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1. Introduction

Many problems in physics contain large numbers of parameters and/or large numbers of
predictions that are hard to visualize. Here we discuss how tours can assist with the visualization of
these problems. Another issue that arises in multi-parameter problems is that of mapping different
parameter regions to different prediction regions. To address this question we propose a partitioning
of parameter space based on clustering predictions in observable space. To be specific we discuss
the application of these tools to the so-called "neutral B-anomalies" problem, illustrating what can
be learned beyond the usual global fits [1].

The results from the tour methods that we use are usually presented as movies or animations
which are not visible in the pdf file. Some of the animations that we mention here can be generated
by running the example in the Shiny app https://github.com/uschiLaa/pandemonium. For the
remainder, you can contact one of us directly. Short movies showing the animations referenced
here can also be obtained from the arXiv version of this document.

As we know, there are multiple observables (several hundred binned branching ratios and decay
distributions) in B-meson decay modes originating from the quark level transition 𝑏 → 𝑠ℓ+ℓ− where
the leptons are muons or electrons. These have received a considerable amount of attention due to
persistent deviations from the standard model (SM), although recently the discrepancies in two of
the observables (𝑅𝐾 and 𝑅𝐾∗) seem to have disappeared [2]. This system has been studied using
global fits of the hundreds of observables in terms of between two and six parameters. The results
that one can obtain from that type of exercise include

• finding the best-fit (BF) parameters

• measuring the goodness of the fit and comparing it to the SM

• model selection to find the subset of parameters that can best describe the data

• finding confidence level intervals for the fitted parameters

The latter already corresponds to a partitioning of parameter space based on a single distance
to a reference point (the experimental values of the observables), as illustrated in the left panel
of Figure 1. These results are very useful for physics studies to determine whether a given
model is a suitable description of the data. Even for these existing studies, a visualization of the
high dimensional confidence level regions can provide information beyond what is observed by
considering two-dimensional projections. As an example, we show in the right panel of Figure 1,
the result of a guided tour used to find the projection illustrating the largest separation between the
SM point and the best fit to the data from a six-parameter fit from 2019 [3]. This view indicates that
the apparent deviation from the SM occurs along the 𝐶9 direction in parameter space. Even more
intuition can be gained from animation 1, which shows a grand tour of the 6D region near the BF
and we have marked the SM, the 6D BF point and several one and two-dimensional fits described
in [3].

2. Beyond global fits

Some of the new insights into a data set that can be obtained from clustering are
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Figure 1: Left panel: partitioning of parameter space using confidence level regions from a global fit. Right
panel: optimal projection of the 6d parameter space of a global fit obtained with a guided tour showing that
the best fit deviates from the SM mostly along the 𝐶9 direction.

• A partitioning of parameter space into clusters uses all inter-point distances. It does not
depend on a specific reference point, such as an experimental measurement that may not yet
exist (or that may change, as was recently the case with 𝑅𝐾 ). Different clustering parameters
are suitable to emphasize different aspects of the problem.

• The number of clusters, or different groups, in the space, reflects the resolving power of a
specific data set.

• The clustering results can help isolate trends and effects from subsets of observables.

In addition, high-dimensional visualization tools can offer new perspectives. For example, they

• Permit a visual inspection of the collective dependence of the observables on the parameters.

• Provide a graphic display of observable spaces with more than three dimensions.

• Highlight the relative importance of different observables which can help prioritize further
studies.

• Provide a virtual assessment of the impact of correlations, dominant observables, tensions in
global fits, and others.

