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1. Introduction

Quantum correlations provide a fertile testing ground for foundational aspects of quantum
physics. In the last years, this very active research area has turned the attention towards subatomic
physics [1]-[19], after being studied for a long time in a variety of physical context, such as quantum
optics and condensed matter physics. In particular, the phenomenon of neutrino oscillations offers
a rare example of quantum correlations on macroscopic scale. The quantum nature of neutrinos
has been studied in terms of entanglement [2]-[5], Bell and Leggett- Garg inequalities [8]-[11] ,
and various aspects of quantum coherence, such as steering [13]-[14] and nonlocal advantage of
quantum coherence (NAQC) [15]. Again, they have been considered in the context of Entropic
Uncertainty Relations [16, 17] and so on. In recent years, interest has been focused on a quantitative
characterization of these aspects. In fact, quantum correlations and effectiveness in detecting
coherence and quantumness, are arguments which hide very delicate and subtle facets. It is worth
pointing out that, while for a global pure state entanglement encompasses any possible form of
correlations, for a mixed state several layers of non- classical correlations have been identified [20].
They show strict inclusion relations. In decreasing order, these can be classified as: NAQC ⊂ Bell
non-locality ⊂ steering ⊂ entanglement ⊂ general quantum correlations (discord). The quantumness
in neutrinos has also been studied by using complete complementarity relations (CCR) that fully
characterize the interplay between different correlations encoded in a quantum system. In the
following, we first provide a short review about quantum correlations quantifiers in the recent
literature. Then we present the main outcomes related to CCR in neutrino oscillations.

2. A review of studies on quantum correlations in neutrino oscillations

In this section we review the principal results about quantum correlation quantifiers in the
system of oscillating neutrinos, contained in Refs.[4, 13, 15–17, 21–25].

In [4] it is shown how, for oscillating neutrinos, some quantum correlations, as Bell non-
locality, entanglement and discord, can be efficiently expressed in terms of oscillation probabilities.
The authors consider the following decomposition for the density matrix 𝜌 describing the system:

𝜌 =
1
4
[𝐼2 ⊗ 𝐼2 + ®𝑟 · ®𝜎 ⊗ 𝐼2 + 𝐼2 ⊗ ®𝑠 · ®𝜎 +

∑︁
𝑚,𝑛

𝑇𝑚𝑛 (𝜎𝑚 ⊗ 𝜎𝑛)] (1)

where ®𝑟 ≡ (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧), ®𝑠 ≡ (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧) and 𝑇𝑚𝑛 are the elements of the correlation matrix 𝑇 . The
decomposition coefficients can be found as: 𝑟𝑚 = Tr[𝜌(𝜎𝑚 ⊗ 𝐼2)], 𝑠𝑚 = Tr[𝜌(𝐼2 ⊗ 𝜎𝑚)] and
𝑇𝑚𝑛 = Tr[𝜌(𝜎𝑚 ⊗ 𝜎𝑛)] , (𝑚, 𝑛 = 𝑥, 𝑦, 𝑧), where 𝜎𝑚 are the Pauli matrices. Let 𝑢𝑖 (𝑖 = 1, 2, 3) be
the eigenvalues of the matrix 𝑇†𝑇 . The Bell-CHSH inequality can be written as 𝑀 (𝜌) ≤ 1, where
𝑀 (𝜌) = max(𝑢𝑖 ⊗ 𝑢 𝑗), (𝑖 ≠ 𝑗). For a neutrino state ( Eq.(38) in the next section):

𝑀 (𝜌) = 1 + 4𝑃𝑠𝑢𝑟𝑃𝑜𝑠𝑐 . (2)

where 𝑃𝑠𝑢𝑟 and 𝑃𝑜𝑠𝑐 are the survival and oscillation probabilites, respectively. It is rapid to
conclude that a violation of the inequality occurs when 𝑃𝑠𝑢𝑟 < 1, with a maximal violation for
𝑃𝑜𝑠𝑐 = 𝑃𝑠𝑢𝑟 = 1

2 . The authors also consider the entanglement quantified by the concurrence
measure:

𝐶 = max(𝜆1 − 𝜆2 − 𝜆3 − 𝜆4, 0), (3)
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where 𝜆𝑖 are the square roots of the eigenvalues of 𝜌𝜌̃ in decrasing order, with 𝜌̃ = (𝜎𝑦⊗𝜎𝑦)𝜌∗(𝜎𝑦⊗
𝜎𝑦 . For the neutrino state under consideration:

𝐶 = 2
√︁
𝑃𝑠𝑢𝑟𝑃𝑜𝑠𝑐 . (4)

Thus, entanglement is present when the oscillation probability is non-zero. A still weaker measure
of quantum correlation is considered in [4], that is quantum discord, which is quantified by the
geometric discord:

𝐷𝐺 (𝜌) = 1
3
[
| | ®𝑦 | |2 + ||𝑇 | |2 − 𝜆𝑚𝑎𝑥

]
, (5)

in which ®𝑦 is the vector whose components are 𝑦𝑚 = 𝑇𝑟 [𝜌(𝜎𝑚 ⊗ 𝐼2)] and 𝜆𝑚𝑎𝑥 is the maximum
eigenvalues of the matrix (®𝑦®𝑦† + 𝑇𝑇†). For the neutrino state:

𝐷𝐺 (𝜌) = 8
3
𝑃𝑠𝑢𝑟𝑃𝑜𝑠𝑐 . (6)

