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1. Introduction

Several experiments have raised inflation to the level of a cornerstone of modern Cosmology,
but many important questions, including the origin of inflation, the inflaton field and its associated
symmetries protecting its mass, the issue of initial conditions for inflation and the nature of dark
energy and dark matter, among other fundamental questions, remain in need of an answer. A
first step towards the understanding of these puzzles is to study possible connections between
the electroweak scale of the Standard Model or its possible extension (such as the supersymmetry
breaking scale) with that of inflation. An additional constraint would be to impose at the electroweak
vacuum the presence of a tiny tuneable cosmological constant in order to accommodate the observed
dark energy, without necessarily trying to explain it.

Despite the absence of evidence of low energy supersymmetry at the Large Hadron Collider
at CERN, a substantial part of the theoretical community believes that supersymmetry should play
a role at some very fundamental level. However, inflationary models in supergravity suffer in
general from several problems, such as fine-tuning to satisfy the slow-roll conditions, large field
initial conditions that break the validity of the effective field theory and stabilisation of the (pseudo)
scalar companion of the inflaton arising from the fact that the number of bosonic components of
superfields are always even. A solution to all three problems, with the sgoldstino as inflaton, was
recently proposed in [1] and [2]. The model has a gauged R-symmetry and generalises models
of the so-called “minimal inflation". The superpotential is linear and the slow-roll conditions
are automatically satisfied. Also, since the inflation arises at a plateau around the maximum of
the scalar potential (hill-top) no large field initial conditions are needed, while the pseudo-scalar
companion of the inflaton is absorbed into the R-gauge field that becomes massive, leading to the
inflaton being present as a single scalar field in the low-energy spectrum. Moreover, this model
allows the presence of a realistic minimum describing our present Universe with an infinitesimal
positive vacuum energy arising due to a cancellation between F- and D-term contributions to the
scalar potential. This proposal was studied using an effective field theory approach, in perturbation
around the origin of the inflaton field potential where R-symmetry is restored. Both cases have
been analysed in detail, corresponding to inflation dominated by F-term or D-term supersymmetry
breaking. The second case is possible only in the presence of a new Fayet-Iliopoulos (FI) term
constructed recently [3, 4].

The Outline of this chapter is the following. In Sect. 2, we briefly review the framework
of inflation by supersymmetry breaking and explain the coupling of the supersymmetry breaking
sector to the MSSM. We then estimate reheating temperature in Sect. 3. In Sect. 4, we review
the new FI term analyze the consequences of the new term in the models of inflation driven by
supersymmetry breaking.
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Q ū d̄ L ē H̃u H̃d ζ λR λ1 λ2 λ3

U(1)R − 1
2 − 1

2 − 1
2 −1

2 − 1
2 −1

2 − 1
2

1
2

1
2

1
2

1
2

1
2

U(1)Y 1
6 − 2

3
1
3 −1

2 1 1
2 − 1

2 0 0 0 0 0
SU(2)L 2 1 1 2 1 2 2 1 1 1 3 1
SU(3)c 3 3̄ 3̄ 1 1 1 1 1 1 1 1 8

Table 1: MSSM and U(1)R charges of the fermions. ζ is the inflatino, λR is the U(1)R gaugino, and λ1,2,3
are bino, wino, and gluino, respectively. The gravitino has the same R-charge as λR.

2. Inflation by Supersymmetry Breaking

The starting point is a class of models with gauged U(1)R phase symmetry, defined by Kähler
potential and superpotential,

K(X,X, φ, φ) =
∑

φφ + J(X X) , (1)

W(X, φ) = κ[ f κ−3 +Ω(φ)]X , (2)

where X is the inflaton/sgoldstino superfield, φ collectively denotes matter superfields, and J is
the inflaton Kähler potential. In the superpotential, f is a dimensionless real constant, while Ω
describes the MSSM part

Ω = ŷuūQHu − ŷd d̄QHd − ŷe ēLHd + µ̂HuHd . (3)

Here ū, d̄, ē,Q, L,Hu,Hd are chiral superfields. As usual, we denote the corresponding SM matter
fields (quarks, leptons, and Higgs fields) with the same character, while tildes will be used for their
superpartners (squarks, sleptons, and Higgsinos). The un-normalized Yukawa couplings y and the
µ-parameter are denoted by hats which will be removed after proper rescaling, once X settles at the
minimum.

The total gauge group of the model is,

SU(3)c × SU(2)L ×U(1)Y ×U(1)R . (4)

Squarks, sleptons, and Higgs scalars are neutral under U(1)R, while X carries the same R-charge
as the superpotential. The R-charges of the MSSM fermions are fixed later as in Table 1.