2.1 The B-anomaly example

For conceptual clarity and to simplify the visualization, we first select a subset of the observables
and parameters that have been used in the literature to discuss the 𝑏 → 𝑠ℓ+ℓ− system. Most existing
global fits treat the Wilson coefficients (WC) in an effective Hamiltonian as free parameters. We
will first illustrate our methods with a two-dimensional case where 𝐶𝜇9 and 𝐶𝜇10 are the parameters,
later on, we add two more parameters 𝐶𝜇9′ and 𝐶𝜇10′ for a four-dimensional example. The effective
weak Hamiltonian responsible for the 𝑏 → 𝑠ℓ+ℓ− transitions at the B-mass scale is usually written

3
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as

Heff = − 4𝐺𝐹√
2
𝑉𝑡𝑏𝑉

★
𝑡𝑠

∑︁
𝑖

𝐶ℓ𝑖 (𝜇)O𝑖ℓ (𝜇) (1)

Oℓ9 =
𝑒2

16𝜋2 (𝑠𝛾𝜇𝑃𝐿𝑏) (ℓ̄𝛾
𝜇ℓ), Oℓ9′ =

𝑒2

16𝜋2 (𝑠𝛾𝜇𝑃𝑅𝑏) (ℓ̄𝛾
𝜇ℓ), (2)

Oℓ10 =
𝑒2

16𝜋2 (𝑠𝛾𝜇𝑃𝐿𝑏) (ℓ̄𝛾
𝜇𝛾5ℓ), Oℓ10′ =

𝑒2

16𝜋2 (𝑠𝛾𝜇𝑃𝑅𝑏) (ℓ̄𝛾
𝜇𝛾5ℓ). (3)

where we have singled out the four operators we discuss here. This set of operators, with real WC,
only allows CP-conserving new physics and affects only the muons. Our notation is such that these
WC refer exclusively to new physics, they are 0 in the SM, and the SM effects are accounted for
separately.

The dimensionality of observable space also needs to be reduced for clarity. We select a subset
of fourteen observables based on the ranking analysis of [3]. These observables are listed in Table 1,
where the last column gives the ID that this observable had in [3]. We note, however, that some
definitions of the observables are not identical: the sign of 𝑃2 is reversed here, and in some cases,
different experimental measurements are being averaged as we rely on flavio [4] for this study.
We choose the observables marked with a ★ which were singled out as the most important ones
for the determination of 𝐶𝜇9 and 𝐶𝜇10 in the global fits. We also include the ones marked with a ★
which were singled out as important for 𝐶𝜇9′ and 𝐶𝜇10′ . The remainder 𝑃2 and 𝑃′

5 bins are chosen
to complete the 𝑞2 distributions for these two observables. Note that 𝑅𝐾 and 𝑅𝐾★ are the ones
whose experimental values have recently changed and this will provide us with a chance to evaluate
this change within this study. The experimental values are taken from: for 𝑃′

5 LHCb [5], CMS [6]
and ATLAS [7]; 𝑃2 LHCb [5]; 𝑅𝐾 LHCb [8] and Belle [9]; 𝑅𝐾★ LHCb [10] and Belle [11]. The
corrected values of 𝑅𝐾 and 𝑅𝐾★ [2]. Unless specifically stated otherwise, all plots and results will
use the "old" values of 𝑅𝐾 and 𝑅𝐾★. The 2D BF to this dataset as obtained from flavio [4] is the
point (𝐶𝜇9 , 𝐶

𝜇

10) = (−0.8, 0.1), and lies 3.7𝜎 from the SM. These two points are marked with an ∗
and an ◦ in most of the plots. The BF after the change in 𝑅𝐾 and 𝑅𝐾★ to this same dataset becomes
(𝐶𝜇9 , 𝐶

𝜇

10) = (−0.4,−0.1). .
For our study, we will generate models (sets of 14 predictions) on a grid of values for (𝐶𝜇9 , 𝐶

𝜇

10).
The original Shiny app requires the grid to be uniform but this is not needed in general. All the
predictions are generated with flavio [4] and the grid is chosen to be large enough to contain both
the SM and the BF points.

