ𝜂,Δ𝜙] = [0.029, 0.035] and the image is cropped during pixelization
to reduce the sparsity of information. Figure 1 shows the average of the whole QCD and top jet
image datasets after pre-processing. Our data consists of 200K QCD jets and 200K top jets, and
the maximum number of jets possible is used. If equal numbers of QCD and top jets are required,
200K of each are used, and if the QCD jets are treated as the background, the total 200K QCD jets
are kept, and the number of top jets is varied. All results presented in this paper use a 75/25 split
for training and testing. The data samples are shuffled, and the testing data is selected randomly for
each run.

Figure 1: The averaged 200k pre-processed QCD and top jet images: each plot’s title displays the brightest
pixel value and the total sum of these values. (Left) Averaged on Calorimeter QCD jets and (Right) on
Calorimeter tops jets.

3. Results with JointVAE

In this section we first introduce the model that we apply for anomaly detection, and then we present
the discrimination results of our anomaly scores regarding the search of a top signal. Particular
attention has been given to the JointVAE [6], which is a deep generative model that combines the
strengths of Variational Autoencoders and discrete latent variable models. The JointVAE model
can handle both continuous and discrete data variables, which is a key advantage over traditional
VAEs that are limited to only continuous latent variables. The JointVAE model consists of two
main components: an encoder and a decoder. The encoder maps the input data to a latent space
representation and the decoder maps the latent space representation back to the original input
data. The encoder outputs the parameters of two different distributions: one for continuous latent
variables and one for discrete latent variables. The reparameterization trick is used to sample
values from these distributions. The discrete variables are modelled using a discrete distribution,
such as the Gumbel-Softmax [24], while the continuous variables are modelled using a Gaussian
distribution. The JointVAE model is trained by maximizing the likelihood of the input data given
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the latent representation. This is done by minimizing the difference between the generated data
from the decoder and the original input data.

3.1 Variational Auto-Encoders

A variational auto-encoder (VAE) [5] can be seen as a probabilistic variant of an AE that aims to
learn a compact and continuous latent representation of the data; now, both the encoder 𝑞𝜙 (𝑧 | 𝑥)
and the decoder 𝑝𝜃 (𝑥 | 𝑧) are probabilistic models learned by amortized variational inference. The
most common setup for a VAE is to assume the data can be described by a multivariate Gaussian
distribution. In this regard, an isotropic Gaussian prior, 𝑝(𝑧) = N(0, 𝐼), is usually assumed where
𝐼 represents the identity matrix. Similarly, the encoder now outputs the means 𝜇𝜙 = 𝑞𝜙 (𝑥) and
covariance matrix Σ𝜙 = 𝑞𝜙 (𝑥) that parameterize a Gaussian distribution, from which the latent
vectors 𝑧 are sampled from 𝑧 ∼ N(𝜇𝜙, Σ𝜙). Moreover, to contain the growth of the number of free
parameters of the learned distribution the covariance Σ𝜙 is usually restricted as Σ𝜙 = 𝜎2

𝜙
𝐼, where

𝜎2
𝜙

is a learned scalar variance: in this way |𝜎2
𝜙
| will grow linearly, and not quadratically as a full

Σ𝜙. Compared to the AE, the VAE is said to learn a smooth latent space thanks to the sampling of
𝑧, occurring during training, which is then mapped to be as close as possible to the corresponding
input sample 𝑥 by the decoder: 𝑧 ∼ 𝑞𝜙 (𝑥), then 𝑥 = 𝑝𝜃 (𝑧). In addition, sampling from the prior
distribution 𝑝(𝑧), allows the VAE to generate new data: 𝑥 = 𝑝𝜃 (𝑧), where 𝑧 ∼ 𝑝(𝑧).

To learn the model parameters (𝜙, 𝜃) the VAE is trained to minimize the evidence lower-bound
(ELBO) plus a regularization term:

L𝜙,𝜃 (𝑥) = −E𝑧∼𝑞𝜙 (𝑥 )
[
𝑙𝑜𝑔𝑝𝜃 (𝑥 | 𝑧)

]
+ 𝛽𝐷KL

(
𝑞𝜙 (𝑧 | 𝑥) ∥ 𝑝(𝑧)

)
. (1)

The first term in the loss function encourages the decoder to learn to reconstruct the data accurately
(by placing probability mass on the true data), while the second KLD term penalizes the learned
latent space distribution to be diverse (or far) from the prior: this ensures learned representations,
𝑧, to be meaningful rather than just arbitrary. Moreover, the coefficient 𝛽 allows controlling of such
a term by increasing or decreasing the capacity of the latent codes, introducing a rate-distortion
trade-off that can lead to disentangled representations [25].

