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1. Introduction

Although the Standard Model (SM) has proven to be extremely successful in describing the
fundamental interactions, we know that it is most likely the low energy limit of a more fundamental
theory. The many unanswered questions in the SM, coupled to the large number of free parameters,
point in this direction. In the search for theories beyond the SM, the more common way to extend
it is to add symmetries or fields, which usually imply more interactions and/or more particles, and
more often than not leads to more, and not less, parameters than in the SM.

The reduction of couplings method [1–4] (see also [5–7]) relates seemingly independent
parameters to a single, “primary” coupling, in the context of perturbative field theory. The method
requires the original theory to which it is applied to be a renormalizable one, and the resulting
relation among the parameters to be valid at all energy scales, i.e. Renormalization Group Invariant
(RGI). It provides a complimentary approach to the addition of symmetries in the quest for a more
fundamental theory. In order to be able to relate the “reduced” couplings to the primary one, they
need to have the same ultraviolet behaviour. Thus, it is natural to attempt a reduction of couplings
in the context of a supersymmetric Grand Unified Theory, therefore relating the gauge and Yukawa
sector of the SUSY GUT (Gauge Yukawa Unification, GYU) [8–21]. In this approach, being in a
GUT environment, RGI relations are set between the unification scale and the Planck one.

An additional advantage of this method is that one-loop uniqueness can guarantee the all-
loop validity of these relations. Moreover, RGI relations can be found which guarantee all order
finiteness of a theory. The method has predicted the top quark mass in the finite 𝑁 = 1, 𝑆𝑈 (5)
model [8, 9] as well as in the minimal 𝑁 = 1, 𝑆𝑈 (5) one [10] before its experimental measurement
[22].

Supersymmetry (SUSY) seems to be an essential ingredient for a successful reduction of cou-
plings, thus we have to include a supersymmetry breaking sector (SSB), which involves dimension-1
and -2 couplings. The supergraph method and the spurion superfield technique played an important
role for the progress in that sector, leading to complete all-loop finite models, i.e. including the SSB
sector. The all-loop finite 𝑁 = 1, 𝑆𝑈 (5) model [25], and the two-loop finite 𝑆𝑈 (3)3 [23, 24] models
have given a prediction for the Higgs mass compatible with the experimental results [26–28] and a
heavy SUSY mass spectrum, consistent with the experimental non-observation of these particles.
The reduction of couplings method has been applied to several other cases. The full analysis of the
most successful models, that includes predictions in agreement with the experimental measurements
of the top and bottom quark masses for each model, can be found in a recent work [29, 30].

2. Theoretical Basis of Reduction of Couplings

The idea of reduction of couplings was introduced in [2] in order to explore the possibility
to express seemingly unrelated parameters of a theory in terms of one basic parameter, denoted
primary coupling. This is possible if there are RGI relations among couplings, which can be used
to relate the seemingly free parameters. We will outline the method in this section, starting with
the dimensionless parameters, and then extending it to dimension-1 and -2 parameters.
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2.1 Reduction of Dimensionless Parameters

Any RGI relation among couplings 𝑔1, ..., 𝑔𝐴 of a renormalizable theory can be written in the
form Φ(𝑔1, · · · , 𝑔𝐴) = const., which has to satisfy the partial differential equation

`
𝑑Φ

𝑑`
= ®∇Φ · ®𝛽 =

𝐴∑︁
𝑎=1

𝛽𝑎
𝜕Φ

𝜕𝑔𝑎
= 0 , (1)

where 𝛽𝑎 is the 𝛽-function of 𝑔𝑎. Solving this partial differential equation is equivalent to solving
a set of ordinary differential equations, known as reduction equations (REs) [2–4],

𝛽𝑔
𝑑𝑔𝑎

𝑑𝑔
= 𝛽𝑎 , 𝑎 = 1, · · · , 𝐴 , (2)

where 𝑔 and 𝛽𝑔 are the primary coupling and its 𝛽-function, respectively, while the counting on 𝑎

does not include 𝑔. The Φ𝑎’s can impose a maximum of (𝐴 − 1) independent RGI “constraints” in
the 𝐴-dimensional space of parameters, which could be expressed in terms of a single coupling
𝑔. Notice however, the general solutions of Eqs. (2) contain as many integration constants as the
number of equations. This problem can be overcome by demanding power series solutions to the
RE, which preserve perturbative renormalizability

𝑔𝑎 =
∑︁
𝑛

𝜌
(𝑛)
𝑎 𝑔2𝑛+1 , (3)

This ansatz fixes the integration constant in each of the REs and chooses a special solution. The
uniqueness of these power series solutions can be determined at one-loop level [2–4]. As an
illustration, we assume 𝛽-functions of the form

𝛽𝑎 =
1

16𝜋2


∑︁

𝑏,𝑐,𝑑≠𝑔

𝛽
(1) 𝑏𝑐𝑑
𝑎 𝑔𝑏𝑔𝑐𝑔𝑑 +

∑︁
𝑏≠𝑔

𝛽
(1) 𝑏
𝑎 𝑔𝑏𝑔

2
 + · · · ,

𝛽𝑔 =
1

16𝜋2 𝛽
(1)
𝑔 𝑔3 + · · · ,

(4)

where · · · stands for higher-order terms, and 𝛽
(1) 𝑏𝑐𝑑
𝑎 ’s are symmetric in 𝑏, 𝑐, 𝑑. We will assume

that the 𝜌
(𝑛)
𝑎 ’s with 𝑛 ≤ 𝑟 are uniquely determined. To obtain 𝜌

(𝑟+1)
𝑎 ’s we insert the power series

(3) into the REs (2) and collect terms of O(𝑔2𝑟+3):∑︁
𝑑≠𝑔

𝑀 (𝑟)𝑑𝑎 𝜌
(𝑟+1)
𝑑

= lower order quantities ,

where the right-hand side is known by assumption and

𝑀 (𝑟)𝑑𝑎 = 3
∑︁
𝑏,𝑐≠𝑔

𝛽
(1) 𝑏𝑐𝑑
𝑎 𝜌

(1)
𝑏

𝜌
(1)
𝑐 + 𝛽

(1) 𝑑
𝑎 − (2𝑟 + 1) 𝛽 (1)

𝑔 𝛿𝑑𝑎 , (5)

0 =
∑︁

𝑏,𝑐,𝑑≠𝑔

𝛽
(1) 𝑏𝑐𝑑
𝑎 𝜌

(1)
𝑏

𝜌
(1)
𝑐 𝜌

(1)
𝑑

+
∑︁
𝑑≠𝑔

𝛽
(1) 𝑑
𝑎 𝜌

(1)
𝑑

− 𝛽
(1)
𝑔 𝜌

(1)
𝑎 . (6)

Therefore, the 𝜌
(𝑛)
𝑎 ’s for all 𝑛 > 1 for a given set of 𝜌 (1)

𝑎 ’s are uniquely determined if det 𝑀 (𝑛)𝑑𝑎 ≠ 0
for all 𝑛 ≥ 0.
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The couplings in SUSY theories have the same asymptotic behaviour, making them natural
candidates in the search for unified reduced theories. Primary examples of the application of this
method are finite Grand Unified Theories, as we will see later [8, 9, 19]. Having a complete
reduction, i.e. all couplings determined in terms of only one, it is in general unrealistic, Thus, it is
possible to impose fewer RGI constraints, achieving “partial reduction” [31, 32].