3. Clustering

To partition the continuous parameter space we consider model points 𝑀𝑘 defined by their
coordinates (𝐶𝜇9 , 𝐶

𝜇

10)𝑘 in parameter space and by their coordinates (𝑂1, · · · , 𝑂14)𝑘 in observable
space. It is easier (but not necessary) to use a distance function that can be calculated from
coordinates. To this effect, we define the coordinates of each model point in observable space to be

𝑌𝑘𝑖 =
∑︁
𝑗

Σ
−1/2
𝑖 𝑗

(𝑋𝑘 𝑗 − 𝑅 𝑗) ≈
∑︁
𝑗

1√︁
(Σ−1)𝑖𝑖

(Σ−1)𝑖 𝑗 (𝑋𝑘 𝑗 − 𝑅 𝑗), (4)
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ID Observable Exp. ID in [3]
1★ 𝑃′

5(𝐵 → 𝐾∗𝜇𝜇) [0.1 − 0.98] 0.52 ± 0.10 20
2 𝑃′

5(𝐵 → 𝐾∗𝜇𝜇) [1.1 − 2.5] 0.36 ± 0.12 28
3 𝑃′

5(𝐵 → 𝐾∗𝜇𝜇) [2.5 − 4] −0.15 ± 0.14 36
4 ★ 𝑃′

5(𝐵 → 𝐾∗𝜇𝜇) [4 − 6] −0.39 ± 0.11 44
5 ★ 𝑃′

5(𝐵 → 𝐾∗𝜇𝜇) [6 − 8] −0.58 ± 0.09 52
6 𝑃′

5(𝐵 → 𝐾∗𝜇𝜇) [15 − 19] −0.67 ± 0.06 60
7 𝑃2(𝐵 → 𝐾∗𝜇𝜇) [0.1 − 0.98] 0 ± 0.04 17
8 𝑃2(𝐵 → 𝐾∗𝜇𝜇) [1.1 − 2.5] −0.44 ± 0.10 25
9 𝑃2(𝐵 → 𝐾∗𝜇𝜇) [2.5 − 4] −0.19 ± 0.12 33

10★ 𝑃2(𝐵 → 𝐾∗𝜇𝜇) [4 − 6] 0.10 ± 0.07 41
11 ★ 𝑃2(𝐵 → 𝐾∗𝜇𝜇) [6 − 8] 0.21 ± 0.05 49
12 ★ 𝑃2(𝐵 → 𝐾∗𝜇𝜇) [15 − 19] 0.36 ± 0.02 57

13 ★★ 𝑅𝐾 (𝐵+ → 𝐾+) [1.1 − 6] 0.86 ± 0.06 98
new value 0.949+0.047

−0.046
14 ★★ 𝑅𝐾∗ (𝐵0 → 𝐾0∗) [1.1 − 6] 0.73 ± 0.11 100

new value 1.027+0.077
−0.073

Table 1: List of observables used to cluster measurements with an underlying 𝑏 → 𝑠ℓ+ℓ− quark transition.

where 𝑋𝑘 𝑗 is the prediction of model 𝑘 for observable 𝑂 𝑗 , 𝑅 𝑗 is the "origin" or reference point for
that observable, and Σ𝑖 𝑗 is the total covariance matrix including both theoretical and experimental
uncertainties and correlations. The origin, 𝑅 𝑗 is arbitrary but would typically be chosen as a special
point. In this example that could be the experimentally observed point 𝐸𝑖 , the SM prediction, or
any other preferred model. These coordinates thus measure the distance from the reference point
in units of combined theoretical and experimental uncertainty. Using these coordinates, we define
the (square of the) distance between models as

𝑑𝜒2 (𝑋𝑘 , 𝑋𝑙) =
∑︁
𝑖, 𝑗

[𝑋𝑘𝑖 − 𝑋𝑙𝑖] (Σ𝑒𝑥𝑝 + Σ𝑡ℎ)−1
𝑖 𝑗 [𝑋𝑘 𝑗 − 𝑋𝑙 𝑗] =

∑︁
𝑖

(𝑌𝑘𝑖 − 𝑌𝑙𝑖)2. (5)

The last equality follows if Σ does not depend on the model, which is an often-used approximation
particularly when the experimental errors dominate. In this case, the clustering results will not
depend on the reference point. In particular, they would not change as a result of the recent change
in the central values of 𝑅𝐾 and 𝑅𝐾★.

