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1. Introduction

For about a decade quarks [1] were considered mathematical objects to describe the conse-
quences of 𝑆𝑈 (3) flavor symmetry [2] [3] and its extension to 𝑆𝑈 (6) flavor spin [4] [5], despite
the prediction of the ratio of the magnetic moments, − 2

3 , [6] and the successful assumption that
the commutators of the weak and electromagnetic currents, current algebra, were well described in
terms of them [7] . The prediction of the ratio 𝐺𝐴

𝐺𝑉
[8] [46] and the saturation of the commutators

of the chiral 𝑆𝑈 (3) × 𝑆𝑈 (3) algebra within a set of hadron states [10] lead to the discovery of the
generator of the transformation between costituent and current quarks [61] with the prediction of
linear Regge trajectories [12] and of the signs and of the orders of magnitude of the contributions
of the resonances for the processes 𝜋 + 𝑁 → 𝜋 + Δ [13] [14] and of the 𝜌 − 𝜋 and Δ − 𝑁 mass
differences [15] . The brilliant Veneziano formula [16] for the reaction 𝜋 + 𝜋 → 𝜋 + 𝜔 encouraged
to describe strong interactions in the framework of S matrix theory and the symmetric function for
three quarks in a baryon did not encourage to consider quarks as real particles . The scale invari-
ance of the strucure function in deep inelastic scattering [17] found at SLAC [18] lead Feynman to
propose the parton model consisting in the hypothesis that at large values of 𝑄2, the transverse mo-
mentum transmitted by the incident lepton to the hadron, this particle behaves as an incoherent set
of pointlike charged objects interacting elastically with the incident lepton with a given probability
of carrying the percentage 𝑥 of its momentum in the frame of reference of the final hadrons [19] .
The study of deep inelastic scattering induced by (anti)neutrinos lead to identify the charged objects
with the quarks [20] .
A first attempt to describe scale invariance in the framework of quantum field theory was performed
by relating the structure functions to the singularities on the lightcpne of the products of two cur-
rents [21] .
The study of the non abelian gauge theories, which imply a negative sign of the 𝛽 function for
the renormalization group equations [22] [23], lead to the proposal of quantum chromodynamics,
QCD, as the quantum field theory of strong interactions with fundamental fields the quarks and the
gauge bosons, the gluons, which were identified with the neutral particles carrying about half of the
hadron momentum : the baryons singlets with respect to the gauge group 𝑆𝑈 (3) color restored the
antisymmetry for the quark wave function and the factor 3 was welcome to reproduce the production
of hadrons in electron-positron collisions and the lifetime of (𝜋)0 [24] . QCD accounts for the con-
finement of the quarks (”infrared slavery”) and for the scale invariance of the structure functions,
which describe deep inelstic scattering (”asymptotic freedhom”) .
The proton and the other baryons, which at small 𝑄2 behave as states with three quarks combined
into a color singlet, at high 𝑄2 behave as an incoherent set of quarks, gluons and antiquarks with
distributions, which obey the sum rules of the parton model as the condition that at high 𝑝𝑧 :∫ 1

0
Σ𝑖𝑥𝑝𝑖 (𝑥)𝑑𝑥 = 1 (1)

where 𝑥 is the fraction of the proton momentum carried by the parton 𝑖 .

QCD implies logarithmic violations of scale invariance described by DGLAP [25] [26] [27]
equations, which allow to deduce the parton distributions at a 𝑄2 larger than a sufficiently high 𝑄2
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from the ones at 𝑄2
0 . The standard parametrization at 𝑄2

0 is :

𝐴𝑥𝐵 (1 − 𝑥)𝐶𝑃(𝑥) (2)

with the parameter A, B e C and the polynome P(x) depending on the parton and such a form
is taken for the non polarized 𝑞(𝑥) = 𝑞↑ (𝑥) + 𝑞↓ (𝑥) and for the polarized Δ𝑞(𝑥) = 𝑞↑ (𝑥) − 𝑞↓ (𝑥)
distributions .
Parton model and the consequent scale invariance hold for large values of 𝑄2 and (𝑝 + 𝑞)2= 𝑀2 +
𝑄2( 1

𝑥 − 1) larger than 𝑀2 and therefore the values 𝑥 = 0 e 𝑥 = 1 are exscluded as well as their
neighboroods with amplitudes decreasing with 𝑄2 .
Therefore to fix the power behaviour around these points has not a strong motivation .
To fix the distributions at 𝑄2

0 one may be ispired by experiment, which suggests a role of quantum
statistical mechanics .