In this class of models, the X-dependent part of the potential drives inflation, after which X and
its auxiliary field FX settle at non-zero vacuum expectation values (VEVs), spontaneously breaking
both supersymmetry (SUSY) and U(1)R. At the minimum of the potential, the gravitino mass and
the the auxiliary fields of X and U(1)R are given by,

m3/2 = f 〈eκ
2J/2 |X |〉 ,

〈FX〉 = − f 〈eκ
2J/2JXX̄(κ−2 + JXX)〉 ,

〈DR〉 = g〈κ−2 + JXX〉 ,

(5)

where we assume that matter fields φ vanish at the minimum.
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The Yukawa couplings ŷ and the parameter µ̂ in (3) are related to their properly normalized
versions y and µ by

{ ŷ, µ̂} =

〈
e−κ

2J/2

κ |X |

〉
× {y, µ} . (6)

This is due to the overall factor of eK in the F-term potential, as well as the coupling of Ω to X as
shown in Eq. (2). At the minimum, X and J(X,X) take non-vanishing VEVs, which leads to this
rescaling.

The scalar potential can be written asV = VF +VD where 1

VF = eκ
2K

{
K I J̄DIWDJ̄W − 3κ2 |W|2

}
, (7)

VD =
1
2

Re(F AB)DADB . (8)

In our notation, the indices I, J run through all the chiral (super)fields, while A,B are the gauge
group indices. The relevant part of supergravity Lagrangian that we use here can be found in the
Appendix of Ref. [5] and its derivation in Ref. [6].

For the gauge kinetic matrix, we use F AB ≡ F −1
AB. Kähler covariant derivatives are defined as

DIW ≡ WI + κ
2KIW, where the indices denote the respective partial derivatives. The Killing

potential and Killing vector are related by

DA = ik I
A

(
KI + κ

−2WI

W

)
, (9)

where the gauge couplings and charges are included in the Killing vectors k I
A. For example, if

X transforms under U(1)R as X → Xe−igqϑ (where ϑ is a transformation parameter and q is its
R-charge), its Killing vector is kX

R = −igqX . The gauge couplings of U(1)R, U(1)Y , SU(2)L , and
SU(3)c are g, g1, g2, and g3, respectively.

We use a convention where the superpotential transforms under U(1)R with unit R-charge,
W → We−igϑ , and the fermionic superspace coordinate transforms with half-unit R-charge,
θ → θe−igϑ/2. Then X has unit R-charge, while its fermionic partner has half-unit R-charge. For a
scalar field with R-charge q, its fermionic partner has R-charge q − 1/2. With this convention, the
fermion charges under the total gauge group of our model are summaised in Table 1.

Let us focus on the possibility of inflation in this model by ignoring matter fields so thatK = J
andW = κ−2 f X . Here we would like to introduce a simpler choice of J with finite number of
perturbative corrections, namely,

J = X X + Aκ2(X X)2 + Bκ4(X X)3 , (10)

where the parameters A and B are dimensionless. One should think of the above form as a
perturbative expansion around the canonical kinetic terms with coefficients less than unity. Then

1Themass dimensions of Kähler potential, superpotential, gauge kinetic function, Killing potential, and Killing vector
are [K] = M2, [W] = M3, [FAB] = M0, [DA] = M2, [X I

A
] = M , respectively while scalar fields have canonical mass

dimension M .
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Figure 1: Scalar potential (11) for the parameter set (23). Both non-canonical (ρ) and canonical (χ)
parametrizations are shown, where the latter is found numerically. The markers represent the start and end
of 60 e-folds of inflation (the starting point of inflation almost coincides for the two curves).

the scalar potential reads,

V =
f 2

κ4 e( |κX |
2+A|κX |4+B |κX |6)

{
(1 + |κX |2 + 2A|κX |4 + 3B|κX |6)2

1 + 4A|κX |2 + 9B|κX |4
− 3|κX |2

}
+

g2

2κ4

(
1 + |κX |2 + 2A|κX |4 + 3B|κX |6

)2
, (11)

where we set gauge kinetic function F = 1 for now. Note that we can write

X = ρeiθ . (12)

Thus, the scalar potential is only a function of the modulus ρ and we can indentify the field ρ as the
inflaton

V =
f 2

κ4 exp
(
κ2ρ2 + Aκ4ρ4 + Bκ6ρ6

) {
(1 + κ2ρ2 + 2Aκ4ρ4 + 3Bκ6ρ6)2

1 + 4Aκ2ρ2 + 9Bκ4ρ4 − 3κ2ρ2
}

+
g2

2κ4

(
1 + κ2ρ2 + 2Aκ4ρ4 + 3Bκ6ρ6

)2
. (13)

