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1. Introduction

de Sitter (dS) spacetime has long played an enigmatic role in theoretical physics. It is notori-
ously difficult to realizemeta-stable dS vacua in string theory [1–3] and the “holographic dictionary"
in de Sitter space [4, 5] is much less developed than in Anti-de Sitter (AdS) space. These difficulties
make finding a unified framework for a “quantum de Sitter universe" elusive1. And yet, de Sitter
spacetime has obvious relevance to our own universe: both the inflationary era as well as for our
current era of weak accelerated expansion are well described by a positive cosmological constant.
Understanding how quantum fields propagate on de Sitter space is then a necessary element in
understanding cosmological physics, regardless of the ultimate status of de Sitter quantum gravity.

It is with this ethos in mind that these proceedings have been prepared. The content of these
proceedings is not new, however I will attempt to condense, package, and summarize results into a
friendly introduction into quantum field theory on a dS background. A partial aim of these notes is
to highlight the ways in which quantum field theory in dS differs from that in AdS. In the course
of this, I will provide an basic overview of the representation theory of the dS isometry group;
representation theory is a useful paradigm for organizing the particle content on de Sitter but it also
provides us with additional instructive points: we will be able to emphasize the many similarities
of the dS isometry group and the Euclidean conformal group while also pointing out important
differences.

To ground this discussion I will focus almost entirely on three-dimensional de Sitter spacetime,
dS3. This “3d perspective" will provide us with some simplifications with regards to representation
theory and as well as some additional advantages. For one, it will be illuminating to discuss quantum
field theory in the Euclidean signature: Euclidean de Sitter space is compact and so highlights in
a geometric manner differences with AdS and the difficulty in adapting a holographic dictionary
(due to a lack of a conformal boundary). While these statements are true in any dimension, we will
see that many computations in quantum field theory can be performed exactly in three-dimensions
using Euclidean heat kernel techniques. These heat kernel techniques are intimately related to the
worldline quantum mechanics of a massive particle and make explicit use of the compactness of the
Euclidean de Sitter: essentially particle worldlines can wrap the compact space many times.

While the primary purpose of these notes is to provide a friendly entry into quantum field theory
on a fixed dS background, our 3d perspective will provide us one more conceptual advantage: a
framework for describing de Sitter quantum gravity. This relies heavily on the topological nature of
3d gravity and ability to recast gravity in terms of Chern-Simons theory [9–12]. The relevant Chern-
Simons theory for Euclidean gravity with a positive cosmological constant is solvable and provides
exact answers for the gravity path-integral about a fixed saddle-point. However, again, since the
focal point of this talk is quantum field theory in de Sitter, I will also briefly summarize recent
results for incorporating quantum matter into this theory of quantum gravity [13]. The solubility of
the Chern-Simons theory not only allows one to reproduce our earlier Euclidean computations (on
a fixed classical de Sitter background), but also to compute controlled quantum gravity corrections
to these quantities in a perturbation theory organized by Newton’s constant.

1See, e.g., [6–8] for further reflections on a quantum de Sitter spacetime.
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2. SO(1, 3) representation theory

Following the footsteps of Wigner [14], we will classify single particle states by the unitary
irreducible representations (UIRs) of the background isometry group2. de Sitter space, realized as
a hyperboloid in R1,3 (what we will call “embedding spae") with radius ` (the de Sitter radius),

ηABXAXB = `2 ηAB = diag(−1, 1, 1, 1) (1)

has SO(1, 3) as its isometry group. From here-on we will choose units where ` = 1. The generating
algebra, so(1, 3) = span {LAB} is given by

[LAB, LCD] = ηBCLAD − ηACLBD + ηADLBC − ηBDLAC . (2)

These generators have a natural action on the hyperboloid as the Killing vectors LAB = XA∂B −

XB∂A. This is a real basis and so UIRs will realize the reality condition L†
AB
= −LAB. It useful to

build representations in a way that mimics the Euclidean conformal group by going to the basis