This definition of distance is just the Euclidean distance with the coordinates defined by Eq. 4,
and it can be interpreted as a Δ𝜒2. We exploit this interpretation to construct the partitioning
by first defining a centroid and a radius for each cluster. The centroid 𝑐 𝑗 of cluster 𝐶 𝑗 is the
member of the cluster which minimizes 𝑓 (𝑐, 𝐶 𝑗) =

∑
𝑥𝑖∈𝐶 𝑗

𝑑 (𝑐, 𝑥𝑖)2 and the radius of the cluster
is 𝑟 𝑗 = max𝑥𝑖∈𝐶 𝑗

𝑑 (𝑐 𝑗 , 𝑥𝑖). The centroids are meant to be a representative point for each cluster
that can serve as a benchmark for further studies. With these definitions, one can use "one-sigma"
clusters, for example, to obtain the partitioning. The interpretation, in this case, is that if a future BF
to all experiments falls at one of the centroids, the corresponding cluster contains all the points lying
in the 1𝜎 region, Δ𝜒2 ≤ 2.3 for two parameters. Note however that no one centroid is singled out

5
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by a global fit: at this stage, there is no need for a fit (or even measurements) to exist. Similarly, we
can require that any two centroids be separated by at least Δ𝜒2 > 2.3. Two caveats are important:
there will always be points as close to each other as we want that, nevertheless, sit on different
clusters, and the boundaries between clusters will shift if the parameter range that is being studied
is changed. This clustering method is sketched in the left two panels of Fig. 2, and the results for
our example are then shown in the third panel in observable space.

Figure 2: Partitioning the (continuous) parameter space by measuring the distance between two models 𝑀1
and 𝑀2 in observable space (left two panels). The result in this example is shown in the right panel and is
obtained as described in the text.

The distance between clusters is referred to as linkage, and here our focus is on Ward.D2
linkage which defines clusters by minimizing a within-cluster dissimilarity function. To decide on
the number of clusters we compute both the maximum cluster radius and the minimum distance
between centroids as a function of the number of clusters. The concept of a cluster as a set of points
that are indistinguishable from each other at some level of confidence fixes the maximum radius
and thus the minimum number of clusters. For the centroids to differ at some level of confidence,
the minimal distance between them must also be fixed and this condition results in a maximum
number of clusters. These combined requirements lead to there being five clusters in this example
as illustrated in Fig. 3. The resolving power of a given data set depends on the parameter space
volume, the range of predictions for a given observable over that region of parameter space, and the
size of the uncertainty in both measurements and predictions. It is possible to increase the resolving
power by adding observables or by increasing the precision of a measurement. The latter happened
with the latest measurements of 𝑅𝐾 and 𝑅𝐾★, and including this updated experimental error would
improve the resolution of this set to six clusters. These changes in 𝑅𝐾 and 𝑅𝐾★ have minimal effect
on the results of our clustering exercise so we proceed with the results as obtained in [1]. We later
show what changes occur when the new values of 𝑅𝐾 and 𝑅𝐾★ are used.

The resulting clusters are shown in Fig. 4. The left panel shows the partition of parameter space.
The boundaries between clusters fall approximately along lines of constant 𝑅𝐾 and the significance
of this will be discussed below. The right panel is a parallel coordinate (PC) plot representation of
the observable space. This PC plot has been rendered after centering the coordinates. Doing this
removes the information about distance from the reference point, but allows a better comparison
of the relative size of variations in the predictions for each observable. If one is more interested
in following the models across the plot than in the relative size of the variations, a PC plot that is
centered and scaled can be used. This option also exists in the tool pandemonium. A grand tour

6
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Figure 3: Maximum cluster radius and minimum distance between centroids as a function of the number of
clusters determine the optimal choice for this example which is five clusters.

view of the clusters in observable space along with the experimental point (black dot) can be seen in
animation 2. From that animation one can see, for example, that the experimental point is separated
from the hyperplane of predictions for all values of the two parameters.

0.0

0.2

0.4

−1.2 −0.8 −0.4 0.0
C9

C
10

Cluster assignment in parameter space

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14

Figure 4: Clustering result using Ward.D2 linkage (which minimizes the variance within clusters) and
Euclidean distance (left panel), and the corresponding centered parallel coordinates (PC) for all 14 observables
(right panel) with matching color codes. The darker line for each color in the PC plot marks the cluster
benchmark (also indicated on the left, with an open diamond symbol). A projection of the 14d observable
space is shown in the last panel of Fig. 2.