The phase θ get absorbed by the U(1)R gauge field in the standard Brout-Englert-Higgs mechanism.
However, in order to calculate the slow-roll parameters, we introduce the canonically normalised
field χ satisfying

dχ
dρ
=

√
2KXX̄ . (14)

The slow-roll parameters can be defined in terms of the canonical field χ as:

ε =
1

2κ2

(
dV/dχ
V

)2
, η =

1
κ2

d2V/dχ2

V
. (15)

The number of e-folds N during inflation is determined by

N = κ2
∫ χend

χ∗

V

∂χV
dχ = κ2

∫ ρend

ρ∗

V

∂ρV

(
dχ
dρ

)2
dρ, (16)
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where we choose |η(χend)| = 1 for this section. The scalar potential as a function of non-canonical
(ρ) and canonical (χ) parametrizations are shown in Fig. 1. Notice that our model is classified
as hilltop inflation which may encounter the so-called overshoot problems. It was shown in [7]
that initial condition for models of this type can be determined quantum mechanically such that
the inflaton is driven toward the slow-roll attractor solution exponentially fast and the overshoot
problem is partially evade.

Since inflation arises near the maximum κρ = 0, we expand

ε = 4
(
−4A + y2

2 + y2

)2

(κρ)2 + O(ρ4), (17)

η = 2
(
−4A + y2

2 + y2

)
+ O(ρ2), (18)

where we defined y = g/ f . The above equation implies ε ' η2(κρ)2 � η. For simplicity, we
focus on the special case y → 0 where F-term contribution to the scalar potential is dominant. By
considering the behaviour near the origin, we can put some constraints on the coefficient A of the
quadratic term of the Kähler potential defined in (10). We can easily show that A > 0 is required
for having a local maximum of the scalar potential at ρ = 0. Furthermore, the slow-roll condition
|η | � 1 sets an upper bound A � 0.25. Taking these requirements into account, the constraint on
A is

0 < A� 0.25. (19)

We can choose A ∼ 0.005 to obtain η ∼ −0.02 which is in agreement with CMB observational
data. 2 In the following, we will compare our theoretical predictions to the CMB observational
data. The amplitude of density fluctuations As, the spectral index ns and the tensor-to-scalar ratio
r can be written in terms of the slow-roll parameters:

As =
κ4V∗

24π2ε∗
, (20)

ns = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗, (21)
r = 16ε∗, (22)

evaluated at the horizon exit.
As a concrete example we choose the following parameter values

A = 0.139 , B = 0.6 , y = 0.7371 , f = 2.05 × 10−7 , (23)

which leads to the inflationary parameters

As = 2.1 × 10−9 , ns = 0.9543 , r = 1.72 × 10−6 , (24)

for 60 e-fold. The Hubble parameter during inflation is

Hinf = κ
√
V∗/3 = 3.25 × 1011 GeV . (25)

2In [8], a generalisation version of the Fayet-Iliopoulos (FI) model [9] was introduced as an example of themicroscopic
origin for the effective field theory of this class of inflation models.
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the scalar potential depicted in Figure 1 where the non-canonical scalar ρ is shown in blue, while
the canonically normalized scalar χ, found numerically, is shown in orange. The corresponding
inflaton VEV is 〈κρ〉 = 0.89.

3. Reheating after inflation by supersymmetry breaking

In our model defined by (1) and (2) (with general J) soft scalar masses are universal,

m2
Q = m2

u = m2
d = m2

L = m2
e = m2

Hu
= m2

Hd
= m2

0 , (26)

where m2
0 is given by

m2
0 = κ

2〈JXX̄FXFX〉 − 2m2
3/2 , (27)

and for the MSSM µ-parameter we assume |µ| � |m0 | to avoid extreme fine-tuning of the Higgs
boson mass (since m0 is close to the inflationary scale). From the requirement of Minkowski
minimum, we have the relation,

〈V〉 = 〈JXX̄FXFX〉 − 3κ−2m2
3/2 +

1
2 〈DR〉

2 = 0 . (28)

The relation (28) allows us to rewrite m2
0 in terms of the D-term contribution,

m2
0 = m2

3/2 −
κ2

2 〈DR〉
2 , (29)

and this leads to the requirement m3/2 > κ〈DR〉/
√

2, in order to avoid tachyonic instabilities in the
MSSM sector.