2. The Parton Distributions Suggested by Quantum Statistical Mechanics

The experimental search of the parton distributions soon showed non trivial flavor properties
for the antiquark sea and for the valence partons . In fact in the proton there is the isospin asymmetry
related to the fact that 𝑑 (𝑥) is larger than �̄�(𝑥). The study of the ratio 𝐹𝑛

2 (𝑥 )
𝐹

𝑝
2 (𝑥 ) shows a fast decrease

in the intermediate region of 𝑥, in the range (0.2, 0.5) and a slower decrease above 0.5 [28].
Both these facts may be related to the fact that in the proton there are two valence 𝑢 quark and one
valence 𝑑 quark : in fact Pauli principle has been advocated [29] [30] to account for the isospin
asymmetry in the proton sea and its role requires that quantum mechanical statistics plays a role,
which implies in analogy with Fermi sphere that the 𝑢(𝑥) distribution is broader than the 𝑑 (𝑥)
distribution . The role of Pauli principle implies that the occupation numbers, which depend both
on the flavor and the helicity of the quark, are not small .
Therefore one has to consider at the same time the unpolarized and polarized parton distributios
given respectively by 𝑝↑ (𝑥) + 𝑝↓ (𝑥) and 𝑝↑ (𝑥) − 𝑝↓ (𝑥) . A first attempt to relate the unpolarized
and polarized distributions has been made in [? ] with the assumption :

2𝑢↓ (𝑥) = 𝑑 (𝑥) (3)

which implies

𝑢↑ (𝑥) − 𝑢↓ (𝑥) = 𝑢(𝑥) − 𝑑 (𝑥) (4)

and relates the contribution of the l. h. s. to 𝑔𝑝1 (𝑥) to the one of the r. h. s. to the difference
𝐹 𝑝

2 (𝑥) − 𝐹𝑛
2 (𝑥) . After previous attempts to use Fermi-Dirac functions for the quarks and Bose-

Einstein for the gluons [32], [33], [34], [35], a good description of several deep inelastic and Drell-
Yan pair production data has been obtained by assuming [36] at 𝑄2

0 = 4 (𝐺𝑒𝑉 )2

𝑐4 chosen for the
boundary conditions :

𝑥𝑞ℎ (𝑥) =
𝐴𝑋ℎ

𝑞 𝑥
𝑏

(exp 𝑥−𝑋ℎ
𝑞

�̄� + 1)
+ �̃�𝑥 �̃�

(exp 𝑥
�̄� + 1) (5)
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𝑥(𝑞)ℎ =
�̄�𝑥2𝑏

𝑋−ℎ
𝑞 (exp 𝑥+𝑋−ℎ

𝑞

�̄� + 1)
+ �̃�𝑥 �̃�

(exp 𝑥
�̄� + 1) (6)

𝑥𝐺 (𝑥) = 𝐴𝐺𝑥
𝑏𝐺

(exp 𝑥
�̄� − 1) (7)

For the strange partons it has been assumed :

𝑠(𝑥) = 𝑠(𝑥) = �̄�(𝑥) + 𝑑 (𝑥)
4

(8)

The fermion distributions are given by the sum of a non diffractive term depending on the flavor
and helicity of the quark and a diffractive term isoscalar, unpolarized and invariant with respect to
C, in such a way to do not contribute to the sum rules for the first moments of the partons .
The diffractive term has a low 𝑥 behaviour related to the one of the gluons corresponding to an
infinite number of partons and its symmetry properties imply that only the non diffractive terms
contribute to the quark number and to the Bjorken [37] sum rules . The potentials 𝑋𝑝 of the valence
quarks and of their particles are constrained by the equilibrium conditions proposed by Bhalerao and
his collaborators [42] [43] [44] with respect to the processes, which are responsible for the DGLAP
equations, the emission of a gluon by a fermion and the conversion of a gluon into a 𝑞𝑞 pair .
The important consequences are that a fermion and its antiparticle with opposite helicity have op-
posite potentials and the potentials of the gluons vanish and they are unpolarized and described by
a Planck formula (Bose-Einstein with a vanishing potential) . As long for the fermions the isospin
and spin asymmetries of the proton sea are related to the potentials of the valence quarks, obeying
the conditions :

Δ𝑑 (𝑥) < 0 < Δ�̄�(𝑥) < 𝑑 (𝑥) − �̄�(𝑥) < Δ�̄�(𝑥) − Δ𝑑 (𝑥) (9)

which follow from the inequalities :