In Fig. 5 we illustrate how the result of the clustering exercise helps visualize the collective
dependence of all observables on the parameters. In the left panel, we show the dependence of two
observables, 𝑅𝐾 (red lines mark constant values), and one bin of 𝑃′

5 [4 − 6] (black lines). When
there are many observables a plot like that is not very useful, instead one may want to look at
combinations of observables with different weights, as illustrated in the central panel where we
show the lines with constant averages of the two. The clustering exercise shown on the right panel
effectively combines all the observables with different weights that can be altered by choosing a
distance function and linkage. We have superimposed on this last panel the lines of constant 𝑅𝐾
and 𝑃′

5 [4 − 6] to show how the boundaries between clusters follow lines of approximately constant
𝑅𝐾 . This simply reflects that this observable is completely dominant in this case. This can also
be seen in the PC plot of Fig. 4. The large spread seen in 𝑂13 in that plot reflects that, in units of
uncertainty, this observable varies the most across this region of parameter space. One can also
see in the same plot that 𝑅𝐾 is dominant in determining the separate clusters (almost no overlap
between the colors along the 𝑂13 coordinate. The same reasoning shows that 𝑂2, 𝑂8, 𝑂14 are also
separating the clusters cleanly.
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Figure 5: The left panel shows how two observables vary across the parameter region, the center panel how
an average of these two varies, and the right panel the collective behavior of all 14 observables captured by
the clustering result.

Sub-leading effects can be observed by adding a sixth cluster, for example. In Fig. 6 we see
the sixth cluster in yellow separating from the light green by an approximately horizontal partition
that indicates sensitivity to 𝐶10 in the region away from the SM. The arrow points to the PC plot
where one can see that it is mostly 𝑂11,12 (𝑃2 [6 − 8] and 𝑃2 [15 − 19]) that are most important
for determining the separation between yellow and pink clusters. We should caution here that
numerical accuracy affects small details which at some level become just noise.

Figure 6: When increasing the number of clusters to six we split one region, which now appears in light
green and yellow. Connecting the parameter region plot (left) with the PC plot (right) we find that two
observables are important for the separation of the new yellow cluster.

Another way to study sub-leading effects is to remove the dominant observable, in this case,
𝑅𝐾 . The result is shown in Fig. 7 where we use the fact that the resolving power has been reduced to
only 3 clusters. The dominant operator in the remaining set is 𝑅𝐾∗ but its effect is not as important
as that of 𝑅𝐾 . This is evident both from the size of its variation in the PC plot and from the shape of
the inter-cluster boundaries. Without 𝑅𝐾 , this observable set is mostly sensitive to 𝐶9. The cluster
separation, in this case, can be seen in the PC plot to be a collective effect due to many observables.
The brown cluster is mostly due to 𝑃′

5 and this can be seen in the PC plot which shows this cluster
overlapping with others for the 𝑃2 observables. Notice, of course, that the BF (∗) has also shifted
when we removed 𝑅𝐾 .

It is possible to enhance or suppress effects by changing the clustering parameters. To increase
the importance of a dominant observable one can use maximum distance with complete linkage

8
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Figure 7: Clustering result after removing the dominant observable 𝑅𝐾∗ , the thirteenth coordinate now
becomes 𝑅𝐾★ .

instead of Euclidean distance with ward linkage. The left panel of Fig. 8 illustrates this with a
sketch in which two models, 𝐴 and 𝐵 are separated by a distance of 3 along one observable and by
a distance of 1 along the other observable. Using the maximum distance removes the sub-leading
observable from the picture whereas using the Manhattan distance increases its relative importance.
In the center panel, we show the result of clustering our set of 13 observables (with 𝑅𝐾 removed)
using maximum distance and complete linkage. This increases the weight of 𝑅𝐾★ as reflected by
the change in boundary shape from that seen on the left panel of Fig. 7. The right panel is the result
of clustering the full set of 14 observables but using the Manhattan distance (with Ward linkage),
the clusters are now due to a collective effect.