D = L03, M = L12, Pi = L3i + L0i, Ki = L3i − L0i (3)

obeying the algebra

[D, ®P] = ®P [M, Pi] = − εi jP j [Ki, Pj] =2δi jD − 2εi jM

[D, ®K] = − ®K [M,Ki] = − εi jK j . (4)

Note that in this basis ®P and ®K act as conformal ladder operators and so we can attempt to build
UIRs as lowest weight representations. To this end we will label a primary state (lowest weight
state) by (∆, s), its eigenvalues under D and −iM , respectively. This state will be annihilated by ®K:

D |∆, s; 0〉 = ∆|∆, s; 0〉 M |∆, s; 0〉 = is|∆, s; 0〉 ®K |∆, s; 0〉 = 0. (5)

The quadratic Casimir of so(1, 3) acts on this basis as

c2 |∆, s; 0〉 = D(2 − D) +
2∑
i=1

PiKi + M2 |∆, s; 0〉 = c∆,s |∆, s; 0〉, c∆,s = ∆(2 − ∆) − s2. (6)

However unlike the Euclidean conformal representation theory, say relevant to AdS3, reality of the
generators here are realized as3

D† = −D, M† = −M, P†i = −Pi, K†i = −Ki , (8)

and so the typical method of generating descendants as through the finite action of ladder operators
fails here. For instance we could consider the example state

Pn
1 |∆, s; 0〉 . (9)

2See [15] and references there-in for a modern and concise resource.
3We remind the reader that Hermiticity relevant for the Euclidean conformal group is

D† = D, M† = −M, P†
i
= Ki, K†

i
= Pi . (7)
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Hermiticity, (8), implies that in order for this state to have non-zero norm then the primary state has
non-zero overlap with an infinite number of descendant states:���Pn

1 |∆, s; 0〉
���2 , 0 ⇒ −〈∆, s; 0|P2n

1 |∆, s; 0〉 , 0. (10)

So unlike the conformal representation theory relevant to AdS3, representations here cannot be a
direct sum of a discrete number of descendant states with the standard inner product. A more useful
basis is given in “position space"

|∆, s, ®x〉 = e ®x · ®P |∆, s, 0〉 (11)

with ®x ∈ R2. The other generators act on this basis as

Pi |∆, s, ®x〉 =∂
(x)
i |∆, s, ®x〉

D |∆, s, ®x〉 =(x · ∂(x) + ∆)|∆, s, ®x〉

M |∆, s, ®x〉 =(−εi j xi∂ j + s)|∆, s, ®x〉

Ki |∆, s, ®x〉 =(2xi(x · ∂(x) + ∆) − x2∂i − 2s εi j x j)|∆, s, ®x〉. (12)

Unitarity further constrains the conformal weight and the spin, ∆ and s, by imposing consistency of
(8) inside 〈∆, s, ®x | . . . |∆, s, ®y〉 as well as positivity of the norm. This procedure is wholly analogous
to the procedure constructed in [15] and we will leave filling in the fine details to the reader. There
are two unitary branches of representations

Case I: Complementary Series ∆ = 1 + ν, ν ∈ (−1, 1) s = 0
Case II: Principal Series ∆ = 1 − iµ, µ ∈ R s ∈ Z . (13)

Expressing a generic state of a given representation as

|ψ〉 =

∫
d2x ψ(®x)|∆, s, ®x〉 (14)

then these two branches of representations induce inner products on wave-functions as

Case I: Complementary Series 〈ψ1 |ψ2〉 =
Γ(∆)

πΓ(1 − ∆)

∫
d2xd2y ψ∗1(®x)

1
|x − y |2∆

ψ2(®y)

Case II: Principal Series 〈ψ1 |ψ2〉 =

∫
d2x ψ∗1(®x)ψ2(®x) (15)

where | · | above is given by the Euclidean R2 norm. Thus these two types of representations induce
very different inner products at the level of wave-functions. It is useful to note the existence of a
representation isomorphism between representations with conformal weight ∆ and ∆̄ = 2−∆. This
isomorphism, S, is called the shadow map and acts on states as

S∆ |∆, s, x〉 =
Γ(∆)

πΓ(1 − ∆)

∫
d2y

1
|x − y |2∆

|∆̄, s, y〉 . (16)

This is a representation intertwiner, i.e. [S, LAB] = 0 acting on this basis, and so is a true
isomorphism. Note that in AdS3, fields with conformal weight ∆ and 2 − ∆ lie in different
representations. In dS3 these representations are equivalent and so observables will be organized
in such a way to utilize both conformal weights.