Quantum discord is non-zero when 𝑃𝑜𝑠𝑐 ≠ 0.
Furthermore, the authors consider the teleportation fidelity, that defines the practical use of

quantum correlations. The average fidelity 𝐹 quantifies how well unkown input states can be
transmitted to another location, showing the optimality of quantum teleportation. The maximum
teleportation fidelity is:

𝐹𝑚𝑎𝑥 =
1
2

(
1 + 1

3
𝑁 (𝜌)

)
. (7)

𝑁 (𝜌) = (√𝑢1 +
√
𝑢2 +

√
𝑢3), where 𝑢𝑖 are the eigenvalues of the matrix 𝑇†𝑇 . The teleportation is

possible whenever 𝐹𝑚𝑎𝑥 >
2
3 , where 2

3 is the classical value of teleportation fidelity [26].
In [13] it is analyzed the concept of coherence, which is fundamental in Quantum Mechanics.

Coherence can be considered as a resource [20] and its quantitative characterization expresses the
level of quantumness of a given system. The authors show a method for quantifying the quantumness
of neutrino oscillation with the use of the 𝑙1-norm coherence measure, defined as:

𝐶𝑙1 (𝜌) =
∑︁
𝑖≠ 𝑗

|𝜌𝑖 𝑗 |, (8)

i.e., the sum of the absolute values of all off-diagonal elements 𝜌𝑖 𝑗 of the density matrix 𝜌. The
maximum value of𝐶 (𝜌) is𝐶𝑚𝑎𝑥 = 𝑑−1, where 𝑑 is the dimension of 𝜌. For a three flavor neutrino
system, it can be expressed in terms of the transition probabilities as:

𝐶𝛼 = 2
(√︁
𝑃𝛼𝑒𝑃𝛼𝜇 +

√︁
𝑃𝛼𝑒𝑃𝛼𝜏 +

√︁
𝑃𝛼𝜇𝑃𝛼𝜏

)
. (9)

In [13] it is shown a comparison between the coherence in experimentally observed neutrino
oscillations from different sources, as Daya-Bay, KamLAND, MINOS and T2K, and the theoretical
predictions. There is a good agreement in all the cases, especially for the KamLAND one, for which
the authors found a value close to the theoretical maximum of coherence. A similar argument is
presented in [22], in which is shown a comparison between the 𝑙1-norm as a coherence measure
with the concurrence as an entanglement measure by using a wave packet description for three
flavor neutrino oscillations. The authors highlight that the origin of flavor entanglement is the same
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of the quantum coherence in neutrino. By quantifying the entanglement as in Eq.(3), for the initial
flavor 𝛼, the concurrence between flavor 𝛽 and 𝛾 is obtained as:

𝐶𝛼
𝛽𝛾 = 2

√︁
𝑃𝛼𝛽𝑃𝛼𝛾 , (10)

in accordance with [4]. The authors conclude that, for a given flavor 𝛼, the sum of the three possible
concurrences is equal to the 𝑙1-norm measure of coherence.

In [15] the quantumness in experimentally observed neutrino oscillations has been investigated
via the NAQC, quantum steering and Bell non-locality. It has been also shown that exists a strict
hierarchical relationship among these correlations and that the NAQC is the strongest one. This
highlights that NAQC is a reliable tool for the quantification of quantumness in two-flavor neutrino
systems. The authors use the NAQC based on 𝑙1-norm coherence measure [27]. For a neutrino
bipartite state, it is possible to express it in terms of the transition probability as:

𝑁𝑙1 (𝜌𝛼) = 2 + 2
√︁
𝑃𝛼𝛼𝑃𝛼𝛽 , (11)

with 𝛼, 𝛽 = 𝑒, 𝜇. For the Bell non-locality the authors find the same outcome as in Eq.(2), according
to Ref.[4]. The criterion for quantifying quantum steering for a bipartite system is given by [28]:

𝐹𝑛 (𝜌, 𝜍) =
1
√
𝑛

���� 𝑛∑︁
𝑖=1

Tr(𝜌𝐴𝑖 ⊗ 𝐵𝑖)
����≤ 1, (12)

where 𝐴𝑖 = 𝜁𝑖 · 𝜎 and 𝐵𝑖 = 𝜉𝑖 · 𝜎, 𝜁𝑖 ∈ R3 are unit vectors, 𝜉𝑖 ∈ R3 are othonormal vectors, and
𝜍 = {𝜁1, ..., 𝜁𝑛, 𝜉1, ..., 𝜉𝑛} denotes the set of measurement directions. For a neutrino bipartite state:

𝐹3(𝜌, 𝜍) =
√︂

1 + 8𝑃𝛼𝛼𝑃𝛼𝛽

3
. (13)

In [21] these considerations have been extended by using a wave packet approach for neutrino
oscillations resorting to parameters from Daya-Bay and MINOS experiments. It has been found
that, in the case of Daya-Bay experiment, corrections provided by the wave packet approach with
respect the plane-wave one are practically irrelevant. At variance, when MINOS parameters are
considered, the corrections are noticeable and lead to a better description of experimental data.
From this analysis also comes out an interesting behaviour of NAQC. It is worth specifying that
the local coherence bound of the single subsystem, beyond which we can reach a NAQC, is equal
to

√
6 in the case of 𝑙1-based NAQC. At large distances, when the oscillations are washed away,

exceeding this limit depends solely on the mixing angle, leading to a violation in the case of MINOS
at variance with the Daya- Bay case.

