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1. Introduction

Chiral fermions generally induce chiral anomaly.[1-3] Even for massive fermions chiral
anomaly can be generated if gauge couplings are not purely vector-like. Something special hap-
pens in gauge-Higgs unification (GHU), in which gauge symmetry is dynamically broken by an
Aharonov-Bohm (AB) phase 6y in the fifth dimension.[4—6] It has been noticed in the GUT in-
spired SO(5) x U(1)x x SU(3)c GHU in the Randall-Sundrum (RS) warped space [7] that quarks
and leptons are massless and purely chiral at 6y = 0, become massive at 8y # 0, and smoothly
become vector-like at 0 = m. Gauge bosons such as W and Z bosons are massless gauge bosons
of SU(2)L x U(1)y at 8y = 0, become massive at 6y # 0, and smoothly converted to massless
gauge bosons of SU(2)g X U(1)y- at 8y = nr. This prompts the following question. What happens
to the anomaly generated by chiral quarks and leptons at 6y = 0? Does it disappear at g = n?
What is the fate of chiral anomaly?

To pin down what is going on in GHU formulated on orbifolds, the dependence of chiral
anomaly on the AB phase Ay in SU(2) gauge theory with doublet fermions in the flat M* x (S'/Z,)
space and in the RS warped space has been investigated in Refs. [8, 9]. In the flat M* x (S'/Z>)
space the mass spectrum of the Kaluza-Klein (KK) modes of gauge bosons and fermions changes
linearly in 67, namely as m,, = |n+ (g /7)|/R or [n+ (6 /27)|/R, so that the level crossing takes
place where 0y is a multiple of %n or mr. In the RS space there occurs no level crossing in the mass
spectrum. The spectrum varies smoothly as 6y changes from O to 2. The lowest mode remains
as the lowest mode for any 8. Gauge couplings of right- and left-handed modes of fermions vary
smoothly as 6, and the magnitude of chiral anomaly also changes as 6. The anomaly coefficient
(defined below) coming from one doublet fermion changes from 2 at 6y = 0to 0 at 6 = m. The
anomaly flows with the AB phase 0.

Furthermore it was shown that the magnitude of the total anomaly evaluated by summing
contributions coming from all KK modes of fermions running along internal loops is expressed
in terms of the values of the wave functions of the gauge fields at the two branes (the UV and IR
branes in the RS space) and the parity conditions of fermion fields at the two branes. Each fermion
field in the RS space is characterized by its own bulk mass parameter ¢ which controls its mass
and wave function at general 6. Although the anomaly coming from each KK mode depends on
the bulk mass parameter c, the total anomaly does not depend on c¢. There emerges a holographic
formula for the total anomaly. This holography becomes crucial to have the cancellation of gauge
anomalies in GHU.

2. SU(2) GHU in M* x (S'/Z,)

Let us first consider SU(2) GHU in the flat M* x (§'/Z,) spacetime with coordinate x™
(M =0,1,2,3,5, x> = y) whose action is given by

L
1 _
Ifae = / d4x/ dy Laat, Lpa = _ETr FunFMN + $yM (0 —igaAm)? , 2.1
0

where Lia(x#, y) = Laa(x#, y +2L) = Laa(x*, =y). Ay = 3 53 A4, 7% and Fyn = Oy An -
ONAN —igalAp, An] where 7%’s are Pauli matrices. Orbifold boundary conditions are given,
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with (yo, y1) = (0, L) and Py = P; = 7°, by

A A _
A:)(X,Yj_)’):P/ _Xy)(X,y‘j"‘Y)le,
+Pjy5‘I’(x,yj +y) type 1A
—Py¥(x,y;+y) type 1B
Yinyj-w=y : (2.2)
(=1)/P;y’¥(x,yj+y)  type2A

(=17 Pjy ¥(x,y; +y) type 2B
The SU(2) symmetry is broken to U(1). Ai and A;’z are parity even at both yy and y;. The zero
mode of A;31 is the 4D U(1) gauge field. The 4D gauge coupling is given by g4 = g4/VL. The zero

modes of A ;’2 may develop nonvanishing expectation values. Without loss of generality we assume
(A;) = 0. An AB phase 8y along the fifth dimension is then given by

