
P
o
S
(
C
O
R
F
U
2
0
2
2
)
0
5
9

Scale invariant SM and inhomogeneous universe

Zygmunt Lalaka,∗

aUniversity of Warsaw,
Faculty of Physics, Pasteura 5, Warsaw, Poland

E-mail: Zygmunt.Lalak@fuw.edu.pl

The effects of the breaking of the scale symmetry by thermal corrections are discussed. It is
argued, that the dynamical restoration of the scale symmetry at low energies and late times due
to thermal corrections dragging the expectation value of the dilaton towards the origin can be
avoided in realistic physical models. Cosmological evolution of the scale invariant theory may
lead to a gravitational wave signal, a discovery of which would constrain the parameter space of
specific models.

Corfu Summer Institute 2022 "School and Workshops on Elementary Particle Physics and Gravity",
28 August - 1 October, 2022
Corfu, Greece

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:Zygmunt.Lalak@fuw.edu.pl
https://pos.sissa.it/


P
o
S
(
C
O
R
F
U
2
0
2
2
)
0
5
9

Scale invariant SM and inhomogeneous universe Zygmunt Lalak

1. Introduction - in memory of Graham Ross

Particle cosmology is an important playground for particle physics, particularly in the area
of theories reaching beyond the Standard Model of fundamental interactions. The lack of direct
evidence for new physics in accelerator experiments and the need for indirect arguments often
based on cosmological considerations has been driving vast amount of theoretical work. A lot
of effort concentrated on embedding the SM into more fundamental theories providing ultraviolet
completion of both the SM and the Einstein gravity. This line of research became one of the leading
themes in the scientific work of Graham Ross. The work reported in this note has been inspired
by numerous discussions with Graham over the period of more than 35 years. The opportunity to
participate in these discussion and to collaborate with Graham on common research projects was a
great and inspiring privilege.

In the following discussion we shall concentrate on two related topics. Firstly, we shall
advocate the scale invariant extension of the SM as its possible UV completion. Since this theory
necessarily includes the scalar sector extended by at least one additional scalar and generalizes the
SMHiggs sector, it exhibits an interesting cosmological evolution. This includes an inhomogeneous
postinflationary initial condition for subsequent field evolution. The resulting field distribution will
resemble a network of domain walls, which should vanish reasonably quickly to avoid leaving
observable traces in CMB. However, a rapid evolution of the network could result in a gravitational
wave signal. This work is based on published papers [1], [2].

2. Scale invariant universe

Let us consider a scale symmetric Lagrangian for the Higgs neutral component φ1 and a new
scalar singlet φ0, which we call dilaton. Coupling both fields with Einstein gravity via non-minimal
couplings ξi we have:

L
√
g
= −

1
12

(
ξ0φ

2
0 + ξ1φ

2
1

)
R +

1
2
∂µφ0∂

µφ0 +
1
2
∂µφ1∂

µφ1 − V(φ0, φ1), (1)

where R is Ricci scalar in Riemannian geometry. In order to obtain scale symmetry at the tree level
one needs to assume a vanishing Higgs mass parameter m2

H = 0. In terms of φ0 and φ1 fields, scale
symmetric potential at the classical level is of the form:

V(φ0, φ1) = λ0φ
4
0 + λ1φ

2
0φ

2
1 + λ2φ

4
1. (2)

We choose certain hierarchy among couplings:

λ2 � |λ1 | � λ0 (3)

and λ2 > 0, λ1 < 0, λ0 > 0, so the new dilaton sector is weakly coupled to the Higgs sector. Origin
of the dilaton field can be found in Weyl conformal geometry, which at low energies comes down
to Einstein gravity. All essential properties of such formulation are described in the Appendix of
[1] and in [3–31]. Stationary solutions give a flat direction:

〈φ2
1〉 = −

λ1
2λ2
〈φ2

0〉, λ0 =
λ2

1
4λ2

, 〈R〉 = 0, (4)
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where the λ0 dependence comes from the condition of zero cosmological constant at the ground
state:

V(〈φ0〉, 〈φ1〉) = 0.

Since theory is scale symmetric, only ratios of mass scales can be determined and 〈φ0〉 is arbitrary.
With (3) we have the hierarchy 〈φ0〉 � 〈φ1〉. When φ0 acquires its vev, scale symmetry is broken
and flat direction no longer exists. Because 〈φ1〉 is proportional to 〈φ0〉, dilaton generates Higgs
vev and mass, so it can be considered as origin of mass scales.

2.1 Higgs potential parameters and Planck mass:

One can determine what values of λ1, λ2, ξ0 and ξ1 are available in our theory. First, we want
the hierarchy (3) and two conditions to be fulfilled:

m2
H = (125 GeV)2, 〈φ1〉 = 250 GeV (5)

and in our model we have:

m2
H = −4λ1

(
1 −

λ1
2λ2

)
〈φ2

0〉, 〈φ2
1〉 = −

λ1
2λ2
〈φ2

0〉. (6)

Satisfying all the conditions we get:

λ2 =
1
32

(
1 + 16λ1

)
, −

1
48
≤ λ1 ≤ 0 (7)

and example values are:

λ2(λ1 = −10−6) ≈ λ2(λ1 = −10−11) ≈ 0.03125. (8)

Required value of 〈φ0〉 is then:

〈φ2
0〉 = −

2λ2
λ1
〈φ2

1〉 = −
2λ2
λ1
· (250 GeV)2. (9)

Then, we want the Planck mass scale to be generated by φi fields, as in (1):

1
6

(
ξ0 −

λ1
2λ2

ξ1

)
〈φ2

0〉 = M2
Planck . (10)

This will force constraints on values of ξi couplings. In realistic models, [19], we should have
ξ1 � ξ0. Using (7), (9) and (10) we obtain relation of couplings:

λ1 =
−0.0625 · ξ0

ξ0 − ξ1 + 1.43 · 1034 . (11)

Example values:

ξ0 = 105, ξ1 = 0.1 ⇒ λ1 = −4.37 · 10−31,

ξ0 = 1010, ξ1 = 0.1 ⇒ λ1 = −4.37 · 10−26,

ξ0 = 1015, ξ1 = 0.1 ⇒ λ1 = −4.37 · 10−21.

(12)
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Particle content and thermal masses

Obviously, the degrees of freedom φ0 and φ1 are present in our theory, and the mass eigenstates
are their mixture. So we have two neutral scalars G (massless Goldstone) and H (massive "Higgs")
with nG = nH = 1. The masses of this sector are the eigenvalues of the mass matrix in the scalar
sector:

m2
G =2λ1φ

2
1 + O(λ

2
1)

m2
H =12λ2φ

2
1 + 2λ1φ

2
0 + O(λ

2
1).

(13)

However, there are particles in SM, which give important contributions to thermally corrected
effective potential, see [32–36]. These are:

- W± boson: m2
W =

1
4g

2
2φ

2
1, nw = 6,

- Z boson: m2
Z =

1
4 (g

2
1 + g

2
2)φ

2
1, nZ = 3

- top quark: m2
t =

1
2 h2

t φ
2
1, nt = −12,

where g1 ≈ 0.35, g2 ≈ 0.65 and ht ≈ 1 are correspondingly weak, strong and top yukawa coupling
constants1.

The thermal masses m2
e f f for scalars are the eigenvalues of the thermally corrected scalar mass

matrix: (
m2
G

)
e f f =2λ1φ

2
1 +

λ1
6

T2 + O(λ2
1),(

m2
H

)
e f f =12λ2φ

2
1 + 2λ1φ

2
0 +

(
λ2 +

λ1
6
+
g2

1
16
+

3g2
2

16
+

h2
t

4

)
T2 + O(λ2

1).

(14)

It should be noted, that the dependence of the temperature corrections on φ0 enters via the tree-level
mass terms in the scalar sector. Moreover, since the hierarchy of scales demands the hierarchy of
couplings, one finds in the present case λ0 =

λ2
1

4λ2
� |λ1 | � λ2 and the dependence on φ0 starts at

the linear order in a small coupling λ1. At this point we refrain from discussing the issue of thermal
equilibrium of the whole system and concentrate on the analysis of the thermal effective potential.

2.2 Symmetry breaking at high temperature

The scale symmetry breaking can be discussed reliably at the leading level of high temperature
expansion, where

Ve f f = VT=0 +
1
2
φ2

1 ·
(
λ2 +

λ1
6
+
g2

1
16
+

3g2
2

16
+

h2
t

4

)
T2 +

1
2
φ2

0 ·
λ1
6

T2 = VT=0 +
γT2

2
φ2

1 +
λ1T2

12
φ2

0. (15)

One should note that the coefficients of the two terms quadratic in the temperature are completely
independent, as in the case of φ1, which plays the role of the Higgs field, the thermal corrections
are dominated by gauge couplings and by the coupling to the top quark, whereas in the case of the

1It is well known that the Higgs effective potential in the Standard Model, calculated perturbatively, generically
suffers from infrared (IR) divergences when the field-dependent tree-level mass of the Goldstone bosons in the Higgs
doublet vanishes. Here we follow the analysis given in [37] and [38] and assume that such divergences can be cured by
a resummation of IR-problematic terms to any order and neglect these troublesome contributions.
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φ0 they are proportional to the coupling of the mixing term in the scalar sector. As the result, the
proportionality of the two scalar equations of motion which holds at T = 0 gets broken by the term(λ1

6
− γ

)
T2 , 0. (16)

This is the amount of the scale symmetry breaking by the finite temperature effects. As the result,
the only consistent solution to the corrected equations of motion becomes at this order

φ1 = 0, φ2
0 = −

λ2
6λ1

T2. (17)

This shows, that at finite temperature the minimum of the potential picks up a finite expectation
value of the dilaton underlying the fact that the scale symmetry remains broken, and the scale of
the breaking given by the vev of the dilaton is proportional to the temperature - the new scale in
the system. However, this indicates, that when the temperature goes to zero, the symmetry gets
restored and the system goes into the unbroken phase, since the vevs of both scalars seem to be
led to the origin. One should note that this would restore also the electroweak symmetry, which
requires a nonvanishing vev of φ0. The point is that it is this vev which multiplied by the negative
coupling λ1 plays the role of the negative mass squared term in the Higgs sector. This would
suggest a symmetric, unrealistic, vacuum emerging from the hot phase of the universe. However,
the situation is more subtle. The point is that the Higgs field φ1 easily comes to the equilibrium with
rest of the universe through interaction with the Standard Model matter and gauge fields, which
despite the fact that the its thermal average seems to vanish, produces a large rms value of the order
of:

〈φ2
1〉T,p = T

p3

ω2
p

(18)

per decade. For high temperatures and small masses this can be approximated as T2, and produces
a large repulsive force in the equation of motion of φ0 due to the mixing term in the potential:

δmV = λ1φ
2
0φ

2
1 → λ1T2φ2

0, (19)

giving in the eom the contribution:

−
∂δmV
∂φ0

= −2λ1T2φ0, (20)

which drives the dilaton away from the origin. In addition, as discussed later, the dynamical
thermal equilibrium in the scalar sector, perhaps after the point of quasi-thermal initial production,
is not to be maintained at the later stages of the evolution of the universe. Hence, in the realistic
physical system the origin will not be achieved globally and there will be in the universe domains
characterized by large expectation value of the dilaton, and hence the Higgs, which when the
temperature drops down will have a chance to evolve dynamically into the zero temperature vacuum
with spontaneously broken scale symmetry and electroweak symmetry.

A remark is in order here. We have assumed above the manifestly scale-invariant regularization
as described in [26–31]. Then, due to scale invariance at the level of quantum corrections, the one-
loop potential can be approximated by the tree-level formula with couplings understood as running
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couplings. However, in the present case, where the hierarchy is based on the ratio of very small
couplings, the non-thermal perturbative quantum corrections are small as proportional to higher
powers of small couplings with respect to temperature corrections. Possible additional perturbative
contributions violating explicitly scale symmetry, other than temperature effects, will shift the
position of the scalar vevs, but note that the thermal shift of the φ2

0 is proportional to a very large
ratio of couplings λ2

|λ1 |
� 1, hence other perturbative shifts would be typically subdominant unless

the temperature is very low. Here we concentrate on the role of temperature corrections, hence we
assume the scale invariance at the loop level.

2.3 Electroweak Symmetry Breaking

To examine EWSB in our model, we consider time evolution of the effective potential for the
Higgs neutral component φ1, i.e.:

Vφ1(t) ≡ Ve f f

(
φ0(t), φ1,T(t)

)
, (21)

where φ0(t) comes from solution of evolution for realistic model parameters with λ2 = 0.03125,
λ1 = −4.37 · 10−26 and time dependent temperature T(t). In Figure 1 we show plot of the shape
of Vφ1(t) for different time of evolution. It is easy to see that the phase transition associated with
EWSB in tested model is of the second order.

50 100 150 200 250 300
ϕ1 (GeV)

-1.0× 108

-5.0× 107

5.0× 107

1.0× 108

1.5× 108

Vϕ1
(t) (GeV)

Log10[t·GeV] = 14

Log10[t·GeV] = 14.2

Log10[t·GeV] = 14.6

Log10[t·GeV] = 20

Figure 1: Plot of the potential for Higgs neutral component Vφ1 (t) for different time values during evolution
in hot Universe.

3. Additional scalars

Parameter space obtained from fulfilling numerical conditions on mass scales m2
H , v

2 and
M2

P is rather constrained. One can relax these constraints by adding more scalar singlets to the
model. Here we consider briefly addition of one more scalar singlet for simplicity. Then low energy
Lagrangian density will take the form

Lmod
√
g
= −

1
12

(
ξ0φ

2
0 + ξ1φ

2
1 + ξ2φ

2
2

)
R +

2∑
i=0

1
2
∂µφi∂

µφ1 − Vmod(φ0, φ1, φ2), (22)
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where potential Vmod is assumed to be

Vmod(φ0, φ1, φ2) = λ0φ
4
0 + λ1φ

2
0φ

2
1 + λ2φ

4
1 + λ3φ

2
1φ

2
2 + λ4φ

4
2, (23)

so the new scalar φ2 doesn’t couple directly to the dilaton. Such a structure could be justified for
instance by the locality of couplings in extra dimensions (space-time or internal). Taking λ2 and
λ4 order one while λ1, λ3 � 1, one can easily arrange for a ground state displaying a hierarchy of
vevs:

〈φ2
0〉 � 〈φ

2
1〉 � 〈φ

2
2〉 (24)

and zero cosmological constant condition:

Vmod(〈φ0〉, 〈φ2〉, 〈φ2〉) = 0, (25)

where the explicit solution reads:

〈φ2
1〉 =

2λ1λ4

λ2
3 − 4λ2λ4

〈φ2
0〉, 〈φ2

2〉 = −
λ3
2λ4
〈φ2

1〉 = −
λ1λ3

λ2
3 − 4λ2λ4

〈φ2
0〉, λ0 =

λ2
1λ4

4λ2λ4 − λ
2
3
.

(26)
Then the effective Planck mass may become almost independent from the field playing the role of
the Higgs and assuming the smallest vev:

M2
P ∼ ξ0φ

2
0 + ξ1φ

2
1. (27)

Such an extension of the scalar sector would allow building additional hierarchy of scales, while the
thermal evolution for each pair of cooupled scalars may follow approximately the scenario outlined
above, this leading to the physically acceptable final state.

4. Inhomogeneities

We have argued that at late times the scale invariant scalar potential may lead to the evolution
reproducing to large extent the one known from the Standard Model, see Figure 1. Therefore
inhomogeneities in the initial state of the fields at the beginning of the post-inflationary epoch
may lead to formation of a network od domain walls, whose collapse may lead to a signal in the
spectrum of the gravitational wave background as discussed in [2]. To study generic effects a
family of potentials has been constructed whose shape around the potential barrier and the level of
degeneracy of minima can be set independently. This set of potential includes representatives of
the scale invariant potentials in the form projected on the direction of the physical Higgs field in the
space of scalar degrees of freedom. The evolution of networks of domain walls in models given by
potentials from the constructed family has been investigated using lattice simulations based on the
constant width PRS algorithm. After preforming thousands of simulations Authors of [2] have found
that the final state of the decay of the network is determined by the bias of the initial probability
distribution. Even though other factors can shorten or enlarge the life-time of the network, the
excess of lattice points belonging to one of basins of attraction of minima of the potential drive the
evolution of domain walls into corresponding vacuum. The findings are represented in the Figure
2, details can be found in [2].

7



P
o
S
(
C
O
R
F
U
2
0
2
2
)
0
5
9

Scale invariant SM and inhomogeneous universe Zygmunt Lalak

10- 5 10- 4 10- 3 0.01 0.1 1 10 100 103 104 105 106 107 108
10- 26
10- 24
10- 22
10- 20
10- 18
10- 16
10- 14
10- 12
10- 10
10- 8
10- 6

f[Hz]

Ω
G
W
h2 AEDGE

BBN

LISA

do
m
ai
n
w
al
ls
sp
ec
tr
um
pe
ak

Figure 2: The blue band shows hypothetical peak amplitudes of GWs emitted from cosmological domain
walls as a function of the peak frequency f . The width of the band comes from the possible range on the
prefactor controlling the amplitude of the signal. The shape of the spectra peaking in the allowed region is
indicated by the dashed blue lines. These should be compared to predicted sensitivities of currently operating
and planned detectors (LIGO, LISA, AEDGE, AION-1km, ET) as well as to an upper bound induced by the
CMB/BBN.

5. Summary and conclusions

In this note we have discussed possible thermal corrections to the cosmological evolution of
the scale symmetric scalar sector extending the standard Higgs sector. All sources of the explicit
breaking of scale invariance other than the temperature corrections have been neglected. Hierarchy
of generated mass scales relies on a hierarchy of small couplings, which stays perturbatively stable.
We have visualized the effects of the breaking of the scale symmetry by the thermal corrections and
argued, that the dynamical restoration of the scale symmetry at low energies and late times due to
thermal corrections dragging the expectation value of the dilaton towards the origin can be avoided
in realistic physical models. We have also demonstrated with specific examples that starting with
the acceptable initial conditions one can reach the physically relevant vacuum configuration as the
result of the evolution of the scale symmetric scalar sector in the hot universe.

We have pointed out that the cosmological evolution of the scale invariant theory may lead to
a gravitational wave signal, a discovery of which would constrain the parameter space of specific
models.
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