In [23] the hierarchy among three different definitions of NAQC, based on 𝑙1-norm, relative
entropy and skew information coherence measures [29, 30], has been investigated in neutrino
systems. It has been found that the coherence content detected by the 𝑙1-norm based NAQC
overcomes the other two and represents an upper limit for them. Thus, 𝑙1-norm based NAQC results
to be more able to capture quantum resources with respect the other definitions. The expression
of the 𝑙1-norm based NAQC is given in Eq.(11). The expressions of the relative entropy and skew
information based NAQCs are, respectively:

𝑁𝑟𝑒 (𝜌) = 2 − 𝑃𝛼𝛼 log2 𝑃𝛼𝛼 − 𝑃𝛼𝛽 log2 𝑃𝛼𝛽, (14)
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and
𝑁𝑠𝑘 (𝜌) = 2 + 4𝑃𝛼𝛼𝑃𝛼𝛽 . (15)

In [16, 23] the quantumness in neutrino oscillations has been analyzed by exploiting the
Entropic Uncertainty Relations (EUR) as a criterion to detect quantum correlations. The uncertainty
principle provides a limit to our ability to predict the measurement results for a pair of incompatible
observables of a quantum system. Uncertainty relations can be expressed in terms of the entropy
[31, 32]. Recently, the EUR have been generalized to the case in which the parts of the considered
system can be correlated in a non-classical way [33, 34]. The correlation between subsystems can
be exploited to reduce the uncertainty below the usual limits: we then talk about Quantum Memory
Assisted - Entropic Uncertianty Relations (QMA-EUR). Let us suppose Bob prepares a bipartite
state 𝜌𝐴𝐵, with correlations between A and B. He sends part A to Alice and keeps part B as a
quantum memory. Alice can decide to measure one of two observables P and R and tells Bob
her choice. Based on Alice’s choice, Bob is able to guess her outcomes with minimal deviation
limited by the uncertainty’s lower bound by means of the part B which is correlated with A. The
QMA-EUR, in terms of von Neumann entropy, can be expressed as:

𝑆(𝑃 |𝐵) + 𝑆(𝑅 |𝐵) ≥ − log2 𝑐(𝑃 |𝑅) + 𝑆(𝐴|𝐵). (16)

where 𝑆(𝐴|𝐵) = 𝑆(𝜌𝐴𝐵) − 𝑆(𝜌𝐵) is the conditional von Neumann entropy of 𝜌𝐴𝐵 with 𝑆(𝜌𝐴𝐵) =
−𝑡𝑟 (𝜌𝐴𝐵 log2 𝜌𝐴𝐵), 𝜌𝐵 = 𝑡𝑟𝐴(𝜌𝐴𝐵), 𝑆(𝑋 |𝐵) = 𝑆(𝜌𝑋𝐵) − 𝑆(𝜌𝐵) is the conditional von Neumann
entropy of 𝜌𝑋𝐵 =

∑
𝑖 ( |𝜓𝑋

𝑖
⟩𝐴⟨𝜓𝑋

𝑖
|I𝐵)𝜌𝐴𝐵 ( |𝜓𝑋

𝑖
⟩𝐴⟨𝜓𝑋

𝑖
|I𝐵) (that is the state of B after performing

a measurement on A of the observable X with eigenstates |𝜓𝑋
𝑖
⟩), 𝑐(𝑃 |𝑅) = max 𝑗 ,𝑘 |⟨𝜓𝑃

𝑗
|𝜙𝑅

𝑘
⟩|2

represents the maximal overlap between the eigenstates |𝜓𝑃
𝑗
⟩ and |𝜙𝑅

𝑘
⟩ of the observables P and R.

Since the correlations can reduce the uncertainty, in [16] it has been analyzed the relation between
QMA-EUR and the more general quantum correlation (Quantum Discord) by using a plane-wave
approximation for neutrino oscillations. For a neutrino bipartite state, it has been found that the
entropic uncertainty𝑈𝛼, 𝛼 = 𝑒, 𝜇, and the uncertainty lower bound𝑈𝛼

𝑏
, are given by:

𝑈𝛼 = 2(𝑃𝛼𝛼 log2 𝑃𝛼𝛼 + 𝑃𝛼𝛽 log2 𝑃𝛼𝛽 + 1), (17)

𝑈𝛼
𝑏 = 𝑃𝛼𝛼 log2 𝑃𝛼𝛼 + 𝑃𝛼𝛼 log2 𝑃𝛼𝛽 + 1. (18)

These are related to QD by:
𝑈𝛼 = 2𝑈𝛼

𝑏 = 2 − 2𝑄𝐷 (𝜌𝛼𝐴𝐵). (19)

In [23] it has been studied the relation between QMA-EUR and the strongest quantifier of
quantum correlations (NAQC) by using a wave packet approach to NOs. For a bipartite neutrino
state, by using the entropy-based NAQC, Eq.(15), it has been found:

𝑈𝛼 = 2𝑈𝛼
𝑏 = 2[3 − 𝑁 (𝜌𝛼𝐴𝐵] . (20)

In both [16] and [23] it has been concluded that the uncertainty is anti-correlated to the quantum
correlation considered: the stronger the quantum correlation, the smaller the uncertainty. It is worth
discussing a further aspect that emerges from the analysis carried out in [23]. As shown in [21], in
the wave packet approach the asymptotic trend of the NAQC depends on the mixing angle, with the
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NAQC attaining its maximum value at great distances. In [23] it is shown that this happens when
we consider parameters from KamLAND and MINOS neutrino experiments. Consequently, due
to the anti-correlation between uncertainty and NAQC, this suggests that entropic uncertainty and
its lower bound can go to zero asymptotically at large distance for sufficiently high values of the
mixing angle.