0.0

0.2

0.4

−1.2 −0.8 −0.4 0.0
C9

C
10

Cluster assignment in parameter space

0.0

0.2

0.4

−1.2 −0.8 −0.4 0.0
C9

C
10

Cluster assignment in parameter space

Figure 8: Left panel: sketch illustrating the difference between different distances. Center panel: observables
with 𝑅𝐾 removed clustered with Chebyshev (maximum) distance and complete linkage. Right panel: all 14
observables clustered with Manhattan distance.

We end this section by using the new values of 𝑅𝐾 and 𝑅𝐾★ as recently reported by LHCb [2].
According to our discussion, we do not expect the change in central value to alter the clustering as
this does not depend on the reference point. On the other hand, the new numbers have smaller errors
and this will enhance the importance of these two observables. Since they were already dominant,
we do not expect any major differences. This is confirmed by comparing Fig. 9 to Fig. 4, the shape
and size of the clusters are similar but 𝑅𝐾 is even more dominant than before, the position of the
BF (∗) has, of course, changed.

9
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Figure 9: Clustering result matching Fig. 4 but using the new experimental values of 𝑅𝐾 and 𝑅𝐾★ .

4. Visualization

The PC plots can be used to visualize other aspects of observable space if the coordinates are
not centered or scaled. This is illustrated in Fig. 10 where the horizontal line labeled "Exp" fixes
the origin to the position of the experimental measurement (central value as the uncertainties are
accounted for in the definition of the coordinates). This figure allows for visual inspection of several
points:

• We see which observables are in tension with model predictions, for example, 𝑂1 cannot
match the experimental value for any values of the parameters in the region of study (within
some uncertainty that we quantify in the vertical axis of Fig. 14).

• We see which observables are insensitive to the parameters 𝐶9 and 𝐶10, they are 𝑂6 and 𝑂7

as they exhibit minimal variation across the range studied.

• We observe the tensions in the fit: for example, the BF lies on the boundary between purple
and light green clusters. The PC plot shows that𝑂4(𝑃′

5 [4−6]) and𝑂5(𝑃′
5 [6−8]), which are

the 𝑃′
5 bins that show the largest discrepancy between the SM and experiment, prefer models

within the light green cluster which have larger negative 𝐶9. Recall that the experimental
value of 𝑃′

5 [4 − 6] = −0.39 ± 0.11, and thus lies outside, to the left, of the parameter region
plotted. On the other hand, the pre-2022 value of 𝑅𝐾 prefers the purple cluster. One can
further see that the model points that take 𝑃′

5 [4 − 6], 𝑃′
5 [6 − 8] closest to their experimental

value, take 𝑅𝐾 furthest away. Interestingly this tension has only become worse with the new
value of 𝑅𝐾 which agrees with the SM and would sit on the dark green cluster in this plot.

The sensitivity of the observable set to given directions in parameter space can be studied and
correlated with the variation of specific observables across the parameter range. For example, in
Fig. 11, the superimposed lines show that the set is mostly sensitive to models with 𝐶10 ≈ 0.2𝐶9,
and that it has almost no sensitivity to models where 𝐶10 = 𝐶9. Both of these features were already
known from the results of global fits and this approach offers a clear visual picture. The right panel
shows 𝑂11 which varies across the parameter range in an orthogonal manner (this one is selected
from the interactive tool pandemonium which displays all of them), indicating that one way to
increase sensitivity to models with 𝐶10 = 𝐶9 is to improve the precision in the measurement of 𝑂11

(𝑃2 [6 − 8]).
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Figure 10: The left panel shows lines of constant 𝑃′
5 [4− 6] and 𝑅𝐾 superimposed on the clustering result of

Fig. 4. The right panel shows the PC plot but without centering or scaling illustrating how each observable
deviates from its experimental value.