𝑋↑
𝑢 > 𝑋

↓
𝑑 > 𝑋

↓
𝑢 > 𝑋

↑
𝑑 (10)

implied by he quark number and the Bjorken [37] sum rules, which require :

𝑢↑ > 𝑑↓𝑑 > 𝑢
↓ > 𝑑↑ (11)

The first two inequalities of Eq.(9) are confirmed by the asymmetries for the production of the
charged weak bosons at RHIC [45] [46] with polarized particles .
The third one agrees with the isospin asymmetry implied by the defect [47] in the Gottfried sum rule
[48] , while the fourth one requires a more precise measurement of the isovector spin asymmetry,
for which there is uncertainty on the value [? ] .
It is interesting to consider the entropy, which for a fermion is given by :

𝑆(𝑞) = Σ𝑖−𝑛𝑖 ln 𝑛𝑖 − (1 − 𝑛𝑖) ln (1 − 𝑛𝑖) (12)

vanishing for 𝑛1 = 0 or 1, which is the case for 𝑥 = 0, showing the validity of the third principle
of thermodynamics . The condition of equilibrium with respect to the elementary processes of the

4
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DGLAP equations corresponds to the maximum of the entropy, which is reached at the separation
between the non-perturbative and the perturbative regimes, which we assumed to be 𝑄2

0 = 4 (𝐺𝑒𝑉 )2

𝑐4

.
The ”ad hoc” factors 𝑋ℎ

𝑞 and 1
𝑋ℎ
𝑞

have been introduced to comply with data, which have been suc-
cessfully described in terms of the temperature 𝑥, the four ”potentials” for the valence quarks 𝑢 and
𝑑 with both helicities, the two exponents 𝑏 and 𝑏𝐺 and the four factors, 𝐴, �̄�, 𝐴𝐺 and �̃�, constrained
by the moment sum rule and by the quark number sum rules .
The values of the parameters have been 𝑥 = 0.099, 𝑋↑

𝑢 = 0.461, 𝑋↓
𝑑 = 0.301, 𝑋↓

𝑢 = 0.299, 𝑋↑
=0.225,

𝑏 = 0.41, 𝑏𝐺 = 0.747, 𝐴 = 1.75, �̄� = 1.91, 𝐴𝐺 = 14.3 and �̃� = 0.183 .
The statistical approach implies a common Boltzmann behaviour exp −𝑥

�̄� for 𝑥 larger of the highest
”potential” , 𝑋𝑢↑ = 0.46 . in good agreement with experiment.
The predictions for the polarized structure functions of the nucleons measured after [36] have been
shown in agreement with experiment [49] [50] .
While the behaviour of the ratio 𝑑 (𝑥 )

�̄�(𝑥 ) in a first experiment [38] agreed at 𝑥 = 0.18 with the value
predicted in [34], in a second one only up to a certain value of 𝑥 [39] with [? ] ; a third experiment
[40], more precise, extended the agreement to all the 𝑥 measured .

3. The Extension to the Transverse Momenta

To account for the ”ad hoc” factors previously mentioned one considered the transverse degrees
of freedhom and their form coming from the sum rule proposed for the transverse energy , defined
as the difference between the energy and the longitudinal component of the momentum [51] .
For the hadron of the target the transverse energy is given by 𝑃0 − 𝑃𝑧 , approximately equal at large
𝑃𝑧 to 𝑀2

2𝑃𝑧
.

For a massless parton with the longitudinal component of the momentum 𝑥𝑃𝑧 and the transverse
𝑝𝑇 the transverse energy is given by :

𝑝2
𝑇

𝑝𝑧 +
√
𝑝2
𝑧 + 𝑝2

𝑇

=
𝑝2
𝑇

𝑃𝑧 (𝑥 +
√
𝑥2 + 𝑝2

𝑇

𝑃2
𝑧
)

(13)

where 𝑃𝑧 is the momentum of the initial hadron in the reference system of the final hadrons
and is given, neglecting terms in (𝑥𝑀)2, by :

𝑃2
𝑧 =

𝑄2

4𝑥(1 − 𝑥) (14)

Multiplying ×2𝑃𝑧 we obtain a sum rule with 𝑀2 in the right hand side .
The sum rule for the transverse energy fixes the dependence on 𝑃𝑇 of the transverse distribution,
which is given by :

2

[exp( (𝑝𝑇 )2

𝑥+
√
𝑥2+( 𝑝𝑇

𝑃𝑧
)2 (𝜇)2

− 𝑌 ℎ
𝑞 ) + 1]