2L
Pexp {igA/ dy <Ay>} = el gy =gl (A}). (2.3)
0

When 6y # 0, AL and Afl intertwine with each other. It is straightforward to find mass
eigenstates. The KK expansion is given by

Al (-x’ y) S sin(ny/R
3 _ Z B (x )_ (ny/R) 2.4)
A,y VnR \cos(ny/R)
where R = L/x. The mass of the BL") (x) mode is m,, () = 1|n +2 | The spectrum is periodic

in 8y with a period . The KK expansion of a doublet fermion ¥ = (u, d)" of type 1A is given by
ugr(x,y) (n) cos(ny/R)
Yp'(x )—
(dR (x, y)) Z sin(ny/R) |’
ur(x,y) (n) —sin(ny /R)
Yo (x )— (2.5)
(dL (x, y)) Z cos(ny/R)

1(?") and :,l/(L”) combine to form the ¥ (x) mode with a mass given by m, (6y) = R‘lfn + g—Z
The spectrum is periodic in 8y with a period 2zr. Note that the KK mass scale in the flat space is
ﬁat =1 / R.

3. SU(2) GHU in the Randall-Sundrum warped space
The metric of the RS warped space is given by [10]
ds® = e_zcr(y)r]wdx”dx" +dy? 3.1

where 1, = diag(=1,+1,+1,+1),0(y) =o(y+2L) =o(-y)ando(y) = kyforO <y < L. It
has the same topology as M* x (S'/Z,). In the region 0 < y < L the metric can be written, in
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terms of the conformal coordinate z = XY, as

dsz—i dx*dx” dz 1<z<z, =€t 3.2
= — | nuvdx x+k2 (1<z<zp=e€""). 3.2)
Z

z1, 1s called the warp factor of the RS space. The RS space is an anti-de Sitter (AdS) space
sandwiched by the UV brane at y = 0 (z = 1) and the IR brane at y = L (z = z). The AdS
curvature is given by A = —6k?.

The action in the RS space is given by

1 —
Irs = / dsx V—detG Lrs, Lrs = —ETI‘FMNFMN +¥D(c)¥,

! :
D(e) =y e (0u1 — igadn + gomscly® ) —co’. (3.3)

¢ is a dimensionless bulk mass parameter. Note Lgrs(x*,y) = Lrs(x*,—y) = Lrs(x*,y + 2L).
Fields Ay, and W satisfy the same boundary conditions (2.2) as in the flat spacetime. The AB phase
0y and the KK mass scale mgg are given by

(A2 1 2k nk
90 = L , 34
& JH Ja g4\ L(z3 - 1) -1 G

where A%(x,z) = k712 Y, A?(") (X)vn(z) and vo(z) = /2/(z5 = 1) z.
The KK expansion of the gauge fields A ;14 and Az is given by
hn(y))

Ay _ 1w
(A;,(x,w)‘ V27 )

hn(y) _ _hn(_y) _ hn(y+2L)
kn(y) kn(=y) kn(y+2L)

_ [ cosB(z) sinb(z) hu(2) B Z% -z
= (_ sin6(z) cos 6’(2)) (lzn(z)) , 8(2) =0y Zi——l forO<y<L. 3.5

The mass spectrum {m,, = kA,; g < A1 < Ay < ---} of the KK modes {Z,(,”) (x)} is determined
by the zeros of

Z  SC'(1:4,) + A, 5in? 0y = 0 (3.6)

where S(z; 1) and C(z; ) are expressed in terms of Bessel functions and are given by (A.1). The
wave functions h,,(z) = (h,(2), k. (z))" are given by (B.1).

For fermion fields we define W(x,z) = z72¥(x,z) for 1 < z < zz. The KK expansion of
V¥ = (i1, d)" of type 1A is given by

le(x,y) _ - (n) fRn(y)
)7 ()
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(ﬁVL (x, y)) Vi i xﬁ") (x) (;Ln(y)) ’ (3.7)
n=0

dp(x,y) Ln(y)
where

Jran)| _ [ frn(=3) | _ (fra(y +2L)
grn(Y) —8&Rrn(=Y) grn(y +2L)

_ (cos 1o(z) —sin %e@) (fRn(z>

forO<y<L,
sin160(z)  cos 36(z) §Rn(z)) Y

an(y) _ _an(_y) _ an(y+2L)
gra(y) grn(=y) grn(y +2L)

_ (cos %9(2) —sin %Q(Z)) (an(z)

forO<y<L. 3.8
sin36(z)  cos 36(z) §Ln(Z)) ' .

I(e") (x) and /\((L”) (x) combine to form a massive mode y " (x) for 85 # 0. The mass spectrum
{my = kdp; g <Ay <Ay < ---} of the KK modes {y " (x)} is determined by the zeros of

" SpSr(1;An,c) +sin’ 105 =0 (3.9)

where S7.(z; A, ¢) and Sg(z; A, ¢) are given by (A.3). The wave functions fz,, (z) = (frn(2), 8rn(2))"
and f1.,,(2) = (fLa(2), §La(2))" are given by (B.2).

The mass spectra as functions of @y in the flat M* x (S'/Z,) space and in the RS warped
space are depicted in Fig. 1. In the flat space the mass spectrum of each field changes linearly in
6y so that the level crossing occurs. In the RS space there is no level crossing so that physical
quantities change smoothly as 6. It is expected that in the flat space something singular may occur
atfy =0, %n, m,---. This is exactly what is going to happen in the anomaly as is seen below.

4. Gauge couplings and anomaly in flat space

Gauge couplings of fermions in the flat space are easily found by inserting the KK expansions
(2.4) and (2.5) into the action (2.1). One finds that the B(") couplings of the fermion fields are
given by

(n) .p
Z By iy

_ 84 N N (n) (m) ¥ 5 pyy, ) (m) T (€)
2 Z Zgszn{nmt’wm' Mg +Snm€‘r”m S }

n=—00 Mm=—0 {=—

R L
Some = Sume = 6n,m+l’ . 4.1

Here we have adopted the two-component notation; o# = (I,0) and 6# = (—I,5). Chiral

(&)
R/LT

Y 84 n[m (&) p(m)uv
Bujlt + ( ) ZZ A BB (4.2)

anomaly in 8, j*' () arises from triangle diagrams in which various combinations of ¢ un;
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Figure 1: (Top): The mass spectrum of gauge fields B,(,") and fermion fields ™ (type 1A) in the flat
M* % (Sl/Zz) space is displayed. The level crossing occurs at 8y = 0, %n, n,---. (Bottom): The mass

spectrum of gauge fields Z,S") and fermion fields x ™ (type 1A) in the RS warped space is displayed. The

warp factor is zz = 100 and the bulk mass parameter of ¥ is ¢ = 0.25.

where B,(,Q = 6;,31(,[) - 8VB,(,€) . The anomaly coefficient b, is found to be

_ R R R L L L
bn1n2n3 - Z {snlm[slnfpsnj;pm + Snlmfsnzfpsn3pm}
m,l,p

{2 for ny + ny + n3 = even

0 forn1+n2+n3 = odd

Chiral anomalies arise even for jf‘n £0)° A few examples are shown in Fig. 2.

B(nl) Y] - - B;(an)
- - p

(ns)

m -= B

--0 --1 2 --1
0 <0 | 0 0<| 3 <|
- = 0 - = 1 - -1
0 ] 0 p— 1 —]

Figure 2: Chiral anomaly in the flat space.

4.3)
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5. Gauge couplings and anomaly in RS

Similarly gauge couplings of fermions in the RS space are expressed as

(n) .p

ZZ# J(n)

n=0

NN S0 (O gy ) (Ot g )

- ?ZZZZI‘ {nmeR 0 +tn€mXL XL } (5.1)
n=0 £=0 m=0

The couplings t;lfcm and 7,7, ~are more involved. They are given, in terms of the wave functions in
(3.5) and (3.8), by

k [E . . . )
t:fgm = 5 /L dy eklyl{hn(flégng +gRngm) + kn(ngme - gRgng)},

k [t . ) . "
trl;fm = _5 -/L dy eklyl{hn(fL[ng +gL[fLm) + kn(fL[’fLm - gL[ng)}- (52)

Note that tff/i depends on 6y, 77, and c¢. (It does not depend on k or mgx.)
Chiral anomaly in 8, j f‘n) is written as

[e9)

3}1]'{‘”) b= _(%)3 Z ‘llgf"; Z(l’)Z(m)uv (5.3)
where Z, (f) a,,zé” - 0,7 y). The anomaly coeflicient a,,¢,, is found to be
Apingny = a§1n2n3 + aﬁ|n2n3 ,
QR = 3 RIL RILRIL 54
m,,p=0

As the couplings tR and tL ., depend on O, Ré, and aL€ also do depend on fg. In the
RS space the dependence is smooth For instance, tooo’ 000> 4000° %000 and agog for z; = 10 and

¢ = 0.25 are depicted in Fig. 3. It is seen that agoo changes from 2 to 0 as 6 varies from O to 7.

z,=10, c=0.25 z,=10, c=0.25
500> 600 000, 500> 600
1.0+ 2.0
ap00
1.5F
0.5
1.0F
. - -8, 05
- bid = 2
2 2 ‘ LY ‘ "6,
05! tB z in 2n
000 05 2 2
G,R
-1.0 -1.0}f 000

Figure 3: Gauge couplings tooo Land anomaly coefficients a and 61000 for z;, = 10 and ¢ = 0.25 are shown
as functions of 6. ago/OL and ago are evaluated by taking account of tOm , 0O=<m,{<14)
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6. Anomaly flow

In the flat space the anomaly coefficients b, in (4.3) are constant, whereas the anomaly
coeflicients ay,¢ in (5.4) in the RS space depend on 6. There is no contradiction between these
two facts. Look at the mass spectrum in Fig. 1. In the RS space the lowest mode of the gauge
field is always Z ,SO) irrespective of the value of 6. In the flat space the lowest mode is BLO) for
0<6y < inm, Bf[l) for 7 < @y < 37, and BL_Z) for 37 < Oy < 27. The anomaly coefficient
bunn 18 +2 for n = 0 and -2, but is 0 for n = —1. As the AdS curvature approaches 0, that is, as
k — 0, the RS space becomes the flat M* x (S'/Z,) space. In other words, agyy must flow from 2
to 0 to 2 as fy changes from O to 7 to 27r. The anomaly flows as the AB phase 6y varies. In the

flat space the behavior of the anomaly becomes singular at the points of the level crossing, namely

at 0y = %ﬂ' and %71.
The phenomenon of the anomaly flow is seen in all anomaly coefficients a,,;,,¢. In Fig. 4 the
anomaly coefficients a§1/2L’ aopia, a§2/2L and apy are plotted for z;, = 10 and ¢ = 0.25. The anomaly

flow is smooth.

zr, =10, ¢ = 0.25 zr, =10, ¢ = 0.25

LR LR
012 o125 Ao12 222, 8222, A222

aopi12 1.0f az22
L 0.50 /\ L /\
a ao..
%\\\. 01?4 ‘ - %222 /N \
. 2

i V\\ 3y H
2 n \/ 2\ 7\/ ™ 2 oR2"
-1r a012 . 222
R/L R/L

_2f
. . R/L R/L
Figure 4: Anomaly coefficients Agiy s 40125 Ayyy and ajy» am/2 , Aol2, a22/2 and apy, for z; = 10 and

¢ = 0.25 are shown as functions of 6. The coeflicients are evaluated by taking account of tfn/l ? (j=0,1,2,
0<m,¢t<14).

One might wonder how the anomaly flow in the RS space reduces to the anomaly flow in the
flat space which seems singular at 6y = %n and %n. The flat space limit is obtained by taking the
k — 0 limit in the RS space. As k — 0 with L = 7R kept fixed, z;, — 1. In Fig. 5 the behavior of
aooo(HH; ZL) is shown.

ag00(6H)
Qooo
2,50
z,=1.01
2.0 >
\\ // Z1=
1.5} \\\ //l z;=10
1.0/ - O S 2,=10°
0.5}
On
x T =X 27
2 2

Figure 5: The z; -dependence of the anomaly coefficient agoo (0 ; z1) is displayed for ¢ = 0.25.
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One sees that agpo(6y;zr) varies smoothly as z; changes. The z;, — 1 limit is singular at
Oy = %n and %n, however.

2 for0 < 0y < in

2V2  for Oy = %ﬂ'
lim aooo(6m;zL) =40 for in < 0y < 31 . (6.1)
z.—1

2V2  for Oy = %ﬂ'

2 for %77 <0y <2n

This is precisely the behavior in the flat space as

BLO) for0 <60y < %n
0 -1
5B + B ") for0y =in
Zlim1 Z,(,O) = BL_I) for %71’ <0y < %7‘( . (6.2)
L= -1 )
\L@(Bl(l ) +B;(1 ") for 0y = %ﬂ'
BL_Z) for %ﬂ' <0y <2m

As a function of 8y, the anomaly coefficient aggy (6 ) becomes singular in the flat space limit at
the points where level crossing occurs.

7. Holography in anomaly flow

In Figs. 3, 4 and 5, the anomaly coefficients coming from a fermion doublet of type 1A with
the bulk mass parameter ¢ = 0.25 have been shown. A surprise comes when one investigates
the c-dependence of the anomaly coefficients a,,¢(0;zL,c). In the realistic GHU models of
electroweak interactions, namely in the SO(5) x U(1)x X SU(3)c GHU in the RS space, [11] the
top quark multiplet has ¢ ~ 0.3 whereas the multiplets of other quarks and leptons have ¢ = 0.6 ~ 1.

In Fig. 6 gauge couplings tgo/OLand anomaly coefficients aORO/OL and aggp for z;, = 10 and ¢ = 0.8
are shown. The behavior in Fig. 6 should be compared with that in in Fig. 3 for ¢ = 0.25. Although
the gauge couplings for ¢ = 0.8 are significantly different from those for ¢ = 0.25, the total anomaly
coeflicient aggy(6y) turns out universal, being independent of the value of ¢. There must be a
reason for this fact.

Let us go back to the expression for a,, n,n, in (5.4) with (5.2).

_ R R R L L L
s = Y {tnlm[tnzfp R o 1t tn3pm}. (7.1)
m,l,p

There are two ways to evaluate a,, nn;-
Method 1 (i) First evaluate the couplings [% % . (ii) Then do the summation 3.,/ ,,.
Method 2 (i) First do the summation 2,4, (ii) Then do the integration f dydy>dys.
So far we have adopted Method 1 to evaluate @, n,n;-

In Method 2 the first step of the summation 2,,,,,, leads to

k3 2L-B
Aninyny = (5) / / / dyldyZdy?a eo-(yl)+0'(y2)+0'(y3)
-B
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L z,=10, c=0.8 z,=10, c=0.8
t500 fo00 2000, 5501): aoRoo
1.0+ 2.0
aopoo
1.5f
0.5
1.0F
2‘ Oy 0.5
s
N\ o,
-0.5 = n iz 2n
-0.5F
aR
-1.0f -1.00 000

Figure 6: Gauge couplings tg)/()Land anomaly coefficients ag()/oL and aggo for zz = 10 and ¢ = 0.8 are shown

as functions of 6. The anomaly coefficient agyy for ¢ = 0.8 has the same behavior as aggg for ¢ = 0.25 in
Fig. 3.

x [ kikaks{AR(1,2)Ag(2,3)Ar(3,1) - Br(1,2)Br(2,3)Br(3,1)
+B1(1,2)Br(2,3)BL(3.1) — AL(1,2)AL(2.3)AL(3, 1)}
#hihohs () + hikohs () + huhoks ()]

kj= knj()’j) » hj= h"j(yj) ’

Arit(5 ) _ [Aric) . o (TR SRy (V0
(BR/L(f’ k)) ) (BR/L) 0570 = HZ:;) (gR/Ln(yj)g;Z/Ln(yk) ' (7.2)

Here we have made use of 37" ) fr/Ln (¥)gk ILn (y") = 0. B appearing in the integration range in y ;
is arbitrary. Finding the explicit form of Ag,;, and Bg,;, for general c is a difficult task, however.

It is possible to determine Ag/; and Bgy, for ¢ = 0. One finds, with 67.(x) = 3., 6(x —nL),
that

type 1A, ¢ =0
’ ’ e_o-(y) ’ ’
AR(Y,Y") = BL(y,y') = T {620y =) +62.(y +¥)} .
’ ’ e_o-(y) ’ ’
Br(y,y) = AL(y,)) = — {620y =) =6y +Y)}, (7.3)

Formulas for type 1B are obtained by interchanging R and L. Similarly

type 2A, ¢ =0
, , e_o—(y) ~ , N ,
AR(,Y) = BL(y,Y') = — {620y =) + 2. (y +¥)} .
, , e_o-(y) N , N ,
Br(y,y") =AL(y,y") = T {o20.(y =y") =02y +y)},
620.(y) = 64r.(y) — Sar(y —2L) . (7.4)

Formulas for type 2B are obtained by interchanging R and L. When one inserts (7.3) and (7.4)
into (7.2), there appear the products of three delta functions in the integrand. With 0 < g < L the

10
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products of delta functions reduce to

020 (y1 = y2)021.(y2 = ¥3)020.(¥3 + y1) }
O21.(y1 +¥2)021.(y2 + ¥3)020.(¥3 + y1)

= 2{0000m)50) + 61 = )3y~ L)o(ys ~ L)}

621.(y1 = ¥2)020.(y2 — ¥3)b21.(y3 + ¥1) }
Sar.(y1 + ¥2)620.(y2 + ¥3)620.(y3 + ¥1)

= 2{50m8026(55) = 61 = LYo (2 ~ L)sys ~ 1)} 15)

Furthermore, as h,,(0) = h,,(L) = 0, only the terms proportional to k1 k;k3 in (7.2) survive.
We have arrived at the following formula for the anomaly coeflicients;

anem(Om,21) = Qokn(0)ke(0)k,, (0) + Q1kn (L) ke (L) k(L) , (7.6)
where

(+1,+1) for type 1A

(=1,-1) fortype 1B
(Qo,01) = : (1.7)
(+1,-1) for type 2A

(=1,+1) for type 2B

The anomaly coefficients are determined by the values of the wave functions of the gauge fields,
k,(y), at the UV and IR branes and the parity, O, of the right-handed mode of the fermion field.

As observed at the beginning of this section, the anomaly coefficients a,¢,, (6 ) do not depend
on the bulk mass parameter ¢ of the fermion field. The anomaly formula (7.6) derived for ¢ = 0
should apply for other values of c. Indeed one can confirm it explicitly. In Fig. 7 a,¢n’s given by
the formula (7.6) and those determined by Method 1 for ¢ = 0.25 are displayed in the case z; = 10.
Blue curves represent the formula (7.6), whereas red dots represent the values determined from the
gauge couplings tfn/1 I(i for ¢ = 0.25. It is seen that the red dots are on the blue curves.

We stress that the anomaly coefficients depend solely on k,(0), k,(L), Qp and Q. They
depend neither on the behavior of the wave functions of gauge fields and fermion field in the bulk
region 0 < y < L, nor on the bulk mass parameter ¢ of the fermion field. The formula (7.6)
represents holography in anomaly flow. Although each anomaly generated by specific fermion
modes running along the internal triangle loop does depend on the detailed behavior of the wave
functions of both gauge and fermion fields in the bulk, the total anomaly coefficients, after summing
up all possible loop contributions, are determined by the information of the gauge fields at the UV
and IR branes and of the parity conditions for the fermion field there.

The formula for the anomaly coefficients b,,,,¢ in the flat M 4% (8')7,) spacetime simplifies.
As in the RS space, one finds that

buem = Qokp™ (0)k I (0) k12 (0) + Q1AM (L) KF* (L) kD(L) . (7.8)

11
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Figure 7: Anomaly coefficients agoo(6g), a111 () , a222(0m) , ap12(0g) are shown for type 1A fermions
with z; = 10. Blue curves represent the formula (7.6), whereas red dots represent the values determined
from the gauge couplings tfél Lf for ¢ = 0.25 by Method 1.

In the flat space k13(y) = cos(nmy/L) so that

buem = Qo + (=)™ Q) (7.9)

which agrees with (4.3) with Qg = Q1 = 1 for a doublet fermion of type 1A.

8. Anomaly cancellation

In gauge theory in four dimensions gauge anomalies have to be cancelled for the consistency of
the theory. In GHU the holography in anomaly flow becomes crucial to guarantee the cancellation
of gauge anomalies. In the SM all gauge anomalies are cancelled among quarks and leptons in each
generation.[12, 13]

In the SU(2) GHU under consideration one may introduce several fermion doublets, each of
which has its own bulk mass parameter c. Let the numbers of doublet fermions of type 1A, 1B,
2A and 2B be nia, ni1p, noa and nyp, respectively. It follows from (7.6) that the anomalies are
cancelled if
8.1

ma=mnmp, NnN2A=Mn2B,

as the anomaly coefficients do not dependon c¢. The condition is generalized in the presence of
brane fermions, namely fermions living only on the UV or IR brane. Suppose that there are 7ig
right-handed and iy left-handed doublet brane fermions on the UV brane at y = 0. As the Z,f,”)
coupling of each brane fermion is given by (g4/2) k,,(0), the anomaly cancellation conditions

12



Holography in anomaly flow in orbifold gauge theory Yutaka Hosotani

become

nia—nigp+noa —mpgp+igr—np =0,

na—nig—na+np=0, (8.2)

It is important that the conditions (8.1) and (8.2) do not depend on 6y and z;. The conditions
guarantee that not only the zero mode anomaly aggg but also all other anomalies a ¢, are cancelled
at once. In GHU in the RS space the gauge couplings vary as 6y, which further depends on ¢, or
on the fermion species, but the anomaly cancellation conditions do not depend on 6.

9. Summary

We have shown that the anomaly flows with the AB phase 6. In the RS space everything
changes smoothly with 6. In the SU(2) GHU model in the RS space a chiral fermion at 6y = 0
is transformed to a vector-like fermion at 8y = m. The magnitude of the anomaly coming from
one fermion doublet varies with 6. The total anomaly coeflicients a,;,,¢ (6 ) are given by thec
formula (7.6), which represents holography in anomaly flow.

The anomalies can be cancelled among several fermion doublets. The cancellation conditions
are given by (8.1) or (8.2). They are independent of 6y and z;, which is important to achieve the
anomaly cancellation in the realistic GHU models in the RS space. The examination of anomaly
cancellation in the SO (5) X U(1)x X SU(3)c GHU in the RS space is necessary.

In this connection one may worry about the fact that the gauge couplings vary with 6y, and the
couplings of quarks and leptons are not purely chiral at g # 0. In the SM only left-handed quark-
lepton doublets couple to W. In GHU models in the RS space right-handed components also have
small couplings to W at 8y # 0. The detailed study of the GUT inspired SO (5) x U(1)x X SU(3)¢
GHU has been done recently.[14]. In the realistic model 8 ~ 0.1, mgg ~ 13 TeV and zp ~ 4% 10,
The W couplings of right-handed quarks in units of g,, are O(107'2), 0(107°), and O(107>) for
(u,d), (c,s) and (z, b), respectively. The W couplings of right-handed leptons are much smaller.

Anomaly flow by an Aharonov-Bohm phase is a new phenomenon, which is different from the
phenomenon of anomaly inflow.[15—17] Further investigation is desired.
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A. Basis functions

Wave functions of gauge fields and fermions in the RS space are expressed in terms of the
Bessel functions. For gauge fields we introduce
T
2
T
$(z:A) = —5AzF11(Az, AzL)

C(z;A) = =AzzpFi0(Az,2z1) ,
C'(z;1) = g/lzZZLFO,O(/lZ’/lZL) ,
(1) = —gazzFo,l(Az,AzL) :
Fopu,v) =Jo(u)Yg(v) = Yo (u)Jg(v), (A1)
where J, (1) and Y, (u) are Bessel functions of the first and second kind. These functions satisfy

C
S

Cl
S/

2 2

>

C T ddzz\S

dld|C
Zdzzdz S

d dl(C’

C(zp;A) =z, C'(zp;A) =0, S(zp34) =0, S'(zp3) =2,

CS'-SC’'=2z. (A.2)

For fermion fields with a bulk mass parameter ¢, we define

C T
( L (z34,¢) = +=AVzz F 1 21 (Az,421) ,
St 2 2°772
CR T
(z34,¢) = FzAVzzL F, 1 ., 1(Az,AzL) . (A3)
SR 2 2°772
These functions satisfy
CL Sr
D =A ,
+(0) S, (CR
Cr SL d ¢
D_ =1 , Di(c)=2—+—,
O c, :(c) i

Cr=CrL=1, Sp=S5.=0 atz=1z1,

CLCr—=SLSr=1. (A4)

B. Wave functions in RS
The wave functions h,,(z) = (h,(2), k. (z))" in (3.5) for gauge fields are given by

ho(z) =h{(2),
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[hor-1(2), hoe(2)] = (=1)f

1 ZL dZ

Vn:k—L

[ 20 1(2),h5,(2)]

[h} 20- 1(2), -hg, (2)]
[-h 25 1(2),-h%,(2)]
[-h?,_,(2),hg,(2)]
[hg,_, (2), h3,(2)]

(t=123,--+),

1 —sinaHS(z;/ln) R (o) =
cos 0 C(z; ) \/_

& C(154)

S T S(1;2)

fOI‘—%Tl’<9H < %n

forO< 0y <m

1 3
for 3m <0y < 57
form <0y <21

for %7‘[ <y < %71’

cos Oy S(z;4,)
sin0y C(z;A,) |

(i) (@) = g CE)
E P + a(P) for (28)

In (B.1) two expressions in an overlapping region in g are the same.

The wave functions fra(z) = (fra(2), 8rn(2))" and f1,(2) = (fLa(2), &Ln(2))" in (3.8) for
fermion fields of type 1A with ¢ > 0 are given by

(fr20(2), Fr 2e41(2)] =

fLo(Z) =f

(Fr20-1(2), fr20(2)] =

Here

fra(2) =

rn(2) =

fl% 24’(1)’ fR 204131
fzg 20(2) T 2€+1(Z)]
f 201 (2]

£ ,,(2), -

[

[

[ 2, (2), —

[~ R2{’+1(Z)]
[£5 [(Z)’ 2204121
(€=0,1,2,---),

ZO(Z)’

fZ 20-1(2) fi 20(2)]

_Z_zf 1 (2). 17 25(1)]
fZZ 1(Z) - g(z)]
—f

2 20-1(2)s = F(Z)]

[
[
[-
[-
[} L 25—1(Z)’fL,2£(Z)]
(t=1,2,3,---).

1 | cos %GHCR(Z;/M, c) b 1
-1 & ? fRn(Z) =
—sin 50 Sr(z; An, €) \rb

sin 5 HHC‘R(Z A, )
cos 5 QHSR(Z An,0)]’ (Z) \/__
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for —m<0yg <nm
for0 < 0y < 2m
form <6y <3m
for2n < Oy < 4n

for3m < 0y < 5n

for —m <0y <nm
for0 < 0y <2nm
forn < 0y < 3n
for2n < 0y < 4n

for3n < 0y < 5n

sin 4 QHCR(Z An, C)
cos GHSR(Z A o)’

—c0s 305 Cr(2; An, €)
sin %G)HSR(z; Ap, )

(B.1)

(B.2)
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fa 1 [sin %GHS’L(z;/ln,c) b 1 [=cos %HHSL(Z;/ln,C)
Ln(Z) = = 1 . s Ln(Z) —— -1 . s
\rd \cos 505 Cr(z; A, ©) 1/,,2 sin 50 Cr(z; Ap, €)
e 1 cos %OHSL(z;/ln,c) i 1 sin%QHSL(z;/ln,c)
Ln(Z) e | A . > Ln(Z) - T 1 ~ . ’
Vr§ \=sin 305 CL(z; Ay, €) yd \cos 500 CL(Z; A0, €)
zL R R f(z
= [ aE @R @R for (T, ®3)
1 8n(2)

- Se(L;a,0) \Cr Sr(1;2,¢)

SA'L) (z:A,¢) = M (SL) (z:4,¢), (qL) (zzA,¢) = M (CL) (z:4,¢),
SR SR

St(l;4,¢)
Cr(l;4,¢)

S Sr(L;4,¢) [SL
(A e) = ————=
Cr(1;1,¢) \Cg

(z;4,¢), (€L) (z:4,¢) = (CL) (z;A,¢). (B.4)
SR SR

In (B.2) two expressions in an overlapping region in g are the same.
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