C10 = −C9

C9 = −5 C10

C10 =  C9
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0.4

−1.2 −0.8 −0.4 0.0
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C
10

Cluster assignment in parameter space
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0.4

−1.2 −0.8 −0.4 0.0
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C
10

Centered coordinate values for O11

Figure 11: The left panel shows the lines 𝐶9 = −5𝐶10, 𝐶10 = 𝐶9 and 𝐶10 = −𝐶9 superimposed on the
clustering result of Fig. 4. The right panel shows variation of 𝑂11 (𝑃2 [6 − 8]) across the parameter range.

Tours allow us to visualize the high-dimensional (14 in this example) observable space and see
how models compare to the measurement. On the left panel of Fig. 12 we illustrate a typical 2D
plot in parameter space and contrast it with the corresponding 2D plot in observable space. The
two convey complementary information, with the latter revealing the relative position of a model
prediction and the measurements. To do this in high dimensions is possible using PC plots such as
the one in the right panel of Fig. 10, but also using tours. Tours give a more intuitive idea of the full
space as can be seen in animation 2. In the right panel of Fig. 12 we show one projection from the
grand tour of the animation. This indicates that this parameter space cannot reach the experimental
point.

5. The case with four parameters

From the physics perspective, including the two additional parameters 𝐶𝜇9′ and 𝐶𝜇10′ , allows the
exploration of models with right-handed quark currents. These are interesting in their own right but
are disfavored by global fits. From the visualization perspective, the problem is complicated by the
presence of two high-dimensional (more than three) spaces. This additional complication requires

11
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Figure 12: The left and center panels contrast the information that can be conveyed by parameter and
observable space displays. The right panel is a projection of the 14-dimensional observable space partitioned
into five clusters that shows clearly how the experimental point (black ♦) is separated from all the models
parameterized by this range.

the introduction of slicing tools [12, 13] to inspect 2D projections of thin slices in the orthogonal
space, as suggested in Fig. 13.

Figure 13: Sketch of how a slice of high-dimensional data can be selected based on the orthogonal point
distance from the projection plane.

In our B-anomalies example, we enlarge our parameter space of study choosing ranges for
the two new parameters that cover both the SM and at least their 1𝜎 ranges around the BF found
in global fits. With the new parameter space and the same 14 observables, the resolution is only
four clusters and we compare this case to the two-parameter case using PC plots for both cases in
Fig. 14. We can immediately see that the extended range of predictions increases the overlap with
the experiments (both plots have the same vertical scale). One can see, in particular, that the range
of predictions for 𝑂4,5,6 extends towards the origin with the enlarged parameter space. This would
be evidence (within errors, of course) for 𝐶𝜇9′ and 𝐶𝜇10′ being necessary to account for the data.
Looking at 𝑂13 we see that 𝑅𝐾 no longer cleanly separates the clusters. We also observe a reduced
tension between 𝑃′

5 and 𝑅𝐾 .
We now turn to visualize the parameter space for this 4D case. In Fig. 15 we show on the

left panel a 𝐶9 − 𝐶10 projection which shows how the correlations between 𝐶9 − 𝐶10 due to 𝑅𝐾
are still dominant. The right panel shows a projection from observable space where it is clear that
this 4D volume of models also does not contain the experimental point. The center panel is a thin
slice projected onto the 𝐶9 − 𝐶9′ that illustrates correlations between these two parameters that are
not visible without slicing, obtained with the tool described in [14]. The clusters in parameter and

12
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Figure 14: PC plots for two parameters and five clusters (left) and four parameters and four clusters (right)
obtained with Ward linkage and Euclidean distance. The plots are aligned to match the vertical scale.

observable spaces for this case can be better visualized with animations 3 and 4. Animation 5 shows
the effect of slicing through the SM point and projecting onto the 𝐶9 − 𝐶10 plane (the interactive
tool mmtour allows one to change the slice height and the projection plane). Animation 6 shows
what happens when varying the slice height while projecting onto the 𝐶9 − 𝐶9′ plane. The latter
reveals correlations between these two parameters that are only visible in thin slices and obscured
in any projection.

Figure 15: Selected projections from tours in parameter space (left and center) and observable space (right)
of the clusters resulting with four parameters. The color code matches the one in the right panel of Fig. 14.