. (15)
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where 𝑌𝑞 is the ”transverse potential and 𝜇 has the dimension of a mass and it is fixed by the
sum rule for the transverse energy .
The transformation :

𝑝2
𝑇 =

𝜇2𝜂(𝑥 +
√
𝑥2 + 𝑝2

𝑇

𝑃2
𝑧
)

2
(16)

gives rise to the integral in the variable 𝜂, which has the value, neglecting terms proportional
to the ratio ( (𝜇)

2

𝑄2 ):

ln [(1 + exp (𝑌 ℎ
𝑞 − 𝑘

𝑥
)] (17)

where 𝑘 = (𝑚𝑞

𝜇 )2 and may be neglected for the lightest partons 𝑢 and 𝑑, but not for the strange
partons . For the non diffractive contribution of the non valence fermion partons 𝑌 ℎ

𝑞 = 0, which
implies for the lightest partons in the mesons the value ln 2 for the integral defined in Eq.(17), while
the non diffractive term for the strange partons is reduced at low 𝑥 and for the strange valence par-
tons the factor in Eq.(17) takes the value ln 2, when 𝑥 = 𝑘

𝑌ℎ
𝑠

.
Therefore for the light valence partons one should have instead of the factors 𝐴𝑋ℎ

𝑞 the factors
𝐴′ ln (1 + exp𝑌 ℎ

𝑞 ) and one could recover the form proposed in [36] for the valence quarks sim-
ply assuming the proportionality between 𝑋ℎ

𝑞 and ln (1 + exp𝑌 ℎ
𝑞 ) . Indeed in [52], where both 𝑋ℎ

𝑞

and 𝑌 ℎ
𝑞 are fixed by comparing with the fermion distributions proposed in [53] the proportionality

holds with a good approximation .
For the non diffractive part of their antiparticles one has a slight change, since ln (1 + exp𝑌 ℎ

𝑞 ) ln [1 + exp (−𝑌 ℎ
𝑞 )]

is not costant, but the product gets its maximun, (ln 2)2, at 𝑌 ℎ
𝑞 = 0 and the more relevant change

concerns �̄�↓, which has a small non diffractive contribution .
There is an important difference with respect to the standard form 𝐴𝑥𝐵 (1 − 𝑥)𝐶𝑃(𝑥) at high 𝑥,
where the different parton distributions are fixed by the exponent 𝐶, which comes out different for
the different valence quarks with the conseguence that the limit 𝑑 (𝑥 )

𝑢(𝑥 ) for 𝑥 → 1 is 0 or infinity. In
the fit by Hera [53] the parameter 𝐶 is larger for 𝑢 than for 𝑑, while for the sea is still smaller with
the consequence to be dominant in that limit.
To agree with the experimental behaviour of the ratio 𝑑 (𝑥 )

𝑢(𝑥 ) the ”ad hoc” factor (1 + 9.7𝑥2) is intro-
duced for the parton 𝑢 .
Instead for the statistical approach above the highest ”potential”, 𝑋↑

𝑢 = 0.461 all the distributions
approach the universal Boltzmann behaviour proportional to exp ( −𝑥�̄� ), which describes for a larger
range the gluon and te diffractive distributions as a consequence of their vanishing potential .
For the valence partons the costant, which multiples exp ( −𝑥�̄� ) at high𝑥, depends on their ”potential”
.
An important feature of the statistical approach is to describe at the same time the unpolarized and
the polarized parton distributions .

4. Comparison with HERA and NNQCD

When HERA presented the parton distributions derived by the combined fit to H1 and ZEUS
data, Jacques Soffer immediately realized their similarity with the ones found in [36] .
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Figure 1: The red curve represents the best fit of the gluon momentum distribution 𝑥𝑔(𝑥) obtained in the
ATLAS experiment, performed using the functional form in Eq.(9), with 𝐴𝐺 and 𝑏𝐺 as free parameters, and
𝑥 = 0.099. The dots correspond to the experimental points, and the (cyan) shaded area to their uncertainty.

Therefore in [52] the free parameters introduced in [36] were fixed by minimizing the difference
from the unpolarized distributions proposed by HERA and from the polarized in [36], which were
found in very good agreement with experiment .
Instead of the ”ad hoc” factors 𝑋ℎ

𝑞 and 1
𝑋ℎ
𝑞

the factors ln (1 + exp𝑌 ℎ
𝑞 ) and ln (1 + exp−𝑌 ℎ

𝑞 ) coming
from the extension to the transverse momenta were considered .
In Table 1 we compare the ”temperature” and the ”potentials” found in [36] with the ones obtained
in [33] and in [52] from the comparison with HERA.