As can be noted, the first term in Eq. 1 is about computing an expectation that involves the
sampling of latent vectors. Such sampling operation is stochastic, meaning that we cannot back-
propagate through it to compute the gradient of the loss. In order to solve the issue we have to rewrite
the expression such that the sampling part is not directly involved in back-propagation, this is known
as the reparameterization trick. To achieve this, we rewrite the latent, 𝑧 ∼ N(𝜇𝜙 (𝑥), Σ𝜙 (𝑥)), to be
a deterministic function of the encoder plus some sampling noise; the reparametrized expression is
the following: 𝑧 = 𝜇𝜙 (𝑥) +Σ𝜙 (𝑥) ⊙ 𝜖 , where 𝜖 ∼ N(0, 𝐼) is some Gaussian noise that is multiplied
to add stochasticity to the expression. Although there is the sampling of 𝜖 involved, this stochastic
operation is now outside the scope of back-propagation, and so the chain of derivatives would not
break any more since there is no dependency of 𝜖 on the parameters (𝜙, 𝜃) to be learned.

3.2 Categorical VAEs

A categorical variational auto-encoder [26, 24] is a variant of the VAE formalism able to learn
discrete latent variables, instead of continuous ones. The core idea is to describe the latent space
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via up to 𝐾 Categorical distributions2, each of them over 𝐶 categories. In this way, the categorical
VAE is able to encode discrete features, capturing finite and enumerable quantities like counts that
cannot be learned by any continuous distribution.

In practice, the𝐶 categories are represented as𝐶-dimensional one-hot encoded vectors, and so
if we learn 𝐾 distributions, the latent space 𝑧 will have 𝐾 ×𝐶 components, being a rank-2 tensor: in
our work, we found sufficient to learn a single categorical distribution (𝐾 = 1), so for each encoded
sample 𝑖 its latent vector has dimensionality |𝑧 (𝑖) | = 𝐶.

Actually, it is not possible to directly learn a categorical distribution: due to the fact that is
discrete, the gradients would explode, resulting in non-differentiable behaviour. To enable learning,
we instead learn a relaxation called the Gumbel-Softmax [24] (or the Concrete [26]) distribution: the
degree of approximation is controlled by a temperature (hyper-)parameter, 𝜏, allowing to interpolate
(in the limit) between a uniform (𝜏 → ∞) and a true categorical distribution (𝜏 → 0). For ease
of notation, we denote the Gumbel-Softmax distribution as Cat(𝛼, 𝜏), where 𝛼 is a 𝐶-dimensional
vector specifying unnormalized log-probabilities (or logits) for each category to happen and 𝜏 the
temperature, instead, we use 𝐶𝑎𝑡 (𝛼) for regular categorical distribution.

Differently from the VAE, the encoder 𝛼𝜙 = 𝑞𝜙 (𝑥) now outputs the logits of the Gumbel-
Softmax, also the prior 𝑝(𝑧) = Cat(log 1/𝐶) is assumed to be categorical with uniform probabilities
over the 𝐶 categories; these new elements can be directly plugged in Eq. 1 to train the Categorical
VAE model. The last thing we need to account for is how to reparametrize the sampling of the
latent from the relaxed categorical: this operation rewriting is known as the Gumbel-Max trick [26,
24]. So, the latent vectors are rewritten as follows:

𝑧 = softmax
(𝛼𝜙 + 𝑔

𝜏

)
, where 𝑔 ∼ Gumbel(0, 1). (2)

In detail, we first forward the encoder to get the logits, 𝛼𝜙 = 𝑞𝜙 (𝑥), then we apply some Gumbel
noise 𝑔 ∼ Gumbel(0, 1) 3 to them, next we divide by the temperature 𝜏 parameter. Finally, the
obtained logits are subject to a softmax operation that also represents a continuous approximation
of the max operation (hence the name Gumbel-Max trick.)