2.2 Reduction of Couplings in 𝑁 = 1 SUSY Gauge Theories - Partial Reduction

Let us consider a chiral, 𝑁 = 1 supersymmetric gauge theory with group G and gauge coupling
𝑔. The superpotential of the theory can be written:

𝑊 =
1
2
𝑚𝑖 𝑗 𝜙𝑖 𝜙 𝑗 +

1
6
𝐶𝑖 𝑗𝑘 𝜙𝑖 𝜙 𝑗 𝜙𝑘 , (7)

where 𝑚𝑖 𝑗 and 𝐶𝑖 𝑗𝑘 are gauge invariant tensors and the chiral superfield 𝜙𝑖 belongs to the ir-
reducible representation 𝑅𝑖 of the gauge group. The renormalization constants associated with
the superpotential, for preserved SUSY, are:

𝜙0
𝑖 =

(
𝑍

𝑗

𝑖

) (1/2)
𝜙 𝑗 , (8)

𝑚0
𝑖 𝑗 = 𝑍

𝑖′ 𝑗′

𝑖 𝑗
𝑚𝑖′ 𝑗′ , (9)

𝐶0
𝑖 𝑗𝑘 = 𝑍

𝑖′ 𝑗′𝑘′

𝑖 𝑗𝑘
𝐶𝑖′ 𝑗′𝑘′ . (10)

By virtue of the 𝑁 = 1 non-renormalization theorem [33–36] there are no mass and cubic interaction
term infinities, the only surviving infinities are the wave function renormalization constants 𝑍 𝑗

𝑖
, i.e.

one infinity per field. The one-loop 𝛽-function of 𝑔 is given by [37–41]

𝛽
(1)
𝑔 =

𝑑𝑔

𝑑𝑡
=

𝑔3

16𝜋2

[∑︁
𝑖

𝑇 (𝑅𝑖) − 3𝐶2(𝐺)
]
, (11)

where 𝐶2(𝐺) is the quadratic Casimir operator of the adjoint representation of the gauge group 𝐺

and Tr[𝑇𝑎𝑇𝑏] = 𝑇 (𝑅)𝛿𝑎𝑏, where 𝑇𝑎 are the group generators in the appropriate representation.
Due to the non-renormalization theorem [33, 34, 36] the 𝛽-functions of 𝐶𝑖 𝑗𝑘 are related to the
anomalous dimension matrices 𝛾𝑖

𝑗
of the matter fields as:

𝛽𝑖 𝑗𝑘 =
𝑑𝐶𝑖 𝑗𝑘

𝑑𝑡
= 𝐶𝑖 𝑗𝑙 𝛾

𝑙
𝑘 + 𝐶𝑖𝑘𝑙 𝛾

𝑙
𝑗 + 𝐶 𝑗𝑘𝑙 𝛾

𝑙
𝑖 , (12)

where the one-loop 𝛾𝑖
𝑗

is given by [37]:

𝛾 (1) 𝑖
𝑗 =

1
32𝜋2 [𝐶𝑖𝑘𝑙 𝐶 𝑗𝑘𝑙 − 2 𝑔2 𝐶2(𝑅𝑖)𝛿𝑖𝑗 ], (13)

and 𝐶𝑖 𝑗𝑘 = 𝐶∗
𝑖 𝑗𝑘

.
We take𝐶𝑖 𝑗𝑘 to be real so that𝐶2

𝑖 𝑗𝑘
are always positive. The squares of the couplings are convenient

to work with, and the 𝐶𝑖 𝑗𝑘 can be covered by a single index 𝑖 (𝑖 = 1, · · · , 𝑛):

𝛼 =
𝑔2

4𝜋
, 𝛼𝑖 =

𝑔2
𝑖

4𝜋
. (14)
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Then the evolution of 𝛼’s in perturbation theory will take the form

𝑑𝛼

𝑑𝑡
= 𝛽 = − 𝛽 (1)𝛼2 + · · · ,

𝑑𝛼𝑖

𝑑𝑡
= 𝛽𝑖 = − 𝛽

(1)
𝑖

𝛼𝑖 𝛼 +
∑︁
𝑗 ,𝑘

𝛽
(1)
𝑖, 𝑗𝑘

𝛼 𝑗 𝛼𝑘 + · · · ,
(15)

Here, · · · denotes higher-order contributions and 𝛽
(1)
𝑖, 𝑗𝑘

= 𝛽
(1)
𝑖,𝑘 𝑗

. For the evolution equations (15),
following ref [10] we investigate the asymptotic properties. First, we define [2, 4, 6, 42, 43]

�̃�𝑖 ≡
𝛼𝑖

𝛼
, 𝑖 = 1, · · · , 𝑛 , (16)

and derive from Eq. (15)

𝛼
𝑑�̃�𝑖

𝑑𝛼
= −�̃�𝑖 +

𝛽𝑖

𝛽
=

(
−1 +

𝛽
(1)
𝑖

𝛽 (1)

)
�̃�𝑖

−
∑︁
𝑗 ,𝑘

𝛽
(1)
𝑖, 𝑗𝑘

𝛽 (1) �̃� 𝑗 �̃�𝑘 +
∑︁
𝑟=2

(𝛼
𝜋

)𝑟−1
𝛽
(𝑟 )
𝑖

(�̃�) ,
(17)

where 𝛽
(𝑟 )
𝑖

(�̃�) (𝑟 = 2, · · · ) are power series of �̃�’s and can be computed from the 𝑟 𝑡ℎ-loop 𝛽-
functions. We then search for fixed points 𝜌𝑖 of Eq. (16) at 𝛼 = 0. We have to solve the equation(

−1 +
𝛽
(1)
𝑖

𝛽 (1)

)
𝜌𝑖 −

∑︁
𝑗 ,𝑘

𝛽
(1)
𝑖, 𝑗𝑘

𝛽 (1) 𝜌 𝑗 𝜌𝑘 = 0 , (18)

assuming fixed points of the form

𝜌𝑖 = 0 for 𝑖 = 1, · · · , 𝑛′ ; 𝜌𝑖 > 0 for 𝑖 = 𝑛′ + 1, · · · , 𝑛 . (19)

Next, we treat �̃�𝑖 with 𝑖 ≤ 𝑛′ as small perturbations to the undisturbed system (defined by setting �̃�𝑖

with 𝑖 ≤ 𝑛′ equal to zero). It is possible to verify the existence of the unique power series solution
of the reduction equations (17) to all orders already at one-loop level [2–4, 42]:

�̃�𝑖 = 𝜌𝑖 +
∑︁
𝑟=2

𝜌
(𝑟 )
𝑖

𝛼𝑟−1 , 𝑖 = 𝑛′ + 1, · · · , 𝑛 . (20)

These are RGI relations among parameters, and preserve formally perturbative renormalizability.
So, in the undisturbed system there is only one independent parameter, the primary coupling 𝛼.

The non-vanishing �̃�𝑖 with 𝑖 ≤ 𝑛′ cause small perturbations that enter in a way that the reduced
couplings (�̃�𝑖 with 𝑖 > 𝑛′) become functions both of 𝛼 and �̃�𝑖 with 𝑖 ≤ 𝑛′. Investigating such
systems with partial reduction is very convenient to work with the following PDEs:{

𝛽
𝜕

𝜕𝛼
+

𝑛′∑︁
𝑎=1

𝛽𝑎
𝜕

𝜕�̃�𝑎

}
�̃�𝑖 (𝛼, �̃�) = 𝛽𝑖 (𝛼, �̃�) ,

𝛽𝑖 (𝑎) =
𝛽𝑖 (𝑎)

𝛼2 − 𝛽

𝛼2 �̃�𝑖 (𝑎) , 𝛽 ≡ 𝛽

𝛼
.

(21)
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These equations are equivalent to the REs (17), where, in order to avoid any confusion, we let 𝑎, 𝑏
run from 1 to 𝑛′ and 𝑖, 𝑗 from 𝑛′ + 1 to 𝑛. Then, we search for solutions of the form

�̃�𝑖 = 𝜌𝑖 +
∑︁
𝑟=2

(𝛼
𝜋

)𝑟−1
𝑓
(𝑟 )
𝑖

(�̃�𝑎) , 𝑖 = 𝑛′ + 1, · · · , 𝑛 , (22)

where 𝑓
(𝑟 )
𝑖

(�̃�𝑎) are power series of �̃�𝑎. The requirement that in the limit of vanishing perturba-
tions we obtain the undisturbed solutions (20) [32, 44] suggests this type of solutions. Once more,
one can obtain the conditions for uniqueness of 𝑓

(𝑟 )
𝑖

in terms of the lowest order coefficients.