For the bilinear HuHd coupling we have

e−1L ⊃ −B0µHuHd + h.c. , (30)

where

B0 =
κ2〈JXX̄FXFX〉 − m2

3/2

m3/2
. (31)

The MSSM gaugino masses are generated at one loop via the Green–Schwarz mechanism of
anomaly cancellation, where the gauge anomalies due to triangle diagrams involving the fermions
(all the fermions of the model carry non-zero R-charges) are cancelled by appropriate U(1)R
transformations of the following terms depending on the imaginary part of the gauge kinetic matrix:

e−1L ⊃ 1
8 Im(FAB)εmnklFA

mnFB
kl . (32)

The gauge kinetic matrix takes the form,

FAB =

©­­­­«
FR

F1
F2
F3

ª®®®®¬
, (33)

7
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where FR,1,2,3 are gauge kinetic functions for U(1)R, U(1)Y , SU(2)L , and SU(3)c, respectively. To
cancel the anomalies we fix these kinetic functions as,

FR = 1 + βR log(κρ) , (34)
Fa = 1 + βa log(κρ) , (35)

where a = 1,2,3 stands for the Standard Model gauge groups. Here β are constants which we
determine by using the methods described in Refs. [10–12]. The result is,

βR = −
g2

3π2 , β1 = −
11g2

1
8π2 , β2 = −

5g2
2

8π2 , β3 = −
3g2

3
8π2 , (36)

where βR is found from the cancellation of U(1)3R anomaly, β1 from U(1)R × U(1)2Y anomaly, β2
from U(1)R × [SU(2)L]2 anomaly, and β3 from U(1)R × [SU(3)c]2 anomaly.

The values of βa are the same as in the model of Ref. [13], because the MSSM fermions in
the two models have the same R-charges, while βR is different due to the difference in the hidden
sector fermion (inflatino) R-charges. Since g/κ in our models is not far from the Hubble scale (e.g.
the parameter choice (23) leads to g ∼ 10−7), we have

FR = 1 + βR log(κρ) ≈ 1 , (37)

if κρ is around unity. Gauged U(1)R also leads to a gravitational anomaly which can be cancelled
in a similar fashion (see for example Refs. [10–12]).

This brings us to the MSSM gaugino masses,

mab =
1
2

��〈FX∂XFab〉
�� = f

2

���〈eκ
2J/2JXX̄(κ−2 + JX̄X)∂XFab

〉��� . (38)

Using Eq. (35) we get,

ma =

���� 〈κFX〉βa
2〈κX〉

���� , (39)

where we denote ma ≡ maa. Finally, ma should be rescaled after taking into account non-canonical
kinetic terms of the gaugini,

e−1L ⊃ − i
2 〈ReFa〉λaσmDmλ̄

a + h.c. = − i
2 (1 + βa log〈κX〉)λaσmDmλ̄

a + h.c. (40)

However, if |βa | log〈κX〉 � 1, as in the models that we consider here, the rescaling of the gaugini
can be neglected. The trilinear couplings between the MSSM scalars are

e−1L ⊃ −A0(yu ¯̃uQ̃Hu − yd
¯̃dQ̃Hd − ye ¯̃eL̃Hd) − µ(yu ¯̃uQ̃Hd − yd

¯̃dQ̃Hu − ye ¯̃eL̃Hu) + h.c. , (41)

where for A0 we have

A0 =
κ2〈JXX̄FXFX〉

m3/2
, (42)

which is related to B0 from Eq. (31) as A0 = B0 +m3/2. Here we show explicit values of the MSSM
soft parameters for the parameter set (23), as well as the mass spectrum of the model. The results

8
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mz mζ m3/2 m0 m1 m2 m3

1.25 × 1012 6.15 × 1011 7.51 × 1011 2.68 × 1011 1.03 × 1010 6.54 × 109 5.84 × 109

Table 2: Masses (in GeV) of inflaton, inflatino, gravitino, and MSSM sparticles derived from our model
with parameter set (23).

are summarized in Table 2, where we take one-loop values of the Standard Model gauge couplings 3
at the reheating temperature 108 GeV (estimated below),

g1 = 0.5 , g2 = 0.59 , g3 = 0.72 . (43)

As for the U(1)R gauge boson, its mass generated by the Higgs mechanism is 9.61 × 1011 GeV,
close to the inflaton mass.

The parameters A0 and B0 are estimated as

A0 = 1.6 × 1012 GeV , B0 = 8.46 × 1011 GeV . (44)

For the model we consider, the inflaton ρ can perturbatively decay into the MSSM scalars,
gaugini, and inflatino since their masses are smaller than mρ/2. However, the inflaton mass is
smaller than two times the gravitino mass, mρ < 2m3/2, which prohibits the perturbative decay of
the inflaton into gravitini. As shown in [5], the total decay rate is

Γtot = 6.54 × 10−3 GeV , (45)

and we can estimate the reheating temperature as,

Treh '
√

MPΓtot = 1.26 × 108 GeV . (46)

4. Inflation by supersymetry breaking with the new Fayet-Iliopoulos term

In the previous sections, we discuss a class of minimal inflation models in supergravity that
identify the inflaton with the goldstino superpartner in the presence of a gauged R-symmetry. We
notice that the D-term has a constant Fayet–Iliopoulos (FI) contribution but plays no role during
the inflation and can be neglected, while the pseudoscalar partner of the inflaton is absorbed by the
U(1)R gauge field that becomes massive away from the origin.