3.3 Joint-VAE

For this analysis, it is used a modification of the standard VAE framework, it allowed us to model
a joint distribution of the discrete latent variables jointly to the continuous ones pursued with the
standard VAE. Letting 𝑧 denote a set of continuous latent variables and 𝑐 denote a set of categorical
or discrete latent variables, we define a joint posterior 𝑞𝜙 (𝑧, 𝑐 |𝑥), prior 𝑝(𝑧, 𝑐) and likelihood
𝑝𝜃 (𝑥 |𝑧, 𝑐). Assuming the latent distribution is jointly continuous and discrete, and latent variables
conditionally independent, we can rewrite the KL divergence term in the VAE loss Eq. 1 as:

𝐷𝐾𝐿
(
𝑞𝜙 (𝑧, 𝑐 | 𝑥) ∥ 𝑝(𝑧, 𝑐)

)
= 𝐷𝐾𝐿

(
𝑞𝜙 (𝑧 | 𝑥) ∥ 𝑝 (𝑧)

)
+ 𝐷𝐾𝐿

(
𝑞𝜙 (𝑐 | 𝑥) ∥ 𝑝(𝑐)

)
, (3)

2The categorical distribution generalizes the Bernoulli distribution over 𝐶 categories instead of two.
3In practice, this is done through inverse sampling: a random sample from a Gumbel distribution is obtained by

sampling from a uniform𝑈 one, then transforming the samples with a deterministic operation. To obtain 𝑔 ∼ Gumbel(0,1)
we do: 𝑔 = − log(− log 𝑢), where 𝑢 ∼ 𝑈 (0, 1).
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i.e. we can separate the discrete and continuous KL divergence terms. Under this assumption, the
JointVAE loss finally becomes

L𝜃,𝜙 (𝑥) = E𝑧,𝑐∼𝑞𝜙 (𝑥 )
[
𝑙𝑜𝑔𝑝𝜃 (𝑥 |𝑧, 𝑐)

]
− 𝛽𝐷𝐾𝐿

(
𝑞𝜙 (𝑧 |𝑥) ∥ 𝑝(𝑧)

)
− 𝛽𝐷𝐾𝐿

(
𝑞𝜙 (𝑐 |𝑥) ∥ 𝑝(𝑐)

)
, (4)

where 𝛽 is a positive constant. When 𝛽 > 1 it is theorized that the combination of the increased force
exerted by the joint posterior 𝑞𝜙 (𝑧, 𝑐 | 𝑥) aligns with the prior 𝑝(𝑧, 𝑐), combined with maximizing
the likelihood term, leads to efficient and well-separated representations of the data [25].

3.4 Anomaly Scores and Results

In the context of JointVAE, several metrics can be used to evaluate the performance of the model
in detecting anomalies. To ensure that the network can be synthesized with Vivado HLS and run
on an FPGA, the number of filters in the network has to be reduced. For Vivado HLS 2020.1, the
parameter size for synthesis is limited to 2048 per layer. Despite the reduction, the network is still
able to detect anomalies with high accuracy. The section also notes that, given the limited space
available on the FPGA, the decision is made to only synthesize the encoder model and exclude
the decoder. However, during the training phase, the output of the decoder is crucial for properly
training the network weights, as it is responsible for reconstructing the input data used to calculate
the loss during training. By excluding the decoder during synthesis, only the KL divergence metric
could be used for anomaly detection, which is effective at calculating anomaly detection scores.
The best performances have been achieved for the metrics:

• KL Continuous: The KL divergence between the estimated continuous distribution 𝑞𝜙 (𝑧 |
𝑥) and the prior distribution 𝑝(𝑧). This metric is particularly useful for evaluating the
performance of the model in capturing the continuous structure of the data.

• KL Discrete: similarly, the divergence between the estimated discrete distribution 𝑞𝜙 (𝑐 | 𝑥)
and the prior distribution 𝑝(𝑐) is particularly useful for evaluating the performance of the
model in capturing the discrete structure of the data.

• KL Total: The total KL divergence is the sum of the KL discrete and KL continuous
divergences, which is a measure of the overall dissimilarity between the estimated and prior
distributions.

These metrics can be used to identify instances that deviate significantly from the majority of the
data, and thus are anomaly candidates.

Table 1: The best performance of the compete floating-point precision JointVAE encoder model, for the
different AD scores used.