6. Including more observables

As we know hundreds of observables have been discussed in connection with the 𝑏 → 𝑠ℓ+ℓ−

transitions. Here we look at the 89 that we selected in [1], with the first 14 being those in Table 1.
Using all of them, the resolving power of this data set is between 8 and 10 clusters. We will illustrate
the main results using only five clusters. The centered PC plot of Fig. 16 can be used to select
additional ones that may be important. In particular 𝑂86 (𝐵(𝐵𝑠 → 𝜇+𝜇−)) stands out. If we use
the average experimental error computed by flavio, 𝐵(𝐵𝑠 → 𝜇+𝜇−) = (2.81 ± 0.24) × 10−9,
this observable alone explains most of the difference in the clusters obtained with the set of 89
observables and with only the first 14. This can be seen by comparing the left two panels in Fig. 17.

For a different application of these results, we turn our attention to 𝑂44 which Fig. 16 shows
to have moderate importance. In the third panel of Fig. 17 we show the coordinate variation of
this observable. It suggests that it can constrain directions missed by the current overall picture
if its significance can be enhanced. Currently, this observable has the experimental value 𝑂44 =

𝑃′
4 [0.1−0.98] = 0.135±0.118. We can study what happens if the uncertainty in this measurement
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O13 O44 O86

Figure 16: Centered PC plot for the 89 observables listed in [1], the first 14 correspond to those in Table 1.

can be reduced in the future. For example, the right panel of Fig. 17 shows the effect of adding just
this observable to the original set of 14 but assumes that its experimental error can be reduced by
a factor of four.
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Figure 17: The left panel shows 5 clusters in parameter space with only two parameters, 𝐶9, 𝐶10, and 89
observables. The second pane from the left shows the 5 clusters including only the first 14 observables plus
𝐵(𝐵𝑠 → 𝜇+𝜇−) as described in the text. The third panel shows the variation of 𝑂44 with 𝐶9, 𝐶10 and the last
panel the 5 clusters that would be obtained using only the first 14 observables plus 𝑃′

4 [0.1 − 0.98] with an
experimental error four times smaller than it currently is.

7. Conclusions

Using the example of the B anomalies we have demonstrated how to investigate the rela-
tionship between parameter and observable space using a group of related displays to interpret
different clustering outcomes. This analysis is facilitated by the interactive environment of the tool
pandemonium, which allows for easy comparison of clustering results with different parameter
settings. By choosing different settings, specific observables can be emphasized or suppressed.
The tool provides information to decide what is the optimal number of partitions for a given data
set, and which observables should be emphasized to explore specific directions in parameter space.
In this talk, we applied these methods to discuss a well-known B physics problem, which provides
feedback for using these methods for other cases.

For the B anomalies example, our study highlights the importance of 𝑅𝐾 and how this is
connected to the precision of the measurement. With the new, more precise, measurement this
observable becomes even more dominant. Even though global fits will be closer to the SM with the
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new values of 𝑅𝐾 and 𝑅𝐾★, the tension with certain bins of 𝑃′
5 is increased. Increased precision

in different observables is required to explore directions of parameter space that are orthogonal to
𝑅𝐾 , and our tool helps identify which ones to emphasize for different purposes. The observable
space tours reveal when the parameters of a model are insufficient to address a discrepancy with a
reference point and PC plots can be used to quantify this. In this example, using four WC improves
but does not solve the inability of models parametrized in this form to completely address the
experimental results. We introduced tours with slicing to allow for the examination of correlations
between parameters that are hidden in projections, in particular between 𝐶9 and 𝐶9′ . This situation
occurs when the correlation is obscured by the effect of other parameters.

The technique and software tools we propose have broad applications in particle physics and
other fields, offering new insights, particularly in less understood scenarios.

The tools described in this talk have been implemented by Ursula Laa and are available on
GitHub as a Shiny app (an R package) at https://github. com/uschiLaa/pandemonium. The tools
used for the slice tour shown in this talk have been implemented by Alex Aumann as a Mathematica
package available on GitHub at https://github.com/uschiLaa/mmtour.
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