4



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
2
9

A 3d perspective on de Sitter quantum field theory Jackson R. Fliss

3. Scalar field theory

Now let use this representation theory to help us construct a field theory in de Sitter space. For
the rest of this note I will focus on scalar field theory (and so for the principal series representation
I will set s = 0). Much of this section mirrors the discussions in [16, 17] however with details
adapted to suit our conventions. Let us look at fields lying in the inflationary patch of de Sitter
space, indicated in orange inside the Penrose diagram depicted in Figure 1. This is realized by
parameterizing the embedding coordinates as

X0 = − sinh t −
1
2

et ®x2

X i = et xi

X3 = cosh t −
1
2

et ®x2 (17)

which induces the metric
ds2 = −dt2 + e2t δi jdxidx j . (18)

Thus each time slice of this patch is a Euclidean R2 which then expands to infinite size at future

Figure 1: A cartoon of the Penrose diagram of dS3 with the inflationary patch depicted in orange. Constant
time slices (in black) are flat geometries that expand to infinite size at I+. A primary scalar operator, Φ̂0,
inserted at (t = 0, ®x = ®0) can be translated to another point in the patch by acting with etD followed by e ®x · ®P .

infinity, I+. Expressing LAB = XA∂B−XB∂A in the conformal basis, (3), we find that the conformal
generators have a natural geometric action in this patch

D =∂t − ®x · ®∂ Time translation + dilitation
Pi =∂i R2 translations
M =ε i j xi∂j R2 rotations

Ki =e−2t∂i − 2xi(∂t − ®x · ®∂) − x2∂i Special conformal transformations. (19)

These generators also act naturally on scalar field operators. For instance, we can then start with
a scalar primary field, Φ̂0 ≡ Φ̂(t = 0, ®x = ®0), placed at the origin of the inflationary patch and

5
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satisfying [Ki, Φ̂0] = [M, Φ̂0] = 0. We can translate it to a generic point by conjugating with the
above vector fields

Φ̂(t, ®x) = e ®x · ®PetDΦ̂0e−tDe−®x · ®P . (20)

Acting on Φ(t, ®x) via adjoint action, it is easy to verify that the generators of so(1, 3) act as the
appropriate vector fields, (19). The quadratic Casimir, expressed as a second order differential
operator through (19), acts on Φ(t, ®x) as the Klein-Gordon operator associated to the metric (18)

c2 ◦ Φ(t, ®x) =
(
−∂2

t − 2∂t + e−2t∂2
i

)
Φ(t, ®x) = ∇2

Φ(t, ®x) . (21)

Since this is a constant of the representation, we find that Φ satisfies the Klein-Gordon equation
with a mass (measured in units of the Hubble scale, `−1) related to the conformal weight as

(∇2 − m2)Φ = 0 ⇒ ∆(2 − ∆) = m2. (22)

Once again we see two branches of solutions corresponding to “light" scalar fields with mass less
than the Hubble scale and “heavy" scalar fields with mass greater than the Hubble scale:

Case I: m2 < 1 Complementary Series ∆ =1 + ν, ν =
√

1 − m2

Case II: m2 > 1 Principal Series ∆ =1 − iµ, µ =
√

m2 − 1 (23)

We can proceed to quantize the free scalar field theory in the inflationary patch through the standard
Fock quantization:

Φ̂(t, ®x) =
∫

d2p
(2π)2

{
â†
®p
Ψ ®p(t, ®x) + h.c.