Model AD Scores TPR@FPR 10−1 [%] AUC [%]
Complete KL Discrete 52.74 73.63
Encoder KL Continuous 58.10 86.46

KL Total 58.34 86.63

The ROC curves depict the relationship between the true positive rate (TPR), representing the
proportion of correctly identified anomalies, and the false positive rate (FPR), representing the
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proportion of non-anomalous events incorrectly classified as anomalies, by adjusting the lower
threshold for various anomaly scores. To assess the performance of AD, we measure the area under
the ROC curve (AUC) and the TPR at an FPR of 10−1 (refer to Table 1). Looking at the obtained
performance, we can conclude that the three KL divergences can be used as anomaly metrics for the
rest of this work. The next sections provide a detailed description of the synthesis process, including
the optimization techniques employed to achieve the best possible performance. Additionally, the
results of the evaluation of the hardware implementation feasibility study are discussed, and a
comparison is made with the software implementation.

3.5 Compression by Quantization

In this section we discuss the process of reducing the model footprint to optimize its computational
efficiency, specifically when deploying the model on an FPGA board. To achieve this, the encoder
described previously is drastically reduced in size and complexity by decreasing both the length
and the number of filters; an additional convolutional layer (conv_fin) is added without calling the
activation function to preserve the linearity and to help reduce the number of parameters. After this,
the final flatten layer is applied, followed by the output of three dense layers for mean, variance, and
categorical values, which correspond to the latent vectors. In addition, it is discussed the results
after quantizing the model with the quantization-aware training (QAT) technique. In particular,
it has been imposed a precision of <16,6> to all the convolutional, activation functions and the
last final dense layers. We also anticipate that the quantized model will consume fewer resources
compared to the floating-point precision model. Furthermore, we expect the quantized model to
maintain a high level of accuracy in detecting anomalies. To evaluate the performance of the
quantized model, we will use the same dataset and metrics in both the quantized and non-quantized
models. Finally, we expect that the synthesized model will have a similar accuracy in detecting
anomalies as the software implementation. However, we expect also that the FPGA hardware
will be able to process the data at a much faster rate with lower resource consumption due to the
hardware acceleration. We foresee these techniques to result in a faster and more resource-efficient
implementation of the model on the FPGA accelerator.

Table 2: Performance assessment of the floating-point precision and quantized JointVAE, for different AD
scores.

Model AD Scores TPR@FPR 10−1 [%] AUC [%]
Reduced KL Discrete 31.46 68.29
Encoder KL Continuous 63.48 84.52

KL Total 63.63 84.64
Quantized KL Discrete 51.67 77.38
Encoder KL Continuous 59.79 80.88

KL Total 60.03 81.17

Table 2 presents the final AD performance for both the reduced encoder model and the quantized
version. Although there is a slight decrease in the performance in the total KL AD scores compared
to the complete model, as shown in Table 1, this can be attributed to the significant reduction in the
model size, as explained earlier. Furthermore, the quantization resulted in a reduction in the total
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KL AD performance, but an increase in the KL discrete performance. Nevertheless, a performance
of approximately 81.2% for the AUC of the total KL AD score can still be considered satisfactory
for our intended purposes.

Table 3: The energy consumption is estimated assuming a 45 nm process using QTOOLS. The quantized
model has successfully achieved a reduction in energy consumption.

Model Total Energy [𝜇J]
Reduced Encoder 5.4957
Quantized Encoder 3.3434

Table 3 indicates that the quantized model has achieved a reduction in total energy consumption by
39.2%. As a result, we anticipate that deploying the JointVAE model for anomaly detection, which
has been quantized and implemented on an FPGA, will result in a highly accurate and efficient
implementation. We will present these results in the next section.

4. Study of the FPGA implementation feasibility

Field Programmable Gate Arrays (FPGAs) [27] are specialized devices that can implement circuits
with hardware-like efficiency, providing benefits in power consumption, size, and performance
compared to software, making them well-suited for real-time data processing. Additionally, FPGAs
can be easily reconfigured for various tasks without significant cost. To create an FPGA-based
circuit, memory bits that determine routing decisions must be configured with appropriate values,
achieved by generating a bitstream that loads into the device. FPGAs are used in the context of
High Energy Physics (HEP), such as the CMS experiment, to process the large amounts of data
generated by the detectors and increase the speed of the data processing, filtering and compressing
of the data (such as using AEs and VAEs) from the detectors, reducing the amount of data that
needs to be transferred over the network and stored on disk.