In [17] it has been investigated the relation between the entanglement and the EUR in the
context of three-flavor neutrino oscillations. Three different measure of entanglement have been
considered: Entanglement of Formation (EOF) [35], Concurrence (C) [36] and Negativity (N )
[37]. The hierarchical relationship among them has been explored.

For a tripartite pure state 𝜌𝐴𝐵𝐶 , the EOF can be expressed in terms of von Neumann entropy
as [38]:

𝐸𝑂𝐹 (𝜌𝐴𝐵𝐶) =
1
2
[𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) + 𝑆(𝜌𝐶)] . (21)

The Negativity is defined as:

N(𝜌𝐴𝐵𝐶) = (N𝐴−𝐵𝐶N𝐵−𝐶𝐴N𝐶−𝐴𝐵)
1
3 , (22)

where N𝐴−𝐵𝐶 = −∑
𝑖 𝜆

𝐴
𝑖

, N𝐵−𝐶𝐴 = −∑
𝑗 𝜆

𝐵
𝑗
, N𝐶−𝐴𝐵 = −∑

𝑘 𝜆
𝐶
𝑘

, where 𝜆𝛼𝜖 (𝛼 = 𝐴, 𝐵, 𝐶 and
𝜖 = 𝑖, 𝑗 , 𝑘) are the negative eigenvalues of the partial transpose of 𝜌𝐴𝐵𝐶 .

The Concurrence measure of entanglement for a tri-qubit state is given by [39]:

C(𝜌𝐴𝐵𝐶) =
[
3 − Tr(𝜌𝐴)2 − Tr(𝜌𝐵)2 − Tr(𝜌𝐶)2] 1

2 . (23)

The tripartite generalization of the EUR is obtain by [40]:

𝑆(𝑅 |𝐵) + 𝑆(𝑆 |𝐶) ≥ 𝑞𝑀𝑈 , (24)

where 𝑆(𝑅 |𝐵) = 𝑆(𝜌
𝑅𝐵

)−𝑆(𝜌𝐵) and analogously 𝑆(𝑆 |𝐶) are the conditional von Neumann entropy
and 𝑞𝑀𝑈 = − log2 𝑐(𝑅 |𝑆), with 𝑐 = max𝑖 𝑗{|⟨𝜙𝑅𝑖 |𝜓𝑆

𝑗
⟩|2} representing the maximal overlap between

the observable 𝑅 and 𝑆 with |𝜙𝑅
𝑖
⟩ and |𝜓𝑆

𝑗
⟩ denoting the corresponding eigenstates.

To explore EUR in three-flavor NOs, for a given flavor A, we have to consider the sum of
Eq.(24) for three arbitrary non-commuting operators X,Y,Z:

U = 𝑆(X|𝐵) + 𝑆(Z|𝐶) + 𝑆(Y|𝐵) + 𝑆(X|𝐶) + 𝑆(Z|𝐵) + 𝑆(Y|𝐶) ≥ 3𝑞𝑀𝑈 . (25)

For a tri-partite neutrino state:

|𝜈𝛼 (𝑡)⟩ = 𝑎𝛼𝑒 (𝑡) |100⟩ + 𝑎𝛼𝜇 (𝑡) |010⟩ + 𝑎𝛼𝜏 (𝑡) |001⟩ , (26)

the expression of Entanglement of Formation, Negativity and Concurrence in terms of transition
probabilities are, respectively:

𝐸𝑂𝐹 = − 1
2
[
𝑃𝛼𝑒 log2 𝑃𝛼𝑒 + 𝑃𝛼𝜇 log2 𝑃𝛼𝜇 + 𝑃𝛼𝜏 log2 𝑃𝛼𝜏

+ (𝑃𝛼𝜇 + 𝑃𝛼𝜏) log2(𝑃𝛼𝜇 + 𝑃𝛼𝜏)
+ (𝑃𝛼𝑒 + 𝑃𝛼𝜏) log2(𝑃𝛼𝑒 + 𝑃𝛼𝜏)
+ (𝑃𝛼𝜇 + 𝑃𝛼𝑒) log2(𝑃𝛼𝜇 + 𝑃𝛼𝑒)

]
,

(27)
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N =

(√︁
𝑃𝛼𝑒

√︁
𝑃𝛼𝜇 + 𝑃𝛼𝜏

√︁
𝑃𝛼𝑒

√︁
𝑃𝛼𝜇

√︁
𝑃𝛼𝑒 + 𝑃𝛼𝜇

√︁
𝑃𝛼𝜏

) 1
3
, (28)

C =

√︃
3 − 3(𝑃2

𝛼𝑒 + 𝑃2
𝛼𝜇 + 𝑃2

𝛼𝜏) − 2𝑃𝛼𝜇𝑃𝛼𝜏 − 2𝑃𝛼𝑒 (𝑃𝛼𝜇 + 𝑃𝛼𝜏). (29)