In this section, we discuss the consequences of a new gauge invariant FI term proposed
recently to the class of inflation models mentioned above. It turns out that the resulting D-term
scalar potential provides an alternative realisation of inflation from supersymmetry breaking, driven
by a D- instead of an F-term. The inflaton is still a superpartner of the goldstino which is now a
gaugino within a massive vector multiplet, where again the pseudoscalar partner is absorbed by the
gauge field away from the origin. In the following, we use the notation in [14] and κ is set to 1 for
simplicity.

3We choose non-SUSY running of the couplings because SUSY breaking scale is very high in our models.

9



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
1
5

Challenges in Particle Physics and Cosmology Ignatios Antoniadis

4.1 Component action of new FI term in superconformal tensor calculus

A new constant FI term was proposed recently in [3] (see also in [4]) of the form LFI = ξ2 D+
fermions, that can be coupled to supergravity without gauging the R-symmetry. This new term
contain inverse powers of some auxiliary field. It is non-singular when the D-auxiliary filed has a
non vanishing vacuum expectation value (VEV). The corresponding supergravity Lagrangian can
be written as:

LFI = ξ2

[
S0S̄0

w2w̄2

T̄(w2)T(w̄2)
(V)D

]
D

, (47)

where ξ2 is a constant parameter. In the superconformal formalism, the chiral compensator field
S0, with Weyl and chiral weights (δ,w′) = (1,1), has components S0 = (s0,PLΩ0,F0). The vector
multiplet V =

(
v, ζ,H, vµ, λ,D

)
has weights (0,0). We will use the Wess-Zumino gauge in which

the first components v = ζ = H = 0. The multiplet w2 with weights (1,1) is given by

w2 =
λ̄PLλ

S2
0
, w̄2 =

λPRλ̄

S̄2
0
, (48)

where we have (in the components form)

λ̄PLλ =
(
λ̄PLλ ;

√
2PL

(
−

1
2
γ · F̂ + iD

)
λ ; 2λ̄PL /Dλ + F̂− · F̂− − D2

)
. (49)

The corresponding kinetic terms in supergravity Lagrangian for the gauge multiplet are

Lkin = −
1
4

[
λ̄PLλ

]
F
+ h.c. . (50)

The operator T (T̄) in (47) is defined in [15] and [16], and can be used to define a chiral (antichiral)
multiplet. For example, the chiral multiplet T(w̄2) has weights (2,2). This corresponds to the usual
chiral projection operator D̄2 in the case of global supersymmetry. Note that we will drop the
notation of h.c. and implicitly assume its presence for every [ ]F term in the Lagrangian. Finally,
the multiplet (V)D is a (2,0) linear multiplet. Its components are given by

(V)D =
(
D, /Dλ,0,Db F̂ab,− /D /Dλ,−�

CD
)
. (51)

The component /Dλ and the covariant field strength F̂ab are defined in eq. (17.1) of [14]. In our
case, we have

F̂ab = e µ
a e νb

(
2∂[µAν] + ψ̄[µγν]λ

)
,

Dµλ =

(
∂µ −

3
2

bµ +
1
4
wab
µ γab −

3
2

iγ∗Aµ

)
λ −

(
1
4
γab F̂ab +

1
2

iγ∗D
)
ψµ, (52)

where e µ
a is the vierbein, with frame indices a, b and coordinate indices µ, ν. The gauge fields wab

µ ,
bµ, andAµ correspond to Lorentz transformations, dilatations, and TR symmetry of the conformal
algebra respectively, while ψµ denotes the gravitino. The conformal d’Alembertian operator is
defined by �C ≡ ηabDaDb.

10
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Let us consider first the case of pure supergravity coupled to a U(1) gauge multiplet with the
FI term in (47). The supergravity Lagrangian can be written as

L = −3
[
S0S̄0

]
D
+

[
S3

0W0
]
F
−

1
4

[
λ̄PLλ

]
F
+ LFI. (53)

Supersymmetry is broken via a non-vanishing VEV of the D-auxiliary component of the vector
multiplet driven by the linear term in D, with the Goldstino being the U(1) gaugino. By fixing the
compensator S0 = 1, integrating out the auxiliary fields, and choosing the unitary gauge where the
Goldstino vanishes, the Lagarangian in component form is

e−1L =
1
2

(
R − ψ̄µγµνρDνψρ + m3/2ψ̄µγ

µνψν
)
−

1
4

FµνFµν −
(
−3m2

3/2 +
1
2
ξ2

2

)
, (54)

with a constant superpotential m3/2 = W0. In the absence of matter, any non-vanishing value of ξ2
breaks supersymmetry and uplifts the vacuum energy by a constant term VFI = ξ

2
2/2. It is also

important to note that the FI term in eq. (47) breaks the Kähler invariance and does not require the
gauging of an R-symmetry.

Let us now couple the FI-term given by eq. (47) to additional matter fields charged under the
U(1). For simplicity, we focus on a single chiral multiplet X . The Lagrangian is given by

L = −3
[
S0S̄0e−

1
3K(X ,X̄)

]
D
+

[
S3

0W(X)
]
F
−

1
4

[
F (X)λ̄PLλ

]
F
+ LFI. (55)

HereK(X, X̄),W(X) and F (X) are a Kähler potential, a superpotential and a gauge kinetic function
respectively. The first three terms in eq. (55) are the usual supergravity Lagrangian [14]. Assuming
that the multiplet X transforms under the U(1) as

V → V + iΛ − iΛ̄,

X → Xe−iqΛ, (56)

where Λ is a gauge multiplet parameter. In the case we consider, the superpotential does not
transform under the gauge symmetry therefore the U(1) is not an R-symmetry. For a model with a
single chiral multiplet, the superpotential must be constant

W(X) = F . (57)

To ensure gauge invariance of the supergravity action, the Kähler potential must be a function of
XeqV X̄ . However, for notational simplicity, in the following we drop the eqV factors.

Indeed, in this case we can consistently add the FI-term LFI to the theory, similar to [3], and
the resulting D-term potential acquires an extra term proportional to ξ2

VD =
1
2
Re (F (X))−1

(
ikX∂XK + ξ2e

1
3K

)2
, (58)

where the Killing vector is kX = −iqX . For a constant superpotential (57), the F-term potential
reduces to

VF = |F |2eK(X ,X̄)
(
−3 + gXX̄∂XK∂X̄K

)
. (59)
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From eq. (58) it is easy to see that if the Kähler potential has a term proportional to ξ1 log(X X̄), the
D-term contribution to the scalar potential obtains another constant contribution. For example, if

K(X, X̄) = X X̄ + ξ1 ln(X X̄), (60)

the D-term potential becomes

VD =
1
2
Re (F (X))−1

(
qX X̄ + qξ1 + ξ2e

1
3K

)2
. (61)

The term proportional to ξ1 is the usual FI term in a non R-symmetric Kähler frame. It can be
consistently added to the model with the new FI term proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X, X̄) → K(X, X̄) + J(X) + J̄ (X̄),

W(X) →W(X)e−J(X), (62)

with J(X) = −ξ1 ln X allows us to recast the model in the form

K(X, X̄) = X X̄,

W(X) = m3/2X, (63)

where m3/2 = F. The two models result in the same Lagrangian, at least classically4. However, in
the Kähler frame of eqs. (63) the superpotential transforms nontrivially under the gauge symmetry.
As a consequence, the gauge symmetry becomes an R-symmetry.

Note that the extra term (47) violates the Kähler invariance of the theory, and the two models
related by a Kähler transformation are no longer equivalent. The model written in the Kähler frame
where the gauge symmetry becomes an R-symmetry in eqs. (63) can not be consistently coupled to
LFI. A generalized Kähler invariant FI term has been built in [17] and [19].

4.2 The scalar potential in a Non R-symmetry frame

In this section, we work in the Kähler frame where the superpotential does not transform,
and take into account the two types of FI terms which were discussed in the last section. For
convenience, we repeat here the Kähler potential in eq. (60) and restore the inverse reduced Planck
mass κ:

K = X X̄ + κ−2ξ1 ln κ2X X̄ . (64)

The superpotential and the gauge kinetic function are set to be constant 5:

W = κ−3F, F (X) = 1. (65)

4At the quantum level, a Kähler transformation also introduces a change in the gauge kinetic function f , see for
example [18].

5In order to cancel the chiral anomalies [2], the gauge kinetic function gets a field-dependent correction ∝ q2 ln ρ.
However, the correction turns out to be very small and can be neglected below, since q is chosen to be of order of 10−5

or smaller.
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After performing a change of the field variable X = ρeiθ , the F-term contribution to the scalar
potential is given by

VF =
1
κ4 F2eκ

2ρ2
(κρ)2b

[ (
b + κ2ρ2)2

(κρ)2
− 3

]
, (66)

and the D-term contribution is

VD =
q2

2κ4

(
b + (κρ)2 + ξ(κρ)

2b
3 e

1
3 κ

2ρ2
)2
. (67)

Note that we set b = ξ1 and rescaled the second FI parameter by ξ = ξ2/q. We are interested in the
role of the new FI-term in inflationary models driven by supersymmetry breaking.