Parameter [36] [33] [52]
𝑥 0.099 0.090 0.102
𝑋+
𝑢 0.461 0.475 0.446
𝑋−
𝑢 0.298 0.307 0.297
𝑋+
𝑑 0.228 0.245 0.222
𝑋−
𝑑 0.302 0.309 0.320

Table 1: Values of the statistical model parameters found in previous works. The temperature 𝑥 is involved in
both the fermion and gluon distributions. The “potentials” 𝑋+

𝑢 , 𝑋−
𝑢 , 𝑋+

𝑑 and 𝑋−
𝑑 determine the non-diffractive

parts of the fermion distributions.

Also the proportionality between 𝑋ℎ
𝑞 and ln (1 + exp𝑌 ℎ

𝑞 ) is very well respected .
Instead for the gluons the agreement holds up to about 𝑥 = 0.2, while above the different parametriza-
tion lead to a faster decrease for the distribution proposed by HERA . The comparison was repeated
[41] with the distributions found by [55] better in agreement with [52] than with [53] . More re-
cently the Planck formula for the gluons was compared [56] with the distribution found by ATLAS
[57] and the very good agreement shown in Fig. 1 is obtained with the same 𝑥 and very similar
values for 𝐴𝐺 and 𝑏𝐺 found in [36].
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5. The Parton Distributions of the Charged Mesons

By studyng the production of Drell-Yan pairs and 𝐽/𝜓 particles in the scattering of charged
pions and kaons on nuclear targets, one may reach information on the parton distributions of the
incident particles in the framework of the statistical approach . The increasing ratio at high 𝑥 of the
Drell-Yan pairs produced by negative pions or antiprotons on nuclear targets may be easily explained
by a large value of the ”potentials” of the valence partons in the charged pions .
In fact a description of the Drell-Yan pairs produced in (𝜋)− nuclei reactions are described with a
high value of 𝑋�̄� = 0.75, and with the value of the ”temperature”, 𝑥 = 0.102, [59] near to the value
found for the nucleons, 0.099 .
The ratios for the 𝐽/𝜓 and Drell-Yan production by negative kaon or pion scattering on nuclei have
a similar behaviour, near 1 up to a certain 𝑥 and decreasing above . This may be reproduced with a
distribution of �̄�(𝑥) softer in the negative kaon than in the pion [? ] .
This property may be understood, since the valence strange parton are expected to be rare at small
𝑥 as a consequence of their mass and to obey the quark number sum rule should be harder than the
�̄� and take a larger percentage of the kaon momentum, while in the pion isospin symmetry implies
that the two valence partons have the same distribution .
In the statistical approach one can describe the ratios with a smaller potential for the non diffractive
term of the �̄� in the negative kaon than in the negative pion .
Also the equilibrium condition implies that the non diffractive terms of the antiparticles of the two
valence partons are negligible, because their potentials, opposite to the ones of the valence partons,
are very negative . The quark number sum rule implies that the first moments of the valence partons
in the mesons are almost equal, very near to 1 . This leads to the intriguing property that the
non diffractive terms of �̄�(𝑥)] in 𝐾− and (𝜋)− limit the same area : the first, smaller at high 𝑥,
should cross the second at a certain 𝑥 and become higher below . To keep the ratio for the physical
processes studied near to one this behaviour should be compensated by a gluon distribution for the
kaon smaller than the one for the pion at small 𝑥 and larger at high 𝑥 . So we expect in the kaon
softer �̄� and harder gluons than in the pion [? ] .

6. Conclusion

The proposal that the boundary conditions at 𝑄2
0 = 4 (𝐺𝑒𝑉 )2

𝑐4 for DGLAP equations are Fermi-
Dirac functions for the quarks and a PlancK formula for the gluons allows to make many predictions
in agreement with experiment and to write both the unpolarized and polarized distributions in terms
of few parameters, which are rather stable with respect to the comparison with new data .
The degeneracy of the gas of the valence partons realizes the idea proposed in [29] and [30] that
Pauli principle accounts for the isospin asymmetry in the proton sea.
In the phase transition from 𝑄2 = 0 to the deep inelastic regime the DGLAP equations may be
applied, when the narrowing of the distributions implied by them is consistent with the increase of
the available phase space and this happens at a certain 𝑄2

0, which a posteriori is around the value
chosen in [36] . As it happened for the transformation between constituent and current quarks [60] [?
] the transverse degrees of freedom for the constituents of a hadron with large 𝑃𝑧 play an important
role [62] [51] .
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