The total entropic uncertianty U can be also expressed in terms of transition probabilities, as:

U =4[𝐻𝑏𝑖𝑛 (𝜆1) − 1] + 𝑃𝛼𝜇 log2 𝑃𝛼𝜇 + 𝑃𝛼𝜏 log2 𝑃𝛼𝜏

− 2𝑃𝛼𝑒 log2 𝑃𝛼𝑒 + 3
[
(𝑃𝛼𝑒 + 𝑃𝛼𝜇) log2(𝑃𝛼𝑒 + 𝑃𝛼𝜇)

+ (𝑃𝛼𝜏 + 𝑃𝛼𝑒) log2(𝑃𝛼𝜏 + 𝑃𝛼𝑒)
]
,

(30)

where 𝐻𝑏𝑖𝑛 (𝜆1) = −𝜆1 log𝑒 𝜆1 − (1 − 𝜆1) log2(1 − 𝜆1) is the binary entropy, with
𝜆1 = 1

2
(
1 −

√︃
(𝑃𝛼𝑒 + 𝑃𝛼𝜇)2 + 2(𝑃𝛼𝑒 − 𝑃𝛼𝜇)𝑃𝛼𝜏 + 𝑃2

𝛼𝜏

)
.

It has been seen that for an initial electron neutrino, the concurrence is able to capture more
quantumness compared with the other two measures, and the negativity is smaller than concurrence
and EOF. Instead, for an initial muon neutrino, the amount of concurrence and EOF is greater than
negativity. Furthermore, in accordance to [16, 23] it has been found an anti-correlation between
uncertainty and entanglement.

In [24] various measures of bipartite and tripartite entanglement are explored. In particular, it is
analyzed the genuine tripartite entanglement. In bipartite quantum system, all quantum correlations
like tangle, concurrence, negativity coincides with the linear entropy. It reveals that the state |𝜈𝑒 (𝑡)⟩
is a bipartite entangled pure state. In the three flavor case, the neutrino oscillation satisfies the
Coffman-Kundu-Wooters (CKW) monogamy inequality and exhibits the property of the class of
W-states. Consequently, the residual entanglement inequalities 𝜋𝑒𝜇𝜏 > 0 or 𝜋𝜇𝑒𝜏 > 0 imply a
generalized form of genuine tripartite entanglement in three flavor neutrino oscillations.

In [25] the authors investigated several trade-off relations in Quantum Resource Theory, based
on Bell-CHSH violations, first-order coherence and intrinsic concurrence , and the relative entropy
of coherence, for initial electron neutrino and muon neutrino oscillations. It is shown that the sum
of the violation of CHSH tests on bipartite states ⟨𝐶𝐻𝑆𝐻⟩2

𝜌𝐴𝐵
, ⟨𝐶𝐻𝑆𝐻⟩2

𝜌𝐵𝐶
and ⟨𝐶𝐻𝑆𝐻⟩2

𝜌𝐴𝐶
is

always ≤ 12 for the electron and the muon neutrinos. Therefore, it is impossible that all the three
pairs of pairwise neutrino flavor systems violate the CHSH inequality simultaneously, and if one of
the three pairs reaches the maximal violation of the CHSH inequality, the other two pairs cannot
violate the CHSH inequality anymore. Thus, these relations give rise to strong restrictions on the
distribution of nonlocality among the three reduced two-flavor neutrino systems.

In the next section, in the framework of neutrino oscillations we consider relations which share
some conceptual similarities with the trade-off relations. In fact, these complete complementarity
relations (CCR) are identities which, in correspondence to the variation of parameters, account for
the balancing among fundamental characteristics of the system: quantum correlations, predictability
and visibility. In the case of three flavors, CCR show how much the level of correlations in a two
flavor subsystem constraints the amount of quantum correlations in the other flavor subsystems.
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3. CCR in neutrino oscillations

CCR provide a way to characterize quantum correlations in multi-partite systems and they can
be exploited to describe quantum correlations in neutrino systems. The concept of complementarity
is summarized in the statement that a quantum system may possess properties which are equally
real but mutually exclusive. It is often associated with wave-particle duality, the complementarity
aspect between propagation and detection.

The first quantitative version of the wave-particle duality [41, 42] was summarized by a simple
complementarity relation:

𝑃2 +𝑉2 ≤ 1. (31)

where P is the predictability, a measure of path information and V is the visibility of the interfer-
ence pattern. Complementarity associated with wave-particle duality is thus related to competing
properties of a quantum systems. Complementarity relations as in Eq.(31) are valid only for pure
single-partite quantum states.

In [43] it is shown that for bipartite states we have to consider a triality relation formed by
two quantities generating local, single-partite realities which can be related to wave-particle duality
and a third entry representing the entanglement measure concurrence, which generates an exclusive
bipartite non-local reality:

𝑃2
𝑘 + 𝑉2

𝑘 + 𝐶2 = 1, 𝑘 = 1, 2 (32)

where 𝑃𝑘 and 𝑉𝑘 are the predictability and visibility for the single-partite systems and 𝐶 is the
concurrence.