Traditionally, FPGAs are designed using hardware description languages such as VHDL or
Verilog. However, this study adopted a "higher-level" approach by utilizing tools and libraries
that allow FPGA design to be accomplished from a behavioural description written in C++ or
Python for neural networks. The first step required for the implementation of a neural network on
an FPGA is the conversion of the high-level code used for the creation of the model (Python +
TensorFlow & QKeras) into high-level synthesis (HLS) code. To accomplish this task, the hls4ml
package [28] has been used. This tool has been developed by members of the HEP community
to translate ML algorithms, built using frameworks like TensorFlow2, into HLS code, enabling
firmware development times to be drastically reduced. With its interface to QKeras, hls4ml supports
quantization-aware training [7], which makes it possible to reduce the FPGA resource consumption
while preserving accuracy drastically. Through the use of this relatively new technique, hls4ml
can integrate resource-intensive models without sacrificing performance and resulting in efficient
interference. In this case, a fixed numerical representation is employed for the entire model, and the
model is trained with this constraint during weight optimization. Using hls4ml we can compress
neural networks to fit the limited resources of an FPGA. In the context of the CMS experiment,
hls4ml is used in the High-Level Trigger system to improve the event selection rate. A fully on-chip
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implementation of the machine learning model is required to stay within the 1𝜇𝑠 latency budget
imposed by a typical L1T system. Since there are several L1T algorithms deployed per FPGA,
each should use much less than the available resources. Compared to the previous software-based
version, the ML algorithm hardware implementation can process data way faster. This allows for a
higher event selection rate and improved overall performance of the HLT system.

Results obtained from the implementation feasibility study of the quantized JointVAE encoder
model on an FPGA are presented in this section. The study focuses on the performance of the
model when trained on data from the QCD and top jets datasets. During the conversion of the
QKeras model to an HLS project, the model’s quantization configuration is passed to hls4ml and
enforced on the FPGA firmware. The firmware is designed to use specific arbitrary precision
based on the quantization configuration to ensure that the same precision is maintained during
inference. The precision of the model parameters is critical in preserving the accuracy of the
JointVAE model. This procedure ensures that the use of specific arbitrary precision in the QKeras
model is maintained during the inference [7]. To improve the implementation of the JointVAE
encoder model, various strategies such as modifying the reuse factor and testing resource or
latency strategies were investigated using hls4ml. However, the model still proves too complex
for low-level implementation. This can be attributed to the computational intensity of the model’s
multidimensional convolutional layers, which cannot be easily simplified for implementation in
hardware algorithms. The neural network architecture model used for synthesis required significant
computing resources on the development machine used to compile the firmware.

Table 4 provides a comprehensive overview of the expected resource of the FPGA needed to
implement the different layers in the quantized JointVAE encoder model. To examine the resource
utilization of the model in detail, we split the blocks and analyzed the resource usage for each
layer. Specifically, for each dconv block, we considered a QConv2D, an instance normalization
layer and QActivation. For instance, conv2_b1_1 represents the first QConv2D layer, instance
normalization layer, and activation block with an input and output shape of (10, 10, 20) and (5, 5, 4)
respectively. A block similar to the previous one named conv2_b2, but ingesting an image with
dimensions (5, 5, 4) and generating an output with the same size. Moreover, the final block in the
quantized JointVAE encoder model comprises conv_fin, which is a QConv2D layer with instance
normalization but no activation, and three vectors of QDense, which provide the final output of the
encoder and the vector defining the latent space of the JointVAE. The quantized JointVAE encoder
is a complex neural network that requires careful optimization for efficient implementation. To this
end, resource utilization metrics play a critical role in evaluating the performance of the model
and optimizing its implementation. In particular, the number of DSPs, LUTs, FFs, and BRAM
used by each layer in the model provides valuable insights into the resource requirements of the
model and helps identify potential performance bottlenecks that need to be addressed. It is worth
noting that in the actual model intended to be implemented on the FPGA, the blocks present in
Table 4 are present multiple times with different and bigger inputs and outputs. This architectural
choice is made for better encoding computation, as previously described. It is important to note
that the first conv2_b0_0 layer in the table, which takes an input of (20, 20, 16) and has an output
shape of (10, 10, 20), was impossible to simulate with Vivado HLS due to its large shape in
convolutional computation. Assuming that the resource consumption would scale proportionally
with the input size, the resource usage of this layer was estimated based on a linear relationship
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with the computational complexity of the convolutional layer as described in the Reference [29].
However, it is important to note that this estimate is only an approximation and may not precisely
reflect the actual resource demands of the layer. In this configuration, as we can see for the layer
conv2_b0_0 we have LUT consumption of 6189696, which exceeds more than three times and a
half the total resource available on the FPGA target, which demonstrates the impossibility of the
implementation in a single FPGA for this configuration.