}
(24)

with

[â ®p, â
†

®p′
] =

{
δ2( ®p − ®p′) m2 > 1��p��2ν δ2( ®p − ®p′) m2 < 1

(25)

where the difference in the canonical commutation relations arises from the difference in represen-
tation norm (appropriately Fourier transformed), (15), between the complementary and principal
series [16, 17]. The basis wave-functions are given by solving the Klein-Gordon equation, (22):

Ψ ®p(t, ®x) = α∆ ei ®p · ®x |p|1−∆ e−t J∆−1
(
|p|e−t

)
+ α∆̄ ei ®p · ®x |p|1−∆ e−t J∆̄−1

(
|p| e−t

)
. (26)

where Jν(z) are Bessel functions and α∆ and α∆̄ are complex numbers that parameterize a two-
parameter family of Fock quantizations. Equivalently there are a two-parameter family of de
Sitter-invariant vacua, known as the α-vacua [18]. We can distinguish these vacua, for instance,
through the vacuum Wightmann function:

〈Φ(t1, ®x1)Φ(t2, ®x2)〉 = |α∆ |
2 G∆−1,∆−1 + α

∗
∆
α∆̄G∆−1,∆̄−1 + α

∗

∆̄
α∆G∆̄−1,∆−1 +

��α∆̄��2 G∆̄−1,∆̄−1 (27)

where

Ga,b =
e−t1−t2

2π

∫ ∞

0
dp p J0

(
p|x2 − x1 |

)
Ja

(
pe−t1

)∗ Jb
(
pe−t2

)
. (28)
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Let us focus on the Bunch-Davies vacuum, distinguished by enforcing Hadamard behavior of the
scalar two-point function [19]:

lim
t1→t2, ®x1→®x2

〈Φ(t1, ®x1)Φ(t2, ®x2)〉BD =
1

4π
��σ(t1, ®x1; t2, ®x2)

�� ∼ 1

4π
���(t1 − t2)2 − et1+t2 |x1 − x2 |

2
���1/2 (29)

where σ is the geodesic distance between two points. By ∼ we mean the leading term as (t1, ®x1) →

(t2, ®x2). At short distances, |x2 − x1 | � 1, due to the fall-off of J0, the above integral is dominated
by large p and so we can approximate G by replacing J∗ν1 Jν2 with their large argument asymptotics:

Jν(z)
z→∞
∼

√
2
πz

cos
(
z −

π

2
ν −

π

4

)
+ . . . (30)

to find

2π2Gν1,ν2 ∼
cos π

2 (ν
∗
1 − ν2)(

et1+t2 |x2 − x1 |
2 − 4 sinh2( t1−t22 )

)1/2 −
sin π

2 (ν
∗
1 + ν2)(

et1+t2 |x2 − x1 |
2 − 4 cosh2( t1−t22 )

)1/2 . (31)

Taking the t1 → t2 limit of G inside (27), we find we can reproduce the correct Hadamard behavior
when

α∆ |BD =

√
π

4
ei

π
2 (∆−1)

sin π(∆ − 1)
, α∆̄

��
BD =

√
π

4
ei

π
2 (∆̄−1)

sin π(∆̄ − 1)
. (32)

The integral4 inside of Ga,b can be evaluated in terms of the Appell F4 function [21] however sim-
plifies greatly in the cases of interest, b = ±a [22]. After some tedious but otherwise straightforward
massaging this leads to the known expression for the Bunch-Davies two-point function [20]:

〈Φ(t1, ®x1)Φ(t2, ®x2)〉BD =
Γ(∆)Γ(∆̄)

(4π)3/2Γ
(

3
2

) 2F1

(
∆, ∆̄;

3
2

;
1 + X1 · X2

2

)
(33)

where X1 ·X2 is the invariant length in embedding space. Expressed in inflationary patch coordinates:

X1 · X2 = ηABXA
1 XB

2 = cosh(t2 − t1) −
1
2

et1+t2 |x2 − x1 |
2 . (34)