CCR can be efficiently expressed in terms of density matrix elements [44] . Let us consider a
bipartite pure state in the Hilbert space H𝐴 ⊗ H𝐵, represented by the density matrix:

𝜌𝐴,𝐵 =

𝑑𝐴−1∑︁
𝑖,𝑘=0

𝑑𝐵−1∑︁
𝑗 ,𝑙=0

𝜌𝑖 𝑗 ,𝑘𝑙 |𝑖, 𝑗⟩ ⟨𝑘, 𝑙 | . (33)

If the state of subsystem A is mixed, one has

𝑃ℎ𝑠 (𝜌𝐴) + 𝐶ℎ𝑠 (𝜌𝐴) <
𝑑𝐴 − 1
𝑑𝐴

(34)

where 𝑃ℎ𝑠 (𝜌𝐴) ≡
∑𝑑𝐴−1

𝑖=0 (𝜌𝐴
𝑖𝑖
)2 − 1

𝑑𝐴
and𝐶ℎ𝑠 (𝜌𝐴) ≡

∑𝑑𝐴−1
𝑖≠𝑘

|𝜌𝐴
𝑖𝑘
|2 are, respectively, the predictabil-

ity measure and the Hilbert-Schmidt quantum coherence (a good generalization of the visibility
measure [45]).

CCR is obtained by including the missing information about subsystem A, which is contained
in the correlations with the subsystem B:

𝑃ℎ𝑠 (𝜌𝐴) + 𝐶ℎ𝑠 (𝜌𝐴) + 𝐶𝑛𝑙
ℎ𝑠 (𝜌𝐴|𝐵) =

𝑑𝐴 − 1
𝑑𝐴

(35)

where 𝐶𝑛𝑙
ℎ𝑠
(𝜌𝐴|𝐵) =

∑
𝑖≠𝑘, 𝑗≠𝑙 |𝜌𝑖 𝑗 ,𝑘𝑙 |2 − 2

∑
𝑖≠𝑘, 𝑗<𝑙 Re(𝜌𝑖 𝑗 ,𝑘 𝑗𝜌∗𝑖𝑙,𝑘𝑙) is the non-local quantum coher-

ence (entanglement), that, for a global pure state, is equivalent to the linear entropy of subsystem
A. Another form of CCR can be obtained by defining the predictability and the coherence measures
in terms of the von Neumann entropy:

𝐶re(𝜌𝐴) + 𝑃vn(𝜌𝐴) + 𝑆vn(𝜌𝐴) = log2 𝑑𝐴 (36)
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Figure 1: On the left panels are shown the survival probability 𝑃𝜈𝛼→𝜈𝛼 , (𝛼 = 𝑒, 𝜇), and the quantum
discord QD as a function of the propagation distance x(km) for a neutrino state (44). On the right panels are
shown the predictability 𝑃𝑣𝑛 (𝜌𝛼), the conditional entropy 𝑆𝛼 |𝛽 (𝜌𝛼𝛽) and the mutual information 𝐼𝐴:𝐵 (𝜌𝛼𝛽),
(𝛼, 𝛽 = 𝑒, 𝜇, 𝜏), as a function of distance x(km).
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where 𝐶re(𝜌𝐴) = 𝑆vn(𝜌𝐴, diag) − 𝑆vn(𝜌𝐴), 𝑃vn(𝜌𝐴) ≡ log2 𝑑𝐴 − 𝑆vn(𝜌𝐴, diag). For pure states
𝑆vn(𝜌𝐴) is a measure of entanglement between A and B.

For bipartite mixed states, the CCR have to be suitably modified [46]. Indeed, 𝑆vn(𝜌𝐴) cannot
be considered as a measure of entanglement, but only as a quantifier of the mixedness of A. The
CCR for mixed states is

log2 𝑑𝐴 = 𝐼𝐴:𝐵 (𝜌𝐴𝐵) + 𝑆𝐴|𝐵 (𝜌𝐴𝐵) + 𝑃𝑣𝑛 (𝜌𝐴) + 𝐶𝑟𝑒 (𝜌𝐴), (37)

where: 𝐶𝑟𝑒 (𝜌𝐴) = 𝑆𝑣𝑛 (𝜌𝐴𝑑𝑖𝑎𝑔) − 𝑆𝑣𝑛 (𝜌𝐴) is relative entropy of coherence, 𝑃𝑣𝑛 (𝜌𝐴) ≡ ln 𝑑𝐴 −
𝑆𝑣𝑛 (𝜌𝐴𝑑𝑖𝑎𝑔) is the predictability measure, 𝐼𝐴:𝐵 (𝜌𝐴𝐵) = 𝑆𝑣𝑛 (𝜌𝐴) + 𝑆𝑣𝑛 (𝜌𝐵) − 𝑆𝑣𝑛 (𝜌𝐴𝐵) is the
mutual information of A and B and 𝑆𝐴|𝐵 (𝜌𝐴𝐵) = 𝑆𝑣𝑛 (𝜌𝐴𝐵) − 𝑆𝑣𝑛 (𝜌𝐵) indicates how much it is
convenient knowing about the subsystem A with respect the whole system.