For F = 0, one finds that for ξ < −1 and b = 3 the potential has a maximum at the origin,
and a supersymmetric minimum. Since we set the superpotential to zero, the SUSY breaking is
measured by the D-term order parameter, i.e. the Killing potential associated with the gauged U(1),
which is given by

D = iκ−2−iqX
W

(
∂W
∂X
+ κ2 ∂K

∂X
W

)
+ κ−2qξ(κρ)2e(κρ)

2/3. (68)

This enters the scalar potential asVD = D
2/2. So, at the local maximum and during inflationD is

of order q and supersymmetry is broken. On the other hand, at the global minimum, supersymmetry
is preserved and the potential vanishes. Strictly speaking, the supersymetric minimum is not valid
because the new FI term becomes singular since the D-auxiliary vanishes. Therefore a small F is
required in any case.

For F , 0, the potential has still a local maximum at ρ = 0 for b = 3 and ξ < −1. For this
choice, the derivatives of the potential have the following properties,

V ′(0) = 0, V ′′(0) = 6κ−4q2(ξ + 1). (69)

For ξ < −1, the extremum is a local maximum, as desired.
Let us comment on the global minimum after turning on the F-term contribution. As long as

F2/q2 � 1, the change in the global minimum κρv is very small, of order O(F2/q2), The plot of
this change is shown in Fig. 2.

Let us comment on super symmetry breaking in the present case F , 0, the order parameters
are both the Killing potential D and the F-term contribution FX , which read

D ∝ q[3 + (κρ)2(1 + ξe(κρ)
2/3)], FX ∝ F(κρ)2(3 + (κρ)2)e(κρ)

2/2, (70)

where the F-term order parameter FX is defined by

FX = −
1
√

2
eκ

2K/2
(
∂2K

∂X∂ X̄

)−1/2 (
∂W̄
∂ X̄
+ κ2 ∂K

∂ X̄
W̄

)
. (71)

Therefore, near the local maximum, FX/D ∼ F
q ρ

2. On the other hand, at the global minimum,
both D and FX are of the same order i.e. FX/D ∼ F

q , assuming that ρ at the minimum is of order
O(1), which is true in our models below. This makes tuning of the vacuum energy between the F-
and D-contribution in principle possible.
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Figure 2: This plot presents the scalar potentials for F = 0 and F , 0 cases. For F = 0, we have a local
maximum at ρ = 0 and the global minimum has zero cosmological constant. For F , 0, the origin ρ = 0 is
still the maximum but the global minimum now has a positive cosmological constant.

Let us make a comment on the case b = 0 where only the new FI parameter ξ contributes to the
potential. In this case, the condition for the local maximum of the scalar potential at ρ = 0 can be
satisfied for −3 < ξ < 0. In the case where F is set to zero, the scalar potential (67) has a minimum
at κρ2

min = 3 ln
(
− 3
ξ

)
. In order to haveVmin = 0, we can choose ξ = − 3

e . However, we find that this
choice of parameter ξ does not allow slow-roll inflation near the maximum of the scalar potential.
Similar to the previous section, it may be possible to achieve both the scalar potential satisfying
slow-roll conditions and a small cosmological constant at the minimum by adding correction terms
to the Kähler potential and turning on a parameter F. However, in the next section, we will focus
on b = 3 case where less parameters are required to satisfy the observational constraints.

4.3 An example for D-term inflation model

Let us focus on the b = 3 case and assume that the scalar potential is D-term dominated by
fixing F = 0, the model has only two free parameters, namely q and ξ. The first parameter controls
the overall scale of the potential and it will be fixed by the amplitude As of the CMB data. The only
free-parameter left over is the second parameter ξ. We derive the condition that leads to slow-roll
inflation scenarios, where the start of inflation (or, horizon crossing) is near the maximum of the
potential at ρ = 0.

Since we assume inflation to start near the origin ρ = 0, the expansion of slow-roll parameters
for small κρ can be written as

ε =
4
9
(ξ + 1)2(κρ)2 + O(ρ3),

η =
2(1 + ξ)

3
+ O(ρ2). (72)

Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ to avoid the
η-problem. The observation is that at ξ = −1, the effective charge of X vanishes and thus the
ρ-dependence in the D-term contribution (67) becomes of quartic order.
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Note that we obtain the same relation between ε and η as in the model of inflation from
supersymmetry breaking driven by an F-term from a linear superpotential and b = 1 (see eq. (17)
and (18)). Thus, there is a possibility to have flat plateau near the maximum that satisfies the
slow-roll condition and at the same time a small cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by using eq. (16) where we choose
|ε(χend)| = 1. Notice that the slow-roll parameters for small ρ2 satisfy the simple relation ε =
η(0)2ρ2 + O(ρ4) by eq. (72). Therefore, the number of e-folds between ρ = ρ1 and ρ2 (ρ1 < ρ2)
takes the following simple approximate form as in [2],

N '
1
|η(0)|

ln
(
ρ2
ρ1

)
=

3
2|ξ + 1|

ln
(
ρ2
ρ1

)
. (73)

as long as the expansions in (72) are valid in the region ρ1 ≤ ρ ≤ ρ2. Note that we used the
approximation η(0) ' η∗, which holds in this case.

We are now comparing the theoretical predictions of this model to the observational data via
the power spectrum of scalar perturbations of the CMB such as the amplitude As, tilt ns and the
tensor-to-scalar ratio r . From the relation of the spectral index above, one should have η∗ ' −0.02,
and thus eq. (73) gives approximately the desired number of e-folds when the logarithm is of order
one. Actually, using this formula, we can estimate the upper bound of the tensor-to-scalar ratio r
and the Hubble scale H∗ following the same argument given in [2]; the upper bounds are given by
computing the parameters r,H∗ assuming that the expansions (72) hold until the end of inflation.
We then get the bound

r . 16(|η∗ |κρende−|η∗ |N )2 ' 10−4, H∗ . 1012 GeV, (74)

where we used η∗ = −0.02, N ' 50 − 60 and ρend . 0.5, which are consistent with our models.

4.4 A small field inflation model from supergravity with observable tensor-to-scalar ratio

Supergravity models with higher r are of particular interest. In this section we show that our
model can get large r at the price of introducing some additional terms in the Kähler potential. Let
us consider the previous model with additional quadratic and cubic terms in X X̄:

K = X X̄ + Aκ2(X X̄)2 + Bκ4(X X̄)3 + κ−2b ln(κ2X X̄), (75)

while the superpotential and the gauge kinetic function remain as in eq. (65). We assume that
inflation is driven by the D-term by setting the parameter F = 0. The scalar potential in terms of
the field variable ρ can be written as:

V =
q2

κ4

(
b + (κρ)2 + 2A(κρ)4 + 3B(κρ)6 + ξ(κρ)

2b
3 e

1
3 (A(κρ)

4+B(κρ)6+(κρ)2)
)2
. (76)

We now have two additional parameters A and B. These parameters do not affect our previous
discussions on the choices of the parameter b because they appear in higher orders in ρ in the scalar
potential. Therefore, we can continue with the b = 3 case. The formula (73) for the number of
e-folds also holds for small (κρ)2 even when A,B are not zero because the new parameters appear

15



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
1
5

Challenges in Particle Physics and Cosmology Ignatios Antoniadis

at order ρ4 and higher. However these two parameters can increase the value of the tensor-to-scalar
ratio r . To obtain r ≈ 0.01, we can choose for example

q = 8.68 × 10−6, ξ = −1.101, A = 0.176, B = 0.091. (77)

By choosing the initial condition κρ∗ = 0.445 and κρend = 1.155, we get the results N = 58,
ns = 0.96, r = 0.01 andAs = 2.2 × 10−9 , which is in agreement with the CMB data. Note that an
application of the new FI term in no-scale supergravity model for inflation can be found for example
in [19–21].

5. Conclusions

In this chapter we discussed the possibility that inflation is driven by supersymmetry breaking
with the scalar component of the goldstino superfield playing the role of the inflaton. Imposing a
gauged R-symmetry allows to satisfy easily the slow-roll conditions, leading to an interesting class
of small field inflation models, characterised by an inflationary plateau around the maximum of the
scalar potential near the origin, where R-symmetry is restored with the inflaton rolling down to a
minimum with an infinitesimal tuneable positive vacuum energy. Inflation can be driven by either
an F- or a new FI D-term. The above models are in agreement with cosmological observations and
in the simplest case predict a rather small tensor-to-scalar ratio of primordial perturbations.

We also described the MSSM-inflaton couplings, and estimated the reheating temperature,
generallyTreh ∼ 108 GeV, from perturbative decay channels of the inflaton. In our model the inflaton
can decay into all the MSSM sparticles. The inflaton mass is smaller than two times the gravitino
mass, which prohibits perturbative decay of the former into two gravitini. The full picture of
reheating, however, requires further investigation after taking into account non-perturbative effects
such as Bose condensation and possible resonant production of fermions. Finally, as explained in
[5], our minimal models do not allow for thermal LSP dark matter, but superheavy LSP dark matter
(e.g. neutralino) is possible depending on the parameter choice.
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