4. Euclidean methods

In the rest of this note, I will focus on Euclidean methods applicable to scalar field theory
on dS3. This will allow us to highlight some of the differences between AdS and dS. While the
Euclidean rotation of AdS3 retains its topology (a cylinder), the Euclidean rotation of dS3 is much
more dramatic: Euclidean dS3 is a geometric three-sphere, S3, which can easily be seen through
Wick rotating the embedding space relation (1) through X0 = −iX4:

4∑
a=1
(Xa)2 = `2. (35)

4Strictly speaking this integral converges for
��x2 − x1

�� > e−t1 + e−t2 or X1 · X2 < −1, and all manipulations done in
this regime. However the final answer, (33), can be analytically continued and remains correct at all separations [20].

7
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In this section we will restore the de Sitter radius, `. Wick rotating de Sitter effectively compactifies
spacetime. Thus Euclidean signature casts many of the differences between field theory on AdS
and dS in stark and geometric terms. Lastly, the methods of this section this will set the stage for
discussing quantizing the background geometry in section 5 which we will perform through the
Euclidean path-integral.

For the purposes of performing calculations in Euclidean signature it is useful to define the
heat kernel, Km2(x, y; β), of a scalar particle of mass, m, as the solution to

(∇2
(x) − m2`2)Km2(x, y; β) =

d
dβ

Km2(x, y; β) lim
β→0

Km2(x, y; β) =
1√
g(x)

δ3(x − y) . (36)

Km2 can be used to assign formal definitions to functional inverses

Gm2(x, y) =
1

−∇2 + m2`2 :=
∫ ∞

0
dβ Km2(x, y; β) (37)

and functional determinants

log det(−∇2 + m2`2) = −

∫ ∞

×

dβ
β

∫
d2x

√
g(x)Km2(x, x; β). (38)

These expression for the one-loop determinant, (38), is only defined after regulating aUVdivergence
at β ∼ 0, which I indicate schematically by the notation

∫ ∞
×

dβ.
There are many standard techniques for solving Km2(x, y; β) perturbatively about β ∼ 0 which

are particularly valid for large m2`2 (this is equivalent to a geodesic approximation), however to our
benefit, in three-dimensions we can solve for Km2 exactly. Since its defining equation and initial
condition, (36), are spherically symmetric, Km2 can only depend on the arclength between x and y

(most conveniently expressed in embedding space)

Θ = arccos(X · Y ). (39)

We can reduce the heat equation to

1
sin2Θ

∂Θ

(
sin2
Θ∂ΘKm2(Θ, β)

)
− m2`2Km2(Θ, β) = ∂βKm2(Θ, β). (40)

For small β, the initial condition tells us that Km2 localizes to Θ ∼ 0. In a neighborhood of that
point, (40) is the same as the R3 heat equation in polar coordinates with Θ playing acting as the
radius. Thus we can use the R3 heat-kernel as an ansatz for small-β perturbation theory:

Km2(Θ, β) =
e−m

2`2β

(4πβ)3/2
e−
Θ2
4β −α0(Θ)−βα1(Θ)−β

2α2(Θ)−.... (41)

Applying the heat equation, (40), and collecting in powers of β, the functions αn can be solved
recursively with integration constants chosen to mimic the Euclidean heat-kernel at Θ ∼ 0. This
provides a tractable method for calculating “heat kernel coefficients" which govern Km2’s small β
expansion. For S3 however, amazingly, this recursive procedure truncates and admits a solution
setting αn≥2 = 0:

Km2 =
e−m

2`2β

(4πβ)3/2
Θ

sinΘ
e−
Θ2
4β +β . (42)