We now turn our attention to the case of a neutrino state [21]. For an initial electronic neutrino:

|𝜈𝑒 (𝑡)⟩ = 𝑎𝑒𝑒 (𝑡) |10⟩ + 𝑎𝑒𝜇 (𝑡) |01⟩ (38)

where we used the following correspondence [6]:

|𝜈𝑒⟩ = |1⟩𝑒 ⊗ |0⟩𝜇 = |10⟩ ,
��𝜈𝜇〉 = |0⟩𝑒 ⊗ |1⟩𝜇 = |01⟩ , (39)

that highlights the composite nature of neutrino flavor states. Starting from the density matrix of
the system 𝜌𝑒𝜇, it is simple obtaing the reduced density matrix of subsystem e (𝜇) by tracing over
𝜇 (e). We find that 𝑃hs(𝜌𝑒) = 𝑃2

𝑒𝑒 + 𝑃2
𝑒𝜇 − 1

2 , 𝐶hs(𝜌𝑒) = 0 and 𝐶𝑛𝑙
hs (𝜌𝑒𝜇) = 2𝑃𝑒𝑒𝑃𝑒𝜇, where we use

|𝑎𝑒𝑒 (𝑡) |2 = 𝑃𝑒𝑒, |𝑎𝑒𝜇 (𝑡) |2 = 𝑃𝑒𝜇 and 𝑃𝑒𝑒 + 𝑃𝑒𝜇 = 1. Eq.(35) is verified. Furthermore, considering
Eq.(36) is simple to see that 𝐶re(𝜌𝑒) = 0, 𝑃vn(𝜌𝑒) = 1 + |𝑎𝑒𝑒 |2 log2 |𝑎𝑒𝑒 |2 + |𝑎𝑒𝜇 |2 log2 |𝑎𝑒𝜇 |2 and
𝑆vn(𝜌𝑒) = −|𝑎𝑒𝑒 |2 log2 |𝑎𝑒𝑒 |2 − |𝑎𝑒𝜇 |2 log2 |𝑎𝑒𝜇 |2. Since the dimension of subsystem e is 𝑑𝑒 = 2
then log2 𝑑𝑒 = 1.

The above results are valid in the plane-wave approximation. In a more realistic wave-packet
approach, one starts with a pure state 𝜌𝛼 (𝑥, 𝑡) (𝛼 = 𝑒, 𝜇) which becomes mixed after time integration
[6]:

𝜌𝛼 (𝑥) =
∑︁
𝑘, 𝑗

𝑈𝛼𝑘𝑈
∗
𝛼 𝑗 𝑓 𝑗𝑘 (𝑥)

��𝜈 𝑗〉 ⟨𝜈𝑘 | , (40)

where 𝑓 𝑗𝑘 (𝑥) = exp
[
−𝑖

Δ𝑚2
𝑗𝑘
𝑥

2𝐸 −
(

Δ𝑚2
𝑗𝑘
𝑥

4
√

2𝐸2𝜎𝑥

)2]
. It is possible to express 𝜌𝛼 (𝑥) in terms of flavor

eigenstates by establishing the identification |𝜈𝛼⟩ = |𝛿𝛼𝑒⟩𝑒
��𝛿𝛼𝜇〉𝜇. By using the relation |𝜈𝑖⟩ =∑

𝛼𝑈𝛼𝑖 |𝜈𝛼⟩, we can write:

𝜌𝛼 (𝑥) =
∑︁
𝛽𝛾

𝐹𝛼
𝛽𝛾 (𝑥)

��𝛿𝛽𝑒𝛿𝛽𝜇〉 〈𝛿𝛾𝑒𝛿𝛾𝜇�� (41)

where
𝐹𝛼
𝛽𝛾 (𝑥) =

∑︁
𝑘 𝑗

𝑈∗
𝛼 𝑗𝑈𝛼𝑘 𝑓 𝑗𝑘 (𝑥)𝑈𝛽 𝑗𝑈

∗
𝛾𝑘 (42)

The density matrix for an initial electron neutrino is:

𝜌𝑒𝜇 (𝑥) =
©­­­­«
0 0 0 0
0 𝐹𝑒

𝑒𝑒 (𝑥) 𝐹𝑒
𝑒𝜇 (𝑥) 0

0 𝐹𝑒
𝜇𝑒 (𝑥) 𝐹𝑒

𝜇𝜇 (𝑥) 0
0 0 0 0

ª®®®®¬
(43)
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By evaluating the terms of Eq.(37): 𝑃𝑣𝑛 (𝜌𝑒) = 1 + 𝐹𝑒
𝑒𝑒 log2 𝐹

𝑒
𝑒𝑒 + 𝐹𝑒

𝜇𝜇 log2 𝐹
𝑒
𝜇𝜇, 𝐶𝑟𝑒 (𝜌𝑒) = 0,

𝐼𝑒:𝜇 (𝜌𝑒𝜇) + 𝑆𝑒 |𝜇 (𝜌𝑒𝜇) = −𝐹𝑒
𝑒𝑒 log2 𝐹

𝑒
𝑒𝑒 − 𝐹𝑒

𝜇𝜇 log2 𝐹
𝑒
𝜇𝜇, we find that the CCR for mixed states is

satisfied [47].
We find that the sum of the first two terms of Eq.(37) is equal to the Quantum Discord, a

measure of nonclassical correlations between two subsystems of a quantum system, defined as [48]:

𝑄𝐷 (𝜌𝐴𝐵) = 𝐼 (𝜌𝐴𝐵) − 𝐶𝐶 (𝜌𝐴𝐵) = 𝑆vn(𝜌𝐴) − 𝑆vn(𝜌𝐴𝐵) + min
{Π𝑏

𝑖
}
𝑆vn,{Π𝑏

𝑖
} (𝜌𝐴|𝐵) (44)

where 𝐼 (𝜌𝐴𝐵) is the total correlations between the subsystems A and B and 𝐶𝐶 (𝜌𝐴𝐵) quantifies
the classical correlations. For the density matrix under consideration, we obtain:

𝑄𝐷 (𝜌𝑒𝜇) = −𝐹𝑒
𝑒𝑒 log2 𝐹

𝑒
𝑒𝑒 − 𝐹𝑒

𝜇𝜇 log2 𝐹
𝑒
𝜇𝜇 . (45)

In [47] it is also shown the connection existing with the Non-local Advantage of Quantum
Coherence (NAQC), a quantum correlation which occurs in a bipartite system when the average
coherence of the conditional state of a subsystem B, after a local measurements on A, exceeds the
coherence limit of the single subsystem. In the hierarchy of quantum correlations, NAQC has been
classified as the strongest one, overtaking also the Bell non-locality. Mondal et al. [27] defined the
NAQC of a bipartite state 𝜌𝐴𝐵 considering the average coherence of the post measurement state
{𝑝𝐵 |Π𝑎

𝑖
, 𝜌𝐵 |Π𝑎

𝑖
} of B after a local measurement Π𝑎

𝑖
on A:

𝑁 (𝜌𝐴𝐵) =
1
2

∑︁
𝑖≠ 𝑗 ,𝑎=±

𝑝𝐵 |Π𝑎
𝑖
𝐶𝜎 𝑗 (𝜌𝐵 |Π𝑎

𝑖
), (46)

where Π±
𝑖
=

𝐼±𝜎𝑖

2 , with 𝐼 and 𝜎𝑖 , (𝑖 = 1, 2, 3) being the identity and the three Pauli operators;
𝑝𝐵 |Π𝑎

𝑖
= Tr

(
Π𝑎
𝑖
𝜌𝐴𝐵

)
, 𝜌𝐵 |Π𝑎

𝑖
= Tr𝐴(Π𝑎

𝑖
𝜌𝐴𝐵)/𝑝𝐵 |Π𝑎

𝑖
. 𝐶𝜎 𝑗 (𝜌𝐵 |Π𝑎

𝑖
) is the coherence of the condi-

tional state of B with respect to the eigenbasis of 𝜎𝑗 .
For the neutrino state, by using the relative entropy as coherence measure, we find:

𝑁 (𝜌𝑒𝜇) = 2 − 𝐹𝑒
𝑒𝑒 log2 𝐹

𝑒
𝑒𝑒 − 𝐹𝑒

𝜇𝜇 log2 𝐹
𝑒
𝜇𝜇, (47)

and it is immediate to find the relation 𝑁 (𝜌𝑒𝜇) = 2 + 𝐼𝑒:𝜇 (𝜌𝑒𝜇) + 𝑆𝑒 |𝜇 (𝜌𝑒𝜇).

In Fig.1, the predictability, the conditional entropy and the mutual information are plotted for
the Daya Bay, Kamland and MINOS parameters (see Table), along with the survival probability
and the quantum discord.

Daya-Bay KamLAND MINOS
Δ𝑚2

𝑒𝑒 = 2.42 × 10−3𝑒𝑉2 Δ𝑚2
12 = 7.49 × 10−5𝑒𝑉2 Δ𝑚2

32 = 2.32 × 10−3𝑒𝑉2

sin2 2𝜃13 = 0.084 tan2 2𝜃12 = 0.47 sin2 2𝜃23 = 0.95
𝐿 ∈ [364, 1912] 𝑚 𝐿 = 180 𝐾𝑚 𝐿 = 735 𝑘𝑚

𝐸 = 4 𝑀𝑒𝑉 𝐸 = 2 𝑀𝑒𝑉 𝐸 = 0.5 𝐺𝑒𝑉

The different values of the mixing angle associated to the three experiments lead to very
different behaviors, especially in the asymptotic range. In the KamLand and Minos experiments,
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associated to higher values of the mixing angle, the mutual information grows almost monotonically
keeping a high value even after oscillations are washed out. Due to the low value of the mixing
angle, this aspect is not present for the Daya Bay parameters. We stress that, for KamLand and
Minos experiments, it is very difficult to recognize in the mutual information a behaviour exclusively
dependent on the oscillation probability.

4. Conclusions

We reviewed the main results about quantification of quantum correlations in neutrino os-
cillations. In literature several quantifiers have been considered, which can be organized in a
hierarchical (decreasing) order: NAQC ⊂ Bell non-locality ⊂ steering ⊂ entanglement ⊂ general
quantum correlations (discord).

In the framework of neutrino oscillations, these investigations have been made both for the
plane wave approximation and in the wave packet approach, and usually the above quantifiers can
be expressed in terms of oscillation probabilities. In the last section, we considered CCR which
provide an exhaustive description of the quantumness in a generic quantum system.

In particular, we exploited CCR both in the plane wave approximation and in the wave packet
approach to describe quantum correlations in neutrino oscillations. When a wave packet approach
is exploited, the neutrino state becomes mixed. In this case, the NAQC can be expressed in terms
of Quantum Discord, which describes non local terms in CCR. We have analyzed the behaviour of
the CCR terms in connection with three neutrino experiments: Daya-Bay, KamLAND and MINOS.
We found that different values of the mixing angle associated to the three experiments lead to very
different behaviors, especially in the asymptotic range, where one can observe a persistence of
quantum correlations. Finally we provided some preliminary results about the application of CCR
in the case of three flavor neutrino oscillations.
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