2.3 Reduction of Dimension-1 and -2 Parameters

The extension of the reduction of couplings method to massive parameters is not straightfor-
ward, since the technique was originally aimed at massless theories on the basis of the Callan-
Symanzik equation [2, 3]. Many requirements have to be met, such as the normalization condi-
tions imposed on irreducible Green’s functions [45], etc. Significant progress has been made to-
wards this goal, starting from [46], where, as an assumption, a mass-independent renormalization
scheme renders all RG functions only trivially dependent on dimensional parameters. Mass param-
eters can then be introduced similarly to couplings. This was justified later [47, 48], where it was
demonstrated that, apart from dimensionless parameters, pole masses and gauge couplings, the
model can also include couplings carrying a dimension and masses.

The reduction of dimensionless couplings was extended [46, 49] to the SSB dimensionful
parameters of 𝑁 = 1 supersymmetric theories. It was also found [19, 50] that soft scalar masses sat-
isfy a universal sum rule. Consider the superpotential (7)

𝑊 =
1
2
`𝑖 𝑗 Φ𝑖 Φ 𝑗 +

1
6
𝐶𝑖 𝑗𝑘 Φ𝑖 Φ 𝑗 Φ𝑘 , (23)

and the SSB Lagrangian

−LSSB =
1
6
ℎ𝑖 𝑗𝑘 𝜙𝑖𝜙 𝑗𝜙𝑘 +

1
2
𝑏𝑖 𝑗 𝜙𝑖𝜙 𝑗 +

1
2
(𝑚2) 𝑗

𝑖
𝜙∗ 𝑖𝜙 𝑗 +

1
2
𝑀 _𝑖_𝑖 + h.c. (24)

The 𝜙𝑖’s are the scalar parts of chiral superfields Φ𝑖 , _ are gauginos and 𝑀 the unified gaugino
mass.

The one-loop gauge and Yukawa beta-functions are given by (11) and (12), respectively, and the
one-loop anomalous dimensions by (13). We make the assumption that the REs admit power series
solutions:

𝐶𝑖 𝑗𝑘 = 𝑔
∑︁
𝑛=0

𝜌
𝑖 𝑗𝑘

(𝑛)𝑔
2𝑛 . (25)

Since we want to obtain higher-loop results instead of knowledge of explicit 𝛽-functions, we require
relations among 𝛽-functions. The spurion technique [36, 51–54] gives all-loop relations among

6
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SSB 𝛽-functions [55–62]:

𝛽𝑀 = 2O
(
𝛽𝑔

𝑔

)
, (26)

𝛽
𝑖 𝑗𝑘

ℎ
= 𝛾𝑖𝑙 ℎ

𝑙 𝑗𝑘 + 𝛾
𝑗

𝑙
ℎ𝑖𝑙𝑘 + 𝛾𝑘

𝑙 ℎ
𝑖 𝑗𝑙

− 2 (𝛾1)𝑖𝑙 𝐶
𝑙 𝑗𝑘 − 2 (𝛾1) 𝑗𝑙 𝐶

𝑖𝑙𝑘 − 2 (𝛾1)𝑘𝑙 𝐶
𝑖 𝑗𝑙 , (27)

(𝛽𝑚2)𝑖𝑗 =
[
Δ + 𝑋

𝜕

𝜕𝑔

]
𝛾𝑖𝑗 , (28)

where

O =

(
𝑀𝑔2 𝜕

𝜕𝑔2 − ℎ𝑙𝑚𝑛 𝜕

𝜕𝐶𝑙𝑚𝑛

)
, (29)

Δ = 2OO∗ + 2|𝑀 |2𝑔2 𝜕

𝜕𝑔2 + �̃�𝑙𝑚𝑛

𝜕

𝜕𝐶𝑙𝑚𝑛

+ �̃�𝑙𝑚𝑛 𝜕

𝜕𝐶𝑙𝑚𝑛
, (30)

(𝛾1)𝑖𝑗 = O𝛾𝑖𝑗 , (31)

�̃�𝑖 𝑗𝑘 = (𝑚2)𝑖𝑙𝐶
𝑙 𝑗𝑘 + (𝑚2) 𝑗

𝑙
𝐶𝑖𝑙𝑘 + (𝑚2)𝑘𝑙 𝐶

𝑖 𝑗𝑙 . (32)

Assuming (following [57]) that the relation among couplings

ℎ𝑖 𝑗𝑘 = −𝑀 (𝐶𝑖 𝑗𝑘)′ ≡ −𝑀 𝑑𝐶𝑖 𝑗𝑘 (𝑔)
𝑑 ln 𝑔

, (33)

is RGI to all orders and the use of the all-loop gauge 𝛽-function of [63–65]

𝛽NSVZ
𝑔 =

𝑔3

16𝜋2

[∑
𝑙 𝑇 (𝑅𝑙) (1 − 𝛾𝑙/2) − 3𝐶2(𝐺)

1 − 𝑔2𝐶2(𝐺)/8𝜋2

]
, (34)

we are led to an all-loop RGI sum rule [66] (assuming (𝑚2)𝑖
𝑗
= 𝑚2

𝑗
𝛿𝑖
𝑗
),

𝑚2
𝑖 + 𝑚2

𝑗 + 𝑚2
𝑘 = |𝑀 |2

{
1

1 − 𝑔2𝐶2(𝐺)/(8𝜋2)
𝑑 ln𝐶𝑖 𝑗𝑘

𝑑 ln 𝑔
+ 1

2
𝑑2 ln𝐶𝑖 𝑗𝑘

𝑑 (ln 𝑔)2

}
+

∑︁
𝑙

𝑚2
𝑙
𝑇 (𝑅𝑙)

𝐶2(𝐺) − 8𝜋2/𝑔2
𝑑 ln𝐶𝑖 𝑗𝑘

𝑑 ln 𝑔
.

(35)

It is worth noting that the all-loop result of Eq. (35) coincides with the superstring result for the finite
case in a certain class of orbifold models [19, 67, 68] if 𝑑 ln𝐶𝑖 𝑗𝑘

𝑑 ln 𝑔 = 1 [9].
As mentioned above, the all-loop results on the SSB 𝛽-functions, Eqs.(26)-(32), lead to all-loop

RGI relations. We assume:
(a) the existence of an RGI surface on which 𝐶 = 𝐶 (𝑔), or equivalently that the expression

𝑑𝐶𝑖 𝑗𝑘

𝑑𝑔
=

𝛽
𝑖 𝑗𝑘

𝐶

𝛽𝑔
(36)

holds (i.e. reduction of couplings is possible)
(b) the existence of a RGI surface on which

ℎ𝑖 𝑗𝑘 = −𝑀 𝑑𝐶 (𝑔)𝑖 𝑗𝑘
𝑑 ln 𝑔

(37)
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holds to all orders.
Then it can be proven [69–71] that the relations that follow are all-loop RGI (note that in both
assumptions we do not rely on specific solutions of these equations)

𝑀 = 𝑀0
𝛽𝑔

𝑔
, (38)

ℎ𝑖 𝑗𝑘 = −𝑀0 𝛽
𝑖 𝑗𝑘

𝐶
, (39)

𝑏𝑖 𝑗 = −𝑀0 𝛽
𝑖 𝑗
` , (40)

(𝑚2)𝑖𝑗 =
1
2
|𝑀0 |2 `

𝑑𝛾𝑖 𝑗

𝑑`
, (41)

where 𝑀0 is an arbitrary reference mass scale to be specified shortly. Assuming

𝐶𝑎

𝜕

𝜕𝐶𝑎

= 𝐶∗
𝑎

𝜕

𝜕𝐶∗
𝑎

(42)

for an RGI surface 𝐹 (𝑔, 𝐶𝑖 𝑗𝑘 , 𝐶∗𝑖 𝑗𝑘) we are led to

𝑑

𝑑𝑔
=

(
𝜕

𝜕𝑔
+ 2

𝜕

𝜕𝐶

𝑑𝐶

𝑑𝑔

)
=

(
𝜕

𝜕𝑔
+ 2

𝛽𝐶

𝛽𝑔

𝜕

𝜕𝐶

)
, (43)

where Eq. (36) was used. Let us now consider the partial differential operator O in Eq. (29)
which (assuming Eq. (33)), becomes

O =
1
2
𝑀

𝑑

𝑑 ln 𝑔
(44)

and 𝛽𝑀 , given in Eq. (26), becomes

𝛽𝑀 = 𝑀
𝑑

𝑑 ln 𝑔
( 𝛽𝑔
𝑔

)
, (45)

which by integration provides us [62, 69] with the generalized, i.e. including Yukawa couplings, all-
loop RGI Hisano - Shifman relation [58]

𝑀 =
𝛽𝑔

𝑔
𝑀0 . (46)

𝑀0 is the integration constant and can be associated to the unified gaugino mass 𝑀 (of an assumed
covering GUT), or to the gravitino mass 𝑚3/2 in a supergravity framework. Therefore, Eq. (38)
becomes the all-loop RGI Eq. (46). 𝛽𝑀 , using Eqs.(45) and (38) can be written as follows:

𝛽𝑀 = 𝑀0
𝑑

𝑑𝑡
(𝛽𝑔/𝑔) . (47)

Similarly

(𝛾1)𝑖𝑗 = O𝛾𝑖𝑗 =
1
2
𝑀0

𝑑𝛾𝑖
𝑗

𝑑𝑡
. (48)

Next, from Eq.(33) and Eq.(38) we get

ℎ𝑖 𝑗𝑘 = −𝑀0 𝛽
𝑖 𝑗𝑘

𝐶
, (49)
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while 𝛽
𝑖 𝑗𝑘

ℎ
, using Eq.(48), becomes [69]

𝛽
𝑖 𝑗𝑘

ℎ
= −𝑀0

𝑑

𝑑𝑡
𝛽
𝑖 𝑗𝑘

𝐶
, (50)

which shows that Eq. (49) is RGI to all loops. Eq. (40) can similarly be shown to be all-loop RGI
as well.

It should be noted concerning the 𝛽-functions of the SBB parameters, as in Eqs. (47) and (50),
that the vanishing of the dimensionless 𝛽-functions, even to all-orders, as will be discussed in the
next section, is transferred to the dimensionful SSB sector of the theory.

3. Finiteness

An interesting consequence of the reduction of couplings programme, is that it led to the search
of renormalizable field theories that are free of all logarithmic divergences, i.e. completely Finite
Theories.

In SUSY there were already examples of completely finite theories, namely 𝑁 = 4 supersym-
metric unified gauge theories, since any ultraviolet (UV) divergences are absent in these theories.
However, so far there are no phenomenologically viable models in the framework of 𝑁 = 4 SUSY.
The next possibility is to consider an 𝑁 = 2 supersymmetric gauge theory, whose 𝛽-function re-
ceives corrections only at one loop. It is possible to select a spectrum to make the theory all-loop
finite. A serious obstacle in order to make these kind of models phenomenologically viable is their
mirror spectrum, which would need a particular mechanism to make it heavy. Therefore, one is
naturally led to consider 𝑁 = 1 supersymmetric gauge theories, which can be chiral and in principle
realistic.

It should be noted that in the approach followed here (UV) finiteness means the vanishing
of all the 𝛽-functions, i.e. the non-renormalization of the coupling constants, in contrast to a
complete (UV) finiteness where even field amplitude renormalization is absent. Before the work
of several members of our group, the studies on 𝑁 = 1 finite theories were following two directions:
(i) construction of finite theories up to two loops examining various possibilities to make them
phenomenologically viable, (ii) construction of all-loop finite models without particular emphasis on
the phenomenological consequences. The success of the work of our group started in refs [8, 9] with
the construction of the first realistic all-loop finite model, based on the theorem presented below,
realising in this way an old theoretical dream of field theorists.

Finiteness in N=1 Supersymmetric Gauge Theories

Let us, once more, consider a chiral, anomaly free, 𝑁 = 1 globally supersymmetric gauge
theory based on a group G with gauge coupling constant 𝑔. The superpotential of the theory is
given by (see Eq. (7))

𝑊 =
1
2
𝑚𝑖 𝑗 𝜙𝑖 𝜙 𝑗 +

1
6
𝐶𝑖 𝑗𝑘 𝜙𝑖 𝜙 𝑗 𝜙𝑘 . (51)

The 𝑁 = 1 non-renormalization theorem, ensures the absence of mass and cubic-interaction-
term infinities, and leads to wave-function infinities only; one for each superfield. As one can see

9
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from Eqs. (11) and (13), all the one-loop 𝛽-functions of the theory vanish if 𝛽 (1)
𝑔 and 𝛾 (1) 𝑖

𝑗
vanish,

i.e. ∑︁
𝑖

𝑇 (𝑅𝑖) = 3𝐶2(𝐺) , (52)

𝐶𝑖𝑘𝑙𝐶 𝑗𝑘𝑙 = 2𝛿𝑖𝑗𝑔
2𝐶2(𝑅𝑖) . (53)

The conditions for finiteness for 𝑁 = 1 field theories with 𝑆𝑈 (𝑁) gauge symmetry are discussed
in [72], and the analysis of the anomaly-free and no-charge renormalization requirements for
these theories can be found in [73]. A very interesting result is that the conditions (52) and
(53) are necessary and sufficient for finiteness at the two-loop level [37–41].

In case SUSY is broken by soft terms, the requirement of finiteness in the one-loop soft breaking
terms imposes further constraints among them [74]. In addition, the same set of conditions that
are sufficient for one-loop finiteness of the soft breaking terms render the soft sector of the theory
two-loop finite [75].

The one- and two-loop finiteness conditions of Eqs. (52) and (53) restrict considerably the
possible choices of the irreducible representations (irreps) 𝑅𝑖 for a given group 𝐺, as well as the
Yukawa couplings in the superpotential (51). Note in particular that the finiteness conditions cannot
be applied to the MSSM, since the presence of a𝑈 (1) gauge group is incompatible with the condition
(52), due to 𝐶2 [𝑈 (1)] = 0. This naturally leads to the expectation that finiteness should be attained
at the grand unified level only, the MSSM being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that SUSY (most probably)
can only be broken due to the soft breaking terms. Indeed, due to the unacceptability of gauge sin-
glets, F-type spontaneous symmetry breaking [76] terms are incompatible with finiteness, as well
as D-type [77] spontaneous breaking which requires the existence of a 𝑈 (1) gauge group.

A natural question to ask is what happens at higher loop orders. The answer is contained in a the-
orem [78, 79] which states the necessary and sufficient conditions to achieve finiteness at all orders.
The finiteness conditions (52) and (53) impose relations between gauge and Yukawa couplings. To
require such relations which render the couplings mutually dependent at a given renormalization
point is trivial. What is not trivial is to guarantee that relations hold at any renormalization
point. But we have seen from the previous sections (see Eq. (36)), that the necessary and also
sufficient, condition to have RG invariance is to require that such relations are solutions to the REs

𝛽𝑔
𝑑𝐶𝑖 𝑗𝑘

𝑑𝑔
= 𝛽𝑖 𝑗𝑘 (54)

and hold at all orders. Remarkably, the existence of all-order power series solutions to (54) can be
decided at one-loop level, as already mentioned.

The all-order finiteness theorem [78, 79], states under which conditions an 𝑁 = 1 supersym-
metric gauge theory can become finite to all orders in perturbation theory, that is attain physical
scale invariance. It is based on (a) the structure of the supercurrent in 𝑁 = 1 supersymmetric gauge
theory [80–82], and on (b) the non-renormalization properties of 𝑁 = 1 chiral anomalies [78, 79, 83–
85]. Details of the proof can be found in refs. [78, 79] and further discussion in Refs. [83–87].
One-loop finiteness, i.e. vanishing of the 𝛽-functions at one-loop, implies that the Yukawa cou-
plings _𝑖 𝑗𝑘 must be functions of the gauge coupling 𝑔. To find a similar condition to all orders

10



P
o
S
(
C
O
R
F
U
2
0
2
2
)
0
5
5

Reduction of couplings and Finite Unified Theories M. Mondragon

it is necessary and sufficient for the Yukawa couplings to be a formal power series in 𝑔, which is
solution of the REs (54). We state below the theorem for all-order vanishing 𝛽-functions [78].

Theorem:
Consider an 𝑁 = 1 supersymmetric Yang-Mills theory, with simple gauge group. If the following
conditions are satisfied

1. There is no gauge anomaly.

2. The gauge 𝛽-function vanishes at one-loop

𝛽
(1)
𝑔 = 0 =

∑︁
𝑖

𝑇 (𝑅𝑖) − 3𝐶2(𝐺). (55)

3. There exist solutions of the form

𝐶𝑖 𝑗𝑘 = 𝜌𝑖 𝑗𝑘𝑔, 𝜌𝑖 𝑗𝑘 ∈ IC (56)

to the conditions of vanishing one-loop matter fields anomalous dimensions

𝛾 (1) 𝑖
𝑗 = 0 =

1
32𝜋2 [ 𝐶𝑖𝑘𝑙 𝐶 𝑗𝑘𝑙 − 2 𝑔2 𝐶2(𝑅)𝛿𝑖𝑗] . (57)

4. These solutions are isolated and non-degenerate when considered as solutions of vanishing
one-loop Yukawa 𝛽-functions:

𝛽𝑖 𝑗𝑘 = 0. (58)

Then, each of the solutions (56) can be uniquely extended to a formal power series in 𝑔, and the as-
sociated super Yang-Mills models depend on the single coupling constant 𝑔 with a 𝛽-function which
vanishes at all-orders.

It is important to note a few things: The requirement of isolated and non-degenerate solu-
tions guarantees the existence of a unique formal power series solution to the reduction equations.
The vanishing of the gauge 𝛽-function at one-loop, 𝛽 (1)

𝑔 , is equivalent to the vanishing of the R
current anomaly. The vanishing of the anomalous dimensions at one-loop implies the vanishing of
the Yukawa couplings 𝛽-functions at that order. It also implies the vanishing of the chiral anomaly
coefficients 𝑟𝐴. This last property is a necessary condition for having 𝛽-functions vanishing at all
orders.1

Thus, it is clear that finiteness and reduction of couplings are intimately related. Since a
relationship between the Noether current and the current belonging to the supercurrent multiplet 𝐽
is absent in non-supersymmetric theories, one cannot extend the validity of a similar theorem to
such theories.

A very interesting development was done in ref [56]. Based on the all-loop relations among the
𝛽-functions of the soft supersymmetry breaking terms and those of the rigid supersymmetric theory,

1There is an alternative way to find finite theories [88–91].

11



P
o
S
(
C
O
R
F
U
2
0
2
2
)
0
5
5

Reduction of couplings and Finite Unified Theories M. Mondragon

with the help of the differential operators discussed in the previous sections, it was shown that cer-
tain RGI surfaces can be chosen, so as to reach all-loop finiteness of the full theory. More specifically
it was shown that on certain RGI surfaces the partial differential operators appearing in Eqs. (26,27)
acting on the 𝛽- and 𝛾- functions of the rigid theory can be transformed to total derivatives. Then the
all-loop finiteness of the 𝛽- and 𝛾-functions of the rigid theory can be transferred to the 𝛽-functions
of the soft supersymmetry breaking terms. Therefore a totally all-loop finite 𝑁 = 1 SUSY gauge
theory can be constructed, including the soft supersymmetry breaking terms.

4. Successful Finite Unification Models

We now briefly review the basic properties of phenomenologically successful SUSY models
with reduced couplings, which can be made finite either to all-loops or to two-loops in perturbation
theory. Their predictions for the top and bottom quark masses, the SM Higgs boson mass, as well as
the supersymmetric and the other Higgs spectra are discussed in 4.4, while experimental constraints
considered are listed in 4.3. Other models with reduced couplings that were analyzed can be found
in [29] and [92] (see also [93] and [94]) are the Reduced Minimal 𝑁 = 1 𝑆𝑈 (5) [10], and the
Reduced Minimal Supersymmetric Standard Model [95, 96].

4.1 An all-loop finite 𝑁 = 1 supersymmetric 𝑆𝑈 (5) model

The first model we will review is the finite to all-orders 𝑆𝑈 (5), where we restrict the application
of the reduction of couplings method to the third generation. In the latest version improved Higgs
calculations predict a somewhat different interval that is still within current experimental limits.

The particle content of the model consists of three (5 + 10) supermultiplets for the three
generations of leptons and quarks, while the Higgs sector is accommodated in four supermultiplets
(5 + 5) and one 24. The one-loop anomalous dimensions are diagonal, fermions do not couple
to 24 and the MSSM Higgs doublets are mostly composed from the 5 and 5̄ that couple to the
third generation. The finite 𝑆𝑈 (5) group is broken to the MSSM, which is no longer a finite theory,
as expected [8–11, 15, 18]. When the GUT breaks to the MSSM, a suitable rotation in the Higgs
sector [8, 9, 97–100], allows only two Higgs doublets (coupled mostly to the third family) to remain
light and acquire vevs. Fast proton decay is avoided with the usual doublet-triplet splitting.

The superpotential (with an enhanced symmetry due to the reduction of couplings) is given by
[19, 21]:

𝑊 =

3∑︁
𝑖=1

[ 1
2
𝑔𝑢𝑖 10𝑖10𝑖𝐻𝑖 + 𝑔𝑑𝑖 10𝑖5𝑖 𝐻𝑖 ] + 𝑔𝑢23 102103𝐻4 (59)

+ 𝑔𝑑23 10253 𝐻4 + 𝑔𝑑32 10352 𝐻4 + 𝑔
𝑓

2 𝐻2 24𝐻2 + 𝑔
𝑓

3 𝐻3 24𝐻3 +
𝑔_

3
(24)3 .

The non-degenerate and isolated solutions to the vanishing of 𝛾 (1)
𝑖

are:

(𝑔𝑢1 )
2 =

8
5
𝑔2 , (𝑔𝑑1 )

2 =
6
5
𝑔2 , (𝑔𝑢2 )

2 = (𝑔𝑢3 )
2 =

4
5
𝑔2 ,

(𝑔𝑑2 )
2 = (𝑔𝑑3 )

2 =
3
5
𝑔2 , (𝑔𝑢23)

2 =
4
5
𝑔2 , (𝑔𝑑23)

2 = (𝑔𝑑32)
2 =

3
5
𝑔2 ,

(𝑔_)2 =
15
7
𝑔2 , (𝑔 𝑓

2 )
2 = (𝑔 𝑓

3 )
2 =

1
2
𝑔2 , (𝑔 𝑓

1 )
2 = (𝑔 𝑓

4 )
2 = 0 .

(60)
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Regarding the parameters of non-zero dimension, we have the relation ℎ = −𝑀𝐶, while the sum
rules lead to:

𝑚2
𝐻𝑢

+ 2𝑚2
10 = 𝑀2 , 𝑚2

𝐻𝑑
− 2𝑚2

10 = −𝑀2

3
, 𝑚2

5
+ 3𝑚2

10 =
4𝑀2

3
. (61)

We therefore result in just two free dimensionful parameters, 𝑚10 and 𝑀 . The model is discussed
in more detail in [8–10].

4.2 A two-loop Finite 𝑆𝑈 (𝑁)3 Model

We will exemplify now how to construct a FUT based on a product gauge group. Consider an
𝑁 = 1 SUSY theory with 𝑆𝑈 (𝑁)1 × 𝑆𝑈 (𝑁)2 × · · · × 𝑆𝑈 (𝑁)𝑘 having 𝑛 𝑓 families transforming as
(𝑁, 𝑁∗, 1, . . . , 1) + (1, 𝑁, 𝑁∗, . . . , 1) + · · · + (𝑁∗, 1, 1, . . . , 𝑁). Then, the first order coefficient of
the 𝛽-function, for each 𝑆𝑈 (𝑁) group is:

𝑏 =

(
−11

3
+ 2

3

)
𝑁 + 𝑛 𝑓

(
2
3
+ 1

3

) (
1
2

)
2𝑁 = −3𝑁 + 𝑛 𝑓 𝑁 . (62)

Demanding the vanishing of the gauge one-loop 𝛽-function, i.e. 𝑏 = 0, we are led to the choice
𝑛 𝑓 = 3. Phenomenological reasons lead to the choice of the 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (3)𝐿 × 𝑆𝑈 (3)𝑅 model,
discussed in Ref.[23], while a detailed discussion of the general well known example can be found
in [101–104]. The leptons and quarks transform as:

𝑞 =
©«
𝑑 𝑢 𝐷

𝑑 𝑢 𝐷

𝑑 𝑢 𝐷

ª®®¬ ∼ (3, 3∗, 1), 𝑞𝑐 =
©«
𝑑𝑐 𝑑𝑐 𝑑𝑐

𝑢𝑐 𝑢𝑐 𝑢𝑐

𝐷𝑐 𝐷𝑐 𝐷𝑐

ª®®¬ ∼ (3∗, 1, 3), _ =
©«
𝑁 𝐸𝑐 a

𝐸 𝑁𝑐 𝑒

a𝑐 𝑒𝑐 𝑆

ª®®¬ ∼ (1, 3, 3∗)

(63)
where 𝐷 are down-type quarks acquiring masses close to 𝑀GUT. A cyclic 𝑍3 symmetry is imposed
on the multiplets to achieve equal gauge couplings at the GUT scale and in that case the vanishing
of the first-order 𝛽-function is satisfied. Continuing to the vanishing of the anomalous dimension of
all the fields (see Eq. (53)), we note that there are two trilinear invariant terms in the superpotential,
namely:

𝑓 𝑇𝑟 (_𝑞𝑐𝑞) + 1
6
𝑓 ′ 𝜖𝑖 𝑗𝑘𝜖𝑎𝑏𝑐 (_𝑖𝑎_ 𝑗𝑏_𝑘𝑐 + 𝑞𝑐𝑖𝑎𝑞

𝑐
𝑗𝑏𝑞

𝑐
𝑘𝑐 + 𝑞𝑖𝑎𝑞 𝑗𝑏𝑞𝑘𝑐), (64)

with 𝑓 and 𝑓 ′ the corresponding Yukawa couplings. The superfields (�̃�, �̃�𝑐) obtain vev’s and
provide masses to leptons and quarks

𝑚𝑑 = 𝑓 ⟨�̃�⟩, 𝑚𝑢 = 𝑓 ⟨�̃�𝑐⟩, 𝑚𝑒 = 𝑓 ′⟨�̃�⟩, 𝑚a = 𝑓 ′⟨�̃�𝑐⟩. (65)

Having three families, 11 𝑓 couplings and 10 𝑓 ′ couplings are present in the most general superpo-
tential. Demanding the vanishing of all superfield anomalous dimensions, 9 conditions are imposed∑︁

𝑗 ,𝑘

𝑓𝑖 𝑗𝑘 ( 𝑓𝑙 𝑗𝑘)∗ +
2
3

∑︁
𝑗 ,𝑘

𝑓 ′𝑖 𝑗𝑘 ( 𝑓
′
𝑙 𝑗𝑘)

∗ =
16
9
𝑔2𝛿𝑖𝑙 , (66)

where
𝑓𝑖 𝑗𝑘 = 𝑓 𝑗𝑘𝑖 = 𝑓𝑘𝑖 𝑗 , 𝑓 ′𝑖 𝑗𝑘 = 𝑓 ′𝑗𝑘𝑖 = 𝑓 ′𝑘𝑖 𝑗 = 𝑓 ′𝑖𝑘 𝑗 = 𝑓 ′𝑘 𝑗𝑖 = 𝑓 ′𝑗𝑖𝑘 . (67)
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The masses of leptons and quarks are acquired from the vev’s of the scalar parts of the superfields
�̃�1,2,3 and �̃�𝑐

1,2,3.
At 𝑀GUT the 𝑆𝑈 (3)3 FUT breaks2 to the MSSM, where as was already mentioned, both Higgs

doublets couple mostly to the third generation. The FUT breaking leaves its mark in the form of
Eq. (66), i.e. boundary conditions on the gauge and Yukawa couplings, the relation among the soft
trilinear coupling, the corresponding Yukawa coupling and the unified gaugino mass and finally the
soft scalar mass sum rule at 𝑀GUT. In this specific model the sum rule takes the form:

𝑚2
𝐻𝑢

+ 𝑚2
𝑡𝑐
+ 𝑚2

�̃� = 𝑀2 = 𝑚2
𝐻𝑑

+ 𝑚2
�̃�𝑐 + 𝑚2

�̃� . (68)

The model is finite to all-orders if the solution of Eq. (66) is both isolated and unique. But
then 𝑓 ′ = 0 and, at one-loop order, the lepton masses vanish. Since these masses cannot be
generated, even radiatively, because of the finiteness conditions, we concentrate on finding a two-
loop finite solution. If the solution of Eq. (66) is unique but not isolated (i.e. parametric), we can
have non zero 𝑓 ′ leading to non-vanishing lepton masses and at the same time achieving two-loop
finiteness. In that case the set of conditions restricting the Yukawa couplings read:

𝑓 2 = 𝑟

(
16
9

)
𝑔2 , 𝑓 ′2 = (1 − 𝑟)

(
8
3

)
𝑔2 , (69)

where 𝑟 parametrises the different solutions and as such is a free parameter. It should be noted
that we use the sum rule as boundary condition for the soft scalar masses.

4.3 Phenomenological Constraints

In this section we briefly review several experimental constraints that were applied in our
phenomenological analysis. The used values do not correspond to the latest experimental results,
which, however, has a negligible impact on our analysis.

We have evaluated the pole mass of the top quark while the bottom quark mass is evaluated at the
𝑀𝑍 scale (to avoid uncertainties to its pole mass). The experimental values, taken from ref.[107]
are:3

𝑚
exp
𝑡 = 173.1 ± 0.9 GeV , 𝑚𝑏 (𝑀𝑍 ) = 2.83 ± 0.10 GeV . (70)

We interpret the Higgs-like particle discovered in July 2012 by ATLAS and CMS [26, 27] as
the light CP-even Higgs boson of the MSSM [108–110]. The Higgs boson experimental average
mass is [107] 4

𝑀
exp
ℎ

= 125.10 ± 0.14 GeV . (71)

The theoretical uncertainty [111, 112], however, for the prediction of 𝑀ℎ in the MSSM dominates
the total uncertainty, since it is much larger than the experimental one. In our analysis we used the
version 2.16.0 of the FeynHiggs code [111–118] to predict the Higgs mass.5 This version gives a

2[105, 106] and refs therein discuss in detail the spontaneous breaking of 𝑆𝑈 (3)3.
3This is not the latest experimental value, but the changes are small and have no phenomenological consequences.
4This is the latest available LHC combination. More recent measurements confirm this value.
5An analysis of the impact of the improved 𝑀ℎ calculation in various SUSY models can be found in [119]. Further

improvements that became available later do not have a relevant impact.
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downward shift on the Higgs mass 𝑀ℎ of O(2 GeV) for large SUSY masses and in particular gives
a reliable point-by-point evaluation of the Higgs-boson mass uncertainty [120]. The theoretical
uncertainty calculated is added linearly to the experimental error in Eq. (71).

Furthermore, recent results from the ATLAS experiment [121] set limits to the mass of the
pseudoscalar Higgs boson, 𝑀𝐴, in comparison with tan 𝛽. For models with tan 𝛽 ∼ 45 − 55, as the
ones examined here, the lowest limit for the physical pseudoscalar Higgs mass is

𝑀𝐴 ≳ 1900 GeV. (72)

For the production of the heavy Higgs sector and the full supersymmetric spectrum of each model a
SARAH [122] generated, custom MSSM module for SPheno [123, 124] was used. The cross sections
for their particle productions at the HL-LHC and FCC-hh, with

√
𝑠 = 14 TeV and 100 TeV respec-

tively, were calculated with MadGraph5_aMC@NLO [125].
We also considered the following four flavor observables where SUSY has non-negligible

impact. For the branching ratio BR(𝑏 → 𝑠𝛾) we take a value from [126, 152], while for the branch-
ing ratio BR(𝐵𝑠 → `+`−) we use a combination of [127, 153–155, 170]:6

BR(𝑏 → 𝑠𝛾)exp

BR(𝑏 → 𝑠𝛾)SM = 1.089 ± 0.27 , BR(𝐵𝑠 → `+`−) = (2.9 ± 1.4) × 10−9 . (73)

For the 𝐵𝑢 decay to 𝜏a we use [156–158] and for Δ𝑀𝐵𝑠
we use [128, 129]:

BR(𝐵𝑢 → 𝜏a)exp

BR(𝐵𝑢 → 𝜏a)SM = 1.39 ± 0.69 ,
Δ𝑀

exp
𝐵𝑠

Δ𝑀SM
𝐵𝑠

= 0.97 ± 0.2 . (74)

Finally, we consider Cold Dark Matter (CDM) constraints. Since the Lightest SUSY Particle
(LSP), which in our case is the lightest neutralino, is a promising CDM candidate [130, 131], we
examine if the model is within the CDM relic density experimental limits. The current bound on the
CDM relic density at 2𝜎 level is given by [132]

ΩCDMℎ2 = 0.1120 ± 0.0112 . (75)

For the calculation of the CDM relic density the the MicrOMEGAs 5.0 code [133–135] was used.

4.4 Numerical Analysis of the Finite 𝑆𝑈 (5)

We will briefly present now the analysis of the predicted spectrum of the all-loop finite
𝑆𝑈 (5) model. Below the GUT scale we get the MSSM, where the third generation is given by the
finiteness conditions (the first two remain unrestricted). However, these conditions do not restrict the
low-energy renormalization properties, so the above relations between gauge, Yukawa and the
various dimensionful parameters serve as boundary conditions at 𝑀𝐺𝑈𝑇 . The third generation
quark masses 𝑚𝑏 (𝑀𝑍 ) and 𝑚𝑡 are predicted within 3𝜎 and 2𝜎 uncertainties, respectively, of
their experimental values (see the complete analysis in [29]), as shown in Fig. 1. ` < 0 is the
only phenomenologically viable option, as shown in [29, 94, 136–142].

6As before, an update to the most recent values [171] would not change our resuls in a relevant way.
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Figure 1: 𝑚𝑏 (𝑀𝑍 ) (left) and 𝑚𝑡 (right) as a function of 𝑀 for the Finite 𝑁 = 1 𝑆𝑈 (5). The scattered points
(red and green) come from varying the free parameter 𝑚10, and the green points are the ones that satisfy the
B-physics constraints. The orange (blue) dashed lines denote the 2𝜎 (3𝜎) experimental uncertainties.

The plot of the light Higgs mass satisfies all experimental constraints considered in 4.3 (in-
cluding B-physics constraints) for a unified gaugino mass 𝑀 ∼ 4500 − 7500 GeV, while its
point-by-point theoretical uncertainty [120] drops significantly (w.r.t. the previous analysis) to
0.65−0.70 GeV. This can be found in Fig. 2. The improved evaluation of 𝑀ℎ and its uncertainty pre-
fer a heavier (Higgs) spectrum (compared to previous analyses [29, 94, 136–141, 143–147]), and
thus allows only a heavy supersymmetric spectrum, which is in agreement with all existing ex-
perimental data. Very heavy colored supersymmetric particles are favored, in agreement with the
non-observation of such particles at the LHC [162].

Figure 2: Left: 𝑀ℎ as a function of 𝑀 . As in Fig. 1, the green points are the ones that comply with the
𝐵-physics constraints. Right: The lightest Higgs mass theoretical uncertainty calculated with FeynHiggs
2.16.0 [120].

At this point there is an important remark. No point fulfills the strict bound of Eq. (75), since
we have overproduction of CDM in the early universe (for the original analysis see [93]). The LSP,
which in our case is the lightest neutralino, is strongly Bino-like. Combined with the heavy mass it
acquires (1-2 TeV), it cannot account for a relic density low enough to agree with experimental ob-
servation. Thus, we need a mechanism that reduces this CDM abundance. This could be related to
the problem of neutrino masses, which cannot be generated naturally in this particular model.
However, one could extend the model by considering bilinear R-parity violating terms (that pre-
serve finiteness) and thus introduce neutrino masses [148, 160]. R-parity violation [161] would
have a small impact on the masses and production cross sections, but remove the CDM bound of
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Eq. (75) completely. Other mechanisms, not involving R-parity violation, that could be invoked if
the amount of CDM appears to be too large, concern the cosmology of the early universe. For ex-
ample, “thermal inflation” [163] or “late time entropy injection” [164] can bring the CDM density
into agreement with Planck measurements. For the original discussion see [29].

As explained in more detail in [92], the three benchmarks chosen (for the purposes of collider
phenomenology) feature the LSP above 2100 GeV, 2400 GeV and 2900 GeV, respectively. The
resulting masses that are relevant to our analysis were generated by SPheno 4.0.4 [123, 124] and
are listed in Table 1 for each benchmark (with the corresponding tan 𝛽). The two first masses refer
to the heavy Higgs bosons. The gluino mass is 𝑀�̃�, the neutralinos and the charginos are denoted
as 𝑀�̃�0

𝑖
and 𝑀�̃�±

𝑖
, while the slepton and sneutrino masses for all three generations are given as

𝑀�̃�1,2,3 , 𝑀ã1,2,3 . Similarly, the squarks are denoted as 𝑀𝑑1,2
and 𝑀�̃�1,2 for the first two generations.

The third generation masses are given by 𝑀𝑡1,2 for stops and 𝑀�̃�1,2
for sbottoms.

𝑡𝑎𝑛𝛽 𝑀𝐴,𝐻 𝑀𝐻± 𝑀�̃� 𝑀�̃�0
1

𝑀�̃�0
2

𝑀�̃�0
3

𝑀�̃�0
4

𝑀�̃�±
1

𝑀�̃�±
2

FUTSU5-1 49.9 5.688 5.688 8.966 2.103 3.917 4.829 4.832 3.917 4.833
FUTSU5-2 50.1 7.039 7.086 10.380 2.476 4.592 5.515 5.518 4.592 5.519
FUTSU5-3 49.9 16.382 16.401 12.210 2.972 5.484 6.688 6.691 5.484 6.691

𝑀�̃�1,2 𝑀ã1,2 𝑀�̃� 𝑀ã𝜏 𝑀𝑑1,2
𝑀�̃�1,2 𝑀�̃�1

𝑀�̃�2
𝑀𝑡1 𝑀𝑡2

FUTSU5-1 3.102 3.907 2.205 3.137 7.839 7.888 6.102 6.817 6.099 6.821
FUTSU5-2 3.623 4.566 2.517 3.768 9.059 9.119 7.113 7.877 7.032 7.881
FUTSU5-3 4.334 5.418 3.426 3.834 10.635 10.699 8.000 9.387 8.401 9.390

Table 1: Masses for each of the three benchmarks of the Finite 𝑁 = 1 𝑆𝑈 (5) (in TeV) [92].

At 14 TeV HL-LHC none of the Finite 𝑆𝑈 (5) scenarios listed above has a SUSY production
cross section above 0.01 fb, and thus will most probably remain unobservable [165]. The discovery
prospects for the heavy Higgs-boson spectrum is significantly better at the FCC-hh [166]. Theoretical
analyses [167, 168] have shown that for large tan 𝛽 heavy Higgs mass scales up to ∼ 8 TeV could be
accessible. Since in this model we have tan 𝛽 ∼ 50, the first two benchmark points are well within
the reach of the FCC-hh (as explained in [92]). The third point, however, where 𝑀𝐴 ∼ 16 TeV, will
be far outside the reach of the collider.

Since the production cross section of squark pairs and squark-gluino pairs are at the few
fb level, their prospects for detection are very dim. The heavy LSP will keep charginos and
neutralinos unobservable, and large parts of the possible mass spectra will not be observable at the
FCC-hh.

4.5 Phenomenological Analysis of the 𝑆𝑈 (3)3 Model

We will consider here the two-loop finite version of the 𝑆𝑈 (3)3 model, where again below
𝑀GUT we get the MSSM [23, 24]. We take into account two new thresholds for the masses of
the new particles at ∼ 1013 GeV and ∼ 1014 GeV resulting in a wider phenomenologically viable
parameter space [147].

It has to be noted that it is by no means a given fact that there will be a value of 𝑟 which
simultaneously fits both the top and bottom quark masses. Looking for the values of the parameter
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𝑟 which comply with the experimental limits, we find that both the top and bottom masses are in the
experimental range (within 2𝜎) for the same value of 𝑟 between 0.65 and 0.80 (we singled out
the ` < 0 case as the most promising). The inclusion of the above-mentioned thresholds gives an
important improvement on the top mass from past versions of the model [23, 24, 149, 150].

Figure 3: Bottom and top quark masses for the two-loop finite 𝑆𝑈 (3)3 model, with ` < 0, as functions of
𝑟. The scattered points are due to the fact that we vary five parameters, namely 𝑟 and four of the parameters
from the sum rule, the green points satisfy the B-physics constraints.

Figure 4: Left panel: Higgs boson mass 𝑀ℎ as a function of 𝑀 (color code as in Fig. 3). Right panel:
The Higgs mass theoretical uncertainty [120].

Concerning the SUSY spectra, we choose again three benchmarks, each featuring the LSP
above 1500 GeV, 2000 GeV and 2400 GeV respectively (but the LSP can go as high as ∼ 4100 GeV,
again with too small cross sections). For more details see ref. [92].

𝑀𝐻 𝑀𝐴 𝑀𝐻± 𝑀�̃� 𝑀�̃�0
1

𝑀�̃�0
2

𝑀�̃�0
3

𝑀�̃�0
4

𝑀�̃�±
1

𝑀�̃�±
2

FSU33-1 7.029 7.029 7.028 6.526 1.506 2.840 6.108 6.109 2.839 6.109
FSU33-2 6.484 6.484 6.431 8.561 2.041 3.817 7.092 7.093 3.817 7.093
FSU33-3 6.539 6.539 6.590 10.159 2.473 4.598 6.780 6.781 4.598 6.781

𝑀�̃�1,2 𝑀ã1,2 𝑀�̃� 𝑀ã𝜏 𝑀𝑑1,2
𝑀�̃�1,2 𝑀�̃�1

𝑀�̃�2
𝑀𝑡1 𝑀𝑡2

FSU33-1 2.416 2.415 1.578 2.414 5.375 5.411 4.913 5.375 4.912 5.411
FSU33-2 3.188 3.187 2.269 3.186 7.026 7.029 6.006 7.026 6.005 7.029
FSU33-3 3.883 3.882 2.540 3.882 8.334 8.397 7.227 8.334 7.214 7.409

Table 2: Masses for each benchmark of the Finite 𝑁 = 1 𝑆𝑈 (3)3 (in TeV).
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It should be noted that in this model the scale of the heavy Higgs bosons does not vary
monotonously with 𝑀�̃�0

1
, as in the previously considered models. This can be understood as follows.

The Higgs bosons masses are determined by a combination of the sum rule at the unification scale,
and the requirement of successful electroweak symmetry breaking at the low scale. Like in the
finite scenario of the previous section, there are no direct relations between the soft scalar masses
and the unified gaugino mass, but they are related through the corresponding sum rule and thus vary
correlatedly, a fact that makes the dependence on the boundary values more restrictive. Furthermore
(and even more importantly), the fact that we took into account the two thresholds at ∼ 1013 GeV
and ∼ 1014 GeV [147], allows the new particles, mainly the Higgsinos of the two other families
(that were considered decoupled at the unification scale in previous analyses) and the down-like
exotic quarks (in a lower degree), to affect the running of the (soft) RGEs in a non-negligible way.
Thus, since at low energies the heavy Higgs masses depend mainly on the values of 𝑚2

𝐻𝑢
, 𝑚2

𝐻𝑑
,

|` | and tan 𝛽, they are substantially less connected to 𝑀�̃�0
1

than in the other models, leading to a
different exclusion potential, as will be discussed in the following.

Scenarios of Finite 𝑆𝑈 (3)3 are beyond the reach of the HL-LHC. Not only superpartners are
too heavy, but also heavy Higgs bosons with a mass scale of ∼ 7 TeV cannot be detected at the
HL-LHC.

On the other hand, at the 100 TeV collider all three benchmark points are well within the reach
of the 𝐻/𝐴 → 𝜏+𝜏− as well as the 𝐻± → 𝜏a𝜏 , 𝑡𝑏 searches [167, 168], despite the slightly smaller
values of tan 𝛽 ∼ 45. This is a result of the different dependence of the heavy Higgs-boson mass
scale on 𝑀�̃�0

1
, as discussed above. However, we have checked that 𝑀𝐴 can go up to to ∼ 11 TeV,

and thus the heaviest part of the possible spectrum would escape the heavy Higgs-boson searches
at the FCC-hh.

Interesting are also the prospects for production of squark pairs and squark-gluino, which can
reach ∼ 20 fb for the FSU33-1 case, going down to a few fb for FSU33-2 and FSU33-3 scenarios.
The lightest squarks decay almost exclusively to the third generation quark and chargino/neutralino,
while gluino enjoys many possible decay channels to quark-squark pairs each one with branching
fraction of the order of a percent, with the biggest one ∼ 20% to 𝑡𝑡1 + ℎ.𝑐.

We briefly discuss the SUSY discovery potential at the FCC-hh, referring again to [169]. Stops
in FSU33-1 and FSU33-2 can be tested at the FCC-hh, while the masses turn out to be too heavy in
FSU33-3. The situation is better for scalar quarks, where all three scenarios can be tested, but will
not allow for a 5𝜎 discovery. Even more favorable are the prospects for gluino. Possibly all three
scenarios can be tested at the 5𝜎 level. The charginos and neutralinos will not be accessible, due
to the too heavy LSP. Taking into account that only the lower part of the possible mass spectrum is
represented by the three benchmark points and that the LSP can go up to 4.1 TeV, we conclude that
large parts of the parameter space will not be testable at the FCC-hh. The only partial exception
here is the Higgs-boson sector, where only the part with the highest possible Higgs-boson mass
spectra would escape the FCC-hh searches.

5. Conclusions

We reviewed the method of reduction of couplings, which is realized most naturally in SUSY
theories, and with more phenomenological success in 𝑁 = 1 theories, rendering them more pre-
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dictive. We considered the, so far, most promising two models, an all-loop finite 𝑆𝑈 (5) model,
and a two-loop finite 𝑆𝑈 (3)3 model. We presented the updated results for these models, using the
Higgs-boson mass calculation of FeynHiggs, and then turning to the question of their discovering
potential. In each case, low-mass region benchmark points have been chosen, for which the SPheno
code was used to calculate the spectrum of supersymmetric particles and their respective decay
modes. Finally, the MadGraph event generator was used for the computation of the production
cross-sections of the relevant final states at the 14 TeV (HL-)LHC and 100 TeV FCC-hh colliders.

Both models predict relatively heavy spectra, which evade largely the detection of the SUSY
particles at the HL-LHC. In the case of the all-loop finite 𝑆𝑈 (5) model two of the three benchmarks
points for the heavy Higgses are within the reach of the FCC-hh, although large parts of the rest of
the spectrum will not be observable. Concerning the 𝑆𝑈 (3)3 model, in the case of the heavy Higgs
bosons, all three benchmark points analyzed are within the reach of the FCC-hh, but the heaviest
part of the possible spectrum would be inaccessible. For the rest of the SUSY spectrum the lower
part of the parameter space will be testable at 2𝜎 level, with a small part, namely the gluinos, that
could be tested at the 5𝜎 level.
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