8



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
2
9

A 3d perspective on de Sitter quantum field theory Jackson R. Fliss

One may recognize this as a simple analytic continuation of the heat kernel on three-dimensional
hyperbolic space, H3 [23]. However (42) is not exactly correct: it is not periodic in Θ! This
is not surprising as we have only arrived at it from perturbation theory about β ∼ 0; there are
non-perturbative effects in β which correct (42). These effects remember the compactness of S3.
Namely if we interpret Km2(x, y; β) as the probability of a particle localized at y diffusing to the
point x after time β, then we should include the possibility for that particle to travel around the
compact space any number of times before arriving at x (although such probabilities should be
exponentially suppressed). This leads to the correct result:

Km2(x, y; β) =
e−µ

2β

(4πβ)3/2
∑
n∈Z

Θ + 2πn
sinΘ

e−
(Θ+2πn)2

4β

= −
1

2π
e−µ

2β√
2πβ

∂Θ

(
e
−Θ2
4β ϑ3

(
i π2βΘ, i

π
β

))
sinΘ

, (43)

where µ2 = m2`2 − 1 and ϑ3(z, τ) is the Jacobi theta function

ϑ3(z, τ) =
∑
n∈Z

ei2πzn+iπτn
2
. (44)

It is worth reiterating: although perturbatively Km2 is the analytic continuation of H3 ' Euclidean
AdS3, the exact result is very different due to the compactness of Euclidean de Sitter.

4.1 The Green’s function

We can now integrate the heat-kernel, (43) to arrive at the Euclidean Green’s function for a
scalar field

Gm2(Θ,m2) =

∫ ∞

0
dβ Km2(Θ, β) (45)

This integral is easily done on each term in the sum when µ2 = m2`2 − 1 > 0 to yield

Gm2(Θ) =
1

4π

∑
n∈Z

sgn(Θ + 2πn)
sinΘ

e−µ |Θ+2πn | . (46)

(we have, without loss of generality, chosen µ > 0). By choosing a representative of Θ to lie in
between [0, 2π) this can be massaged into the form

Gm2(Θ) =
sinh

(
µ(π − Θ)

)
4π sinΘ sinh(πµ)

=
Γ(∆)Γ(∆̄)

(4π)3/2Γ(3/2)2
F1

(
∆, ∆̄;

3
2
,

1 + cosΘ
2

)
. (47)

where, again, ∆ = 1 − iµ and ∆̄ = 2 − ∆. This indeed Wick rotates to the two-point function
of a massive scalar field in the Bunch-Davies vacuum of dS3, (33). This was expected: the
β → 0 initial condition on the Km2 forces Gm2 to have a Hadamard singularity structure. The
corresponding Green’s function for m2`2 < 1 can be found by the analytic continuation, µ = iν
with ν =

√
1 − m2`2.

9
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4.2 The one-loop determinant

Additionally we can integrate (43) via (38) to arrive at the one-loop determinant of a massive
scalar on S3:

log Zscalar =
VS3

2

∫ ∞

0

dβ
β

lim
Θ→0

Km2(Θ, β) (48)

where VS3 = 2π2 is the volume of the three-sphere. Again this is easily done on each term of the
sum appearing in (43) assuming µ2 > 0. However, importantly the integral over the n = 0 term of
that sum diverges at β ∼ 0 behavior. We can regulate this divergence by including a Rε (β) = e−

ε2
4β

regulator and taking the ε → 0 limit. The result of this is

log Zscalar =
π

2ε3 −
πµ2

4ε
+
πµ3

6
−

1
4π3

(
Li3

(
e−2πµ

)
+ 2πµLi2

(
e−2πµ

)
+ 2π2µ2Li1

(
e−2πµ

))
(49)

where Liq(x) is the polylogarithm

Liq(x) =
∞∑
n=1

xn

nq
. (50)

The one-loop partition function is UV divergent however we can minimally subtract these diver-
gences to arrive at a finite part:

log Z (finite)
scalar =

πµ3

6
−

1
4π3

(
Li3

(
e−2πµ

)
+ 2πµLi2

(
e−2πµ

)
+ 2π2µ2Li1

(
e−2πµ

))
. (51)

This matches the one-loop determinant written down, e.g. in [24]. This also can be analytically
continued, µ = iν, for light scalars. Note that in the above result it was essