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Origin of mass scales in scale-symmetric extension of Standard Model

1. Introduction

One of the unresolved problems posed by the Standard Model is the so called- hierarchy
problem. Including quantum corrections causes rise of the Higgs mass 𝑚𝐻 and one needs to set up
very precise cancellations between a priori unrelated contributions to the effective potential of the
scalar sector in order to maintain 𝑚𝐻 hierarchically lower than the Planck mass scale 𝑀𝑃. Avoiding
this issue is possible in theories with scale symmetry, where all mass scales, especially 𝑚𝐻 , are set
to zero. Then, scale symmetry can be broken, e.g. spontaneously or explicitly, and therefore, mass
scales can be generated dynamically.

Proposals of scale symmetric extensions of the SM have been made already in the past. One
possibility is to add a scalar singlet and couple it to gravity [1–15]. This new scalar, dilaton
𝜙0, is then responsible for generating all mass scales in the model and scale symmetry is broken
spontaneously by the dilaton vacuum expectation value. We do not consider nature of quantum
corrections in presented model since scale symmetry can be maintained at the quantum level, when
renormalization scale is a function of the field 𝜇 = 𝜇(𝜙0). What is more, such idea, proposed e.g.
in [16–21], leads to small corrections to 𝑚𝐻 and additional fine tuning to maintain small Higgs
mass is not required.

To simulate field time evolution in expanding hot Universe, we study temperature corrections
to classically scale invariant potential for the Higgs and dilaton. Since temperature is a mass scale,
it breaks scale symmetry explicitly. Such analysis can show, how SSB of scale symmetry can occur
and how dilaton settles at its vev to generate mass scales.

Extended version of the following work can be found on arXiv [25]. Here, we present only the
main aspects of our analysis.

2. Scale symmetric extension of a Higgs scalar sector and origin of mass scales

Let us consider a model with two scalar fields coupled to gravity: 𝜙0 singlet, which we will
call dilaton and which is a new sector coupled to the Higgs neutral component 𝜙1. We consider a
Lagrangian:

L
√
𝑔
= − 1

12

(
𝜉0𝜙

2
0 + 𝜉1𝜙

2
1

)
𝑅 + 1

2
𝜕𝜇𝜙0𝜕

𝜇𝜙0 +
1
2
𝜕𝜇𝜙1𝜕

𝜇𝜙1 −𝑉 (𝜙0, 𝜙1), (1)

where 𝑅 is Ricci scalar and 𝜉𝑖 are non-minimal couplings. In scale symmetric scenario, the Higgs
mass parameter is vanishing, 𝑚2

𝐻
= 0, so tree-level potential takes form:

𝑉 (𝜙0, 𝜙1) = 𝜆0𝜙
4
0 + 𝜆1𝜙

2
0𝜙

2
1 + 𝜆2𝜙

4
1. (2)

The couplings are dimensionless and fulfill certain hierarchy:

𝜆2 ≫ |𝜆1 | ≫ 𝜆0, 𝜆2 > 0, 𝜆1 < 0, 𝜆0 > 0, (3)

so the Higgs quartic coupling is the strongest and the new dilaton sector is weakly coupled to the
Higgs scalar.
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Origin of mass scales in scale-symmetric extension of Standard Model

We choose FLRW metric (1,−𝑎(𝑡)2,−𝑎(𝑡)2,−𝑎(𝑡)2) with √
𝑔 =

√︁
| det 𝑔 | = 𝑎(𝑡)3. Equations

of motion from (1) for each field and 𝑔𝜇𝜈 are:

𝜙0 : ¥𝜙0 + 3𝐻 ¤𝜙0 +
𝜉0
6
𝜙0𝑅 + 4𝜆0𝜙

3
0 + 2𝜆1𝜙0𝜙

2
1 = 0

𝜙1 : ¥𝜙1 + 3𝐻 ¤𝜙1 +
𝜉1
6
𝜙1𝑅 + 4𝜆2𝜙

3
1 + 2𝜆1𝜙

2
0𝜙1 = 0

𝑔𝜇𝜈 :
1
12

(
𝜉0𝜙

2
0 + 𝜉1𝜙

2
1

)
𝑅 − 1

2
¤𝜙0

2 − 1
2
¤𝜙1

2 + 2
(
𝜆0𝜙

4
0 + 𝜆1𝜙

2
0𝜙

2
1 + 𝜆2𝜙

4
1
)
= 0

(4)

where 𝐻 = ¤𝑎
𝑎

is Hubble parameter. Adding the condition for zero cosmological constant at the
ground state:

𝑉 (⟨𝜙0⟩, ⟨𝜙1⟩) = 0.

we obtain stationary solutions with a flat direction:

⟨𝜙2
1⟩ = − 𝜆1

2𝜆2
⟨𝜙2

0⟩, 𝜆0 =
𝜆2

1
4𝜆2

, ⟨𝑅⟩ = 0. (5)

The mass matrix:

𝑀2 =

(
𝜆1

(
2𝜙2

1 +
3𝜆1
𝜆2

𝜙2
0

)
4𝜆1𝜙1𝜙0

4𝜆1𝜙1𝜙0 2
(
6𝜆2𝜙

2
1 + 𝜆1𝜙

2
0
) )

, (6)

has two eigenvalues (at the ground state):

𝑚2
𝐺 = 0, 𝑚2

𝐻 = −4𝜆1

(
1 − 𝜆1

2𝜆2

)
⟨𝜙2

0⟩, (7)

so one has massless Goldstone associated with scale symmetry and a massive "Higgs".
One more mass scale should appear in this model: Planck mass 𝑀𝑃. 𝜉𝑖𝜙

2
𝑖
𝑅 term can be

compared to the Einstein-Hilbert term:

− 1
12

(
𝜉0𝜙

2
0 + 𝜉1𝜙

2
1

)
𝑅 ⇐⇒ −1

2
𝑀2

𝑃𝑅. (8)

Then 𝜙𝑖 fields, especially at the ground state, play a role of Planck mass:

1
6

(
𝜉0𝜙

2
0 + 𝜉1𝜙

2
1

) ground state
−−−−−−−−→ 1

6

(
𝜉0 −

𝜆1
2𝜆2

𝜉1

)
⟨𝜙2

0⟩ = 𝑀2
𝑃 (9)

With a scale symmetric theory, only ratios of mass scales can be determined and ⟨𝜙0⟩ is
arbitrary. The scale symmetry is broken when 𝜙0 acquires its vev and flat direction no longer exists.
Because Higgs vev ⟨𝜙1⟩, Higgs mass 𝑚2

𝐻
and Planck mass 𝑀2

𝑃
are proportional to ⟨𝜙0⟩, so dilaton

generates all mass scales.

2.1 Higgs potential parameters and Planck mass:

To limit possible values of 𝜆1, 𝜆2 we can use conditions: hierarchy (3), 𝜆0 relation from (5)
and the exact numerical values for the Higgs mass and Higgs vev:

𝑚2
𝐻 = (125 GeV)2, ⟨𝜙1⟩ = 250 GeV. (10)
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Origin of mass scales in scale-symmetric extension of Standard Model

Having:

𝑚2
𝐻 = −4𝜆1

(
1 − 𝜆1

2𝜆2

)
⟨𝜙2

0⟩, ⟨𝜙2
1⟩ = − 𝜆1

2𝜆2
⟨𝜙2

0⟩. (11)

we get a relation:

𝜆2 =
1
32

(
1 + 16𝜆1

)
, − 1

48
≤ 𝜆1 ≤ 0 (12)

with example values:

𝜆2(𝜆1 = −10−6) ≈ 𝜆2(𝜆1 = −10−11) ≈ 0.03125, (13)

and dilaton vev ⟨𝜙0⟩:

⟨𝜙2
0⟩ = −2𝜆2

𝜆1
⟨𝜙2

1⟩ = −2𝜆2
𝜆1

· (250 GeV)2. (14)

To force constraints on non-minimal couplings 𝜉𝑖 we use (9):

1
6

(
𝜉0 −

𝜆1
2𝜆2

𝜉1

)
⟨𝜙2

0⟩ = 𝑀2
𝑃 . (15)

There are justifications, [? ], that 𝜉0 should be much stronger than 𝜉1 (𝜉1 ≪ 𝜉0). Combining (12),
(14) and (15) we obtain 𝜆1, 𝜉0, 𝜉1 relation:

𝜆1 =
−0.0625 · 𝜉0

𝜉0 − 𝜉1 + 1.43 · 1034 , (16)

with example values:

𝜉0 = 105, 𝜉1 = 0.1 ⇒ 𝜆1 = −4.37 · 10−31,

𝜉0 = 1010, 𝜉1 = 0.1 ⇒ 𝜆1 = −4.37 · 10−26,

𝜉0 = 1015, 𝜉1 = 0.1 ⇒ 𝜆1 = −4.37 · 10−21.

(17)

3. Temperature corrections

For the details on exact theoretical description of thermal field theory, we refer the reader to the
most basic textbooks and articles in this subject: [22–24] from which thermal potentials formulas
used in below analysis come from.

Temperature corrections are implemented by adding to potential two temperature dependent
parts:

𝑉 (𝜙0, 𝜙1) → 𝑉 𝑓 𝑢𝑙𝑙 (𝜙0, 𝜙1, 𝑇) = 𝑉 (𝜙0, 𝜙1) + 𝛿𝑉𝑇 (𝜙0, 𝜙1, 𝑇) + 𝛿𝑉𝑟𝑖𝑛𝑔 (𝜙0, 𝜙1, 𝑇), (18)

where 𝛿𝑉𝑇 are first order temperature corrections:

𝛿𝑉𝑇 (𝜙0, 𝜙1, 𝑇) =
𝑇4

2𝜋2

[ ∑︁
𝑖=bosons

𝑛𝑖 · 𝐽𝐵
(𝑚2

𝑖
(𝜙𝑘)
𝑇2

)
+

∑︁
𝑗=fermions

𝑛 𝑗 · 𝐽𝐹
(𝑚2

𝑗
(𝜙𝑘)
𝑇2

)]
, (19)
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Origin of mass scales in scale-symmetric extension of Standard Model

where 𝑛𝑖 and 𝑛 𝑗 are numbers of degrees of freedom of considered boson or fermion particle with
field-dependent mass 𝑚𝑖 (𝜙𝑘) and 𝐽𝐵 and 𝐽𝐹 are thermal bosonic (B) or fermionic (F) functions
represented by integrals:

𝐽𝐵

(𝑚2

𝑇2

)
=

∫ ∞

0
𝑑𝑥 · 𝑥2 log

(
1 − 𝑒

−
√︂

𝑥2+𝑚2
𝑇2

)
, (20)

𝐽𝐹

(𝑚2

𝑇2

)
=

∫ ∞

0
𝑑𝑥 · 𝑥2 log

(
1 + 𝑒

−
√︂

𝑥2+𝑚2
𝑇2

)
. (21)

𝛿𝑉𝑟𝑖𝑛𝑔 is infrared contribution from the so called daisy resummed diagrams [22]:

𝛿𝑉𝑟𝑖𝑛𝑔 = − 𝑇

12𝜋

(
𝑚𝑒 𝑓 𝑓 (𝜙𝑖 , 𝑇)3 − 𝑚𝑖 (𝜙𝑖)3

)
. (22)

with temperature-dependent masses 𝑚𝑒 𝑓 𝑓 (𝜙𝑖 , 𝑇), obtained from high temperature expansion of:

𝑉 + 𝛿𝑉𝑇

���
𝑚/𝑇≪1

. (23)

Particle content and thermal masses

Beside two mass eigenstates of (6) with field dependent masses:

𝑚2
𝐺 =2𝜆1𝜙

2
1 + O(𝜆2

1)
𝑚2

𝐻 =12𝜆2𝜙
2
1 + 2𝜆1𝜙

2
0 + O(𝜆2

1).
(24)

and 𝑛𝐺 = 𝑛𝐻 = 1, there are other important contributions coming from the SM. These are:

- 𝑊± boson: 𝑚2
𝑊

= 1
4𝑔

2
2𝜙

2
1, 𝑛𝑤 = 6,

- 𝑍 boson: 𝑚2
𝑍
= 1

4 (𝑔
2
1 + 𝑔2

2)𝜙
2
1, 𝑛𝑍 = 3

- top quark: 𝑚2
𝑡 =

1
2ℎ

2
𝑡 𝜙

2
1, 𝑛𝑡 = −12,

where 𝑔1 ≈ 0.35, 𝑔2 ≈ 0.65 and ℎ𝑡 ≈ 1 are weak, strong and top yukawa coupling constants.
From high temperatue expansion (23) we get the mass matrix:(
𝑚00 𝑚10

𝑚01 𝑚11

)
𝑒 𝑓 𝑓

=
©­«

𝜕2𝑉
𝜕𝜙2

0

𝜕2𝑉
𝜕𝜙1𝜕𝜙0

𝜕2𝑉
𝜕𝜙0𝜕𝜙1

𝜕2𝑉
𝜕𝜙2

1

ª®¬ + ©­«
(
𝜆1
6 + 𝜆2

1
4𝜆2

)
𝑇2 0

0
(
𝜆2 + 𝜆1

6 + 𝑔2
1

16 + 3𝑔2
2

16 + ℎ2
𝑡

4

)
𝑇2

ª®¬ ,
(25)

with eigenvalues as the thermal masses 𝑚2
𝑒 𝑓 𝑓

for scalars:

(
𝑚2

𝐺

)
𝑒 𝑓 𝑓

=2𝜆1𝜙
2
1 +

𝜆1
6
𝑇2 + O(𝜆2

1),(
𝑚2

𝐻

)
𝑒 𝑓 𝑓

=12𝜆2𝜙
2
1 + 2𝜆1𝜙

2
0 +

(
𝜆2 +

𝜆1
6

+
𝑔2

1
16

+
3𝑔2

2
16

+
ℎ2
𝑡

4

)
𝑇2 + O(𝜆2

1).
(26)
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Origin of mass scales in scale-symmetric extension of Standard Model

3.0.1 Numerical analysis

We present plots of temperature dependent potential (18) and individual 𝜙𝑖 directions. The
results show how thermal part breaks the scale symmetry. We choose 𝜆1 = −10−6 (𝜆2 = 0.03125)
to make plots more clear. From Figure (2) is nicely visible, that for non-zero temperatures the flat
direction no longer exists. There’s a local minimum for 𝜙1 = 0 and dilaton:

𝜙2
0 =

[ (
9.89𝛼 − 3.63𝜆2 − 6.91 · 10−16𝑔2

1 − 2.76 · 10−15ℎ2
𝑡

)(
− 39.48𝛼 + 𝜆2(𝛼 log(−𝜆1) + 3.48𝛼 + 43.53)

) +

+
𝜆2

(
6.58𝛼 − 43.53𝜆2 − 2.72𝑔2

1 − 8.16𝑔2
2 − 10.88ℎ2

𝑡

)
𝜆1

(
− 39.48𝛼 + 𝜆2(𝛼 log(−𝜆1) + 3.48𝛼 + 43.53)

) ]
· 𝑇2,

(27)

where
𝛼 =

√︃
48𝜆2 + 3𝑔2

1 + 9𝑔2
2 + 12ℎ2

𝑡 . (28)

0 10000 20000 30000 40000 50000 60000

-200

-100

0

100

200

ϕ0 (GeV)

ϕ
1
(G

e
V
)

T= 0 GeV

7.60× 106

2.28× 107

3.80× 107

5.32× 107

6.84× 107

8.36× 107

9.88× 107

1.14× 108

0 10000 20000 30000 40000 50000 60000

-200

-100

0

100

200

ϕ0 (GeV)

ϕ
1
(G

e
V
)

T= 102 GeV

1.10× 107

3.30× 107

5.50× 107

7.70× 107

9.90× 107

1.21× 108

1.43× 108

1.65× 108

0 20000 40000 60000 80000 100000 120000 140000

-200

-100

0

100

200

ϕ0 (GeV)

ϕ
1
(G

e
V
)

T= 103 GeV

7.90× 108

2.37× 109

3.95× 109

5.53× 109

7.11× 109

8.69× 109

1.03× 1010

1.19× 1010

0 100000 200000 300000 400000 500000 600000

-200

-100

0

100

200

ϕ0 (GeV)

ϕ
1
(G

e
V
)

T= 104 GeV

-2.76× 1011

-9.20× 1010

9.20× 1010

2.76× 1011

4.60× 1011

6.44× 1011

8.28× 1011

1.01× 1012

Figure 1: Plots of 𝑉 𝑓 𝑢𝑙𝑙 (𝜙0, 𝜙1, 𝑇) for different temperatures and 𝜆1 = −10−6. Orange dashed line marks
flat direction 𝜙2

1 = − 𝜆1
2𝜆2

. It is easy to see that as the temperature increase, the flat direction no longer exists
and the scale symmetry is broken.
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Figure 2: Classical flat direction for non-zero temperatures.
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Figure 3: 𝜙0 direction of 𝑉 𝑓 𝑢𝑙𝑙 (𝜙0, 𝜙1, 𝑇) for 2 different temperatures and 𝜙1 = 0. There’s visible minimum
at 𝜙0 ≈ 4.7 · 10 · 𝑇 , which corresponds to equation (27).

-1.0 -0.5 0.5 1.0
ϕ1 (GeV)

-4000

-3000

-2000

-1000

1000

2000
Vfull

ϕ1 direction for T=102 GeV

ϕ0 = 102 GeV

ϕ0 = 103 GeV

ϕ0 = 4.7×103 GeV

ϕ0 = 6×103 GeV
-150 -100 -50 50 100 150

ϕ1 (GeV)

-4× 1011

-2× 1011

2× 1011

4× 1011

Vfull

ϕ1 direction for T=104 GeV

ϕ0 = 104 GeV

ϕ0 = 105 GeV

ϕ0 = 4.7×105 GeV

ϕ0 = 6×105 GeV

Figure 4: 𝜙1 direction of 𝑉 𝑓 𝑢𝑙𝑙 (𝜙0, 𝜙1, 𝑇) for 2 different temperatures and various 𝜙0 values. The lowest
curve corresponds to 𝜙0 from high temperature minimum (27).

4. Time evolution of the fields

We’ll look numerically into the development of the scale-symmetric scalar sector in the ex-
panding universe in this part. We demonstrate that there are plausible initial conditions that, at
late stages of evolution, result in the physically appropriate vacuum configuration i.e. Higgs vev
𝑣 = 250 GeV. In this paper we show results only for the realistic scenario of parameter space (i.e.
fullfilling requirements from section 2.1). For more detailed discussion, we refer the reader to our
paper [25].
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Zero temperature:
We use equations of motion (4) with relation 𝑅 = 12𝐻2 + 6 ¤𝐻:

¥𝜙0 + 3𝐻 ¤𝜙0 + 2𝜉0𝜙
2
0𝐻

2 + 𝜉0𝜙
2
0
¤𝐻 + 4𝜆0𝜙

3
0 + 2𝜆1𝜙0𝜙

2
1 = 0

¥𝜙1 + 3𝐻 ¤𝜙1 + 2𝜉1𝜙
2
1𝐻

2 + 𝜉1𝜙
2
1
¤𝐻 + 4𝜆2𝜙

3
1 + 2𝜆1𝜙

2
0𝜙1 = 0

1
2

(
𝜉0𝜙

2
0 + 𝜉1𝜙

2
1

) (
2𝐻 + ¤𝐻

)
− 1

2
¤𝜙0

2 − 1
2
¤𝜙1

2 + 2
(
𝜆0𝜙

4
0 + 𝜆1𝜙

2
0𝜙

2
1 + 𝜆2𝜙

4
1
)
= 0.

(29)

Non-zero temperature:
To examine evolution of fields 𝜙0 and 𝜙1 in a hot universe we add to the potential 𝑉 the most

leading terms in temperature:

𝑉𝑒 𝑓 𝑓 ≈ 𝑉 + 1
2
𝜙2

1 ·
(
𝜆2 +

𝜆1
6

+
𝑔2

1
16

+
3𝑔2

2
16

+
ℎ2
𝑡

4

)
𝑇2. (30)

For 𝜆1 value used in this analysis, dilaton is out of thermal equilibrium, hence its sector doesn’t
acquire thermal corrections. Temperature dependence is ruled by radiation:

𝑇 (𝑡) = 𝐴√︂(
𝑡 + 𝑡0

)
· GeV

, 𝐴 = 1.6 · 109 GeV, (31)

where 𝑡0 is chosen to fit the desired initial temperature of evolution 𝑇0 = 104 GeV. If one assumes
radiation dominated era, its contribution to 𝐻 is so small that we can neglect it, so we treat the
Hubble parameter both in the zero and non-zero temperature simulations as an independent variable,
which dynamics is ruled by equations (29). Fixed points of (29) for𝑇 = 0 lay on the flat direction (5).
For 𝑇 ≠ 0 after sufficiently long time of evolution temperature goes down and fixed point in this
case are also (5).

We choose realistic parameter space i.e. 𝜆𝑖 and 𝜉𝑖 values, fullfiling requirements from section
2.1. Their values are:

𝜆2 = 0.03125, 𝜆1 = −4.37 · 10−26, 𝜉0 = 1010, 𝜉1 = 0.1 (32)

Initial conditions for 𝜙𝑖 fields, their time derivatives ¤𝜙𝑖 and 𝐻, were the same for both 𝑇 = 0 (Figure
5) and 𝑇 ≠ 0 (Figure 6) case, namely:

𝜙0(0) = 8 · 1013 GeV, ¤𝜙0(0) = 5 · 1013 GeV2, 𝜙1(0) = 0 GeV, ¤𝜙1(0) = 10 GeV2 (33)

and two different 𝐻 (0) = 𝐻0 values: 0.1 GeV and 0.5 GeV. Initial temperature for 𝑇 ≠ 0 case is
𝑇0 = 104 GeV. Since 𝐻 can be interpreted as a parameter describing how fast 𝜙𝑖 fields loose their
energy, the bigger 𝐻0, the faster they slow down and settle in lower values. Direction of ¤𝜙𝑖 was
chosen arbitrarily.
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Figure 5: Evolution of 𝜙𝑖 fields and 𝐻 with time for zero temperature and with coupling constants values
fulfilling requirements from section 2.1. The bigger the 𝐻0, the faster fields stop and acquire their vevs.
There are two plots for ¤𝜙0 (𝑡), one for later times to show that dilaton indeed stops and the system is stable.

Non-zero temperature
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Figure 6: Evolution of 𝜙𝑖 fields and 𝐻 with time for non-zero temperature. Because dilaton sector is not
affected by temperature corrections, its final value is the same as in 𝑇 = 0 case. However 𝜙1 field is driven
to the origin and stays there till late times.

In 𝑇 ≠ 0 case, dilaton is unaffected by temperature and settles in the same final value as in
𝑇 = 0. Higgs field behaviour can be easily understood with analysis of the plots from Figure 7.
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For temperatures above around 130 GeV, Higgs potential poses only one minimum, 𝜙1 = 0. When
temperature drops down, after sufficiently long time, two degenerated minima start to appear.
However, ¤𝜙1 is zero after this time and because the potential is flat at the origin, Higgs field stays
at zero value in our simulation. Now, for fields in in thermal equilibrium in temperature 𝑇 , there’s
related a fluctuation [26]:

𝛿𝜙1 =
𝑇

√
24

. (34)

We implement simulation of further evolution for 𝜙1 field with 𝜙1(𝑡0) = 𝛿𝜙1. Time 𝑡0 = 1014.2/GeV
refers to temperature 𝑇 = 127 GeV, for which two degenerated minima appear. Initial conditions
for 𝜙0 and 𝐻 are their values at 𝑡0 from simulation from the Figure 6 plots. But their values don’t
change in this further evolution, hence we provide plot only for the 𝜙1(𝑡) on Figure 8.
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(a) Higgs potential 𝑉𝐻 (𝜙1, 𝑇) for different temperatures in
time.
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(b) Temperature dependence (31) for 𝑇0 = 104 GeV.

Figure 7
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Figure 8: Further Higgs field evolution in time with initial values 𝜙1 = 𝛿𝜙1 = 37 GeV and ¤𝜙1 = 0 GeV2.
Because 𝜙1 oscillates around its minimum in this evolution, the plot shows 𝜙1 average in time. 𝐻0 values
correspond to the initial conditions from Figure 6.

5. Summary

Scale symmetry offers a way to understand the origin of mass scales. It can be spontaneously
broken when the dilaton acquires its vev during its evolution in expanding hot Universe. We showed
how temperature changes the scale symmetric classical potential for dilaton and the Higgs scalar.
Since for 𝑇 ≠ 0 Higgs value is driven to zero, one obtains restoration of the Electroweak Symmetry.
We presented parameter space and initial conditions that can lead to physical values of mass scales
in considered model.
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