Table 4: Resource utilization estimates and latency for some of the quantized JointVAE encoder layers.
Resources are based on the Vivado estimates from Vivado HLS 2020.1 for a target clock period of 5 ns on
the Alveo U250. The second column represents the variables used for each layer to estimate resource usage.
The percentage is computed against the total available resources on the FPGA target board.

Layer Name hin,win, din, dout DSP (%) LUT (%) FF (%) BRAM (%)
conv2_b0_0 20, 20, 16, 10 752 (6) 6189696 (358) 229536 (∼7) 288 (5)
conv2_b1_1 10, 10, 20, 5 47 (∼0) 386856 (22) 14346 (∼0) 18 (∼0)
dconv_b2 5, 5, 4, 4 15 (∼0) 309544 (17) 9352 (∼0) 4 (∼0)
final block 5, 5, 4, 2 851 (6) 91763 (5) 28074 (∼0) 377 (7)

Overall, the resource utilization metrics and analyses presented in this study demonstrate that
the quantized JointVAE encoder model is too large for efficient implementation on the FPGA.
The implementation of the network on an FPGA would have allowed for hardware acceleration
and parallel processing, resulting in a significant reduction in the inference time compared to the
software implementation. This would have been particularly beneficial for real-time applications
where low latency is critical. However, due to hardware constraints and design complexities, we
were only able to partially implement the network on the FPGA, further research and optimization
efforts are needed to compress and optimize the model for a more efficient implementation.

5. Conclusions and Outlook

We propose the use of convolutional neural network joint variational autoencoders (JointVAE)
trained on a reference standard model (SM) sample to identify top decay jets, but the same technique
can be used for potential beyond standard model (BSM) events at the LHC. This approach can detect
recurrent anomalies that may be missed by traditional trigger selection, and it can be applied in
general-purpose LHC experiments. Our algorithm has the potential to select datasets enriched with
events from challenging BSM models, in a similar approach as demonstrated for top jets samples.
We discussed a strategy for detecting potential anomalies, including using a JointVAE for anomaly
detection (AD) by projecting the input’s representation in the latent space. The final outcome of this
application is a list of anomalous scores that experimental collaborations could scrutinize further.
The purpose of this application is not to enhance the signal selection efficiency for BSM models but
to provide a high-purity sample of potentially interesting events. Repeated patterns in these events
could motivate new scenarios beyond the standard model physics and inspire new searches to be
performed on future data with traditional supervised approaches. Our proposed approach is general
and not sensitive to a particular BSM scenario. While supervised algorithms could give better
discrimination capability for a given BSM hypothesis, they would not generalize to other BSM
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scenarios. The JointVAE, on the other hand, comes with little model dependence and therefore
generalizes, in principle, to unforeseen BSM models. As typical of autoencoders used for AD,
our JointVAE model is trained to learn the SM background, but there is no guarantee that the best
SM-learning model will be the best anomaly detection algorithm.

During our discussion, we also explored methods to enhance the detection of new physics at
the LHC by utilizing the model within the L1T infrastructure of the experiments. We proposed
deploying a JointVAE on an FPGA using the hls4ml library. By quantizing the model, we achieved
a lower energy consumption with respect to the floating point complete model. It is important to
note that the model quantization configuration plays a significant role in ensuring the accuracy of
the inference results. This is a crucial aspect since the FPGA has limited resources, and using
floating-point arithmetic would result in high resource usage and longer latencies. The strategy we
propose can help extend the physics reach of the current and next stages of the CERN LHC, and
the strategy demonstrated for the data stream coming from a CMS L1 selection can be generalized
to any other data stream from any L1 selection, allowing scrutiny of the full 100 Hz rate entering
the HLT system of ATLAS or CMS. While our implementation of the JointVAE model is a novel
advancement in the field, further upgrades still need to be made. We found that the computational
cost of this large network is significant and requires substantial resources, making it difficult to
fully implement it on an accelerator board. One possible solution could be to employ knowledge
distillation [30], whereby a smaller student network learns from the larger one by minimizing the
differences between their outputs. Additionally, we observed that in an FPGA environment where
multiple algorithms are running, it might not be feasible for the JointVAE to utilize all available
resources for optimal performance. Nonetheless, the JointVAE has the potential to be a valuable
tool in L1 trigger systems, enabling more efficient and accurate detection of anomalous signals that
could signify new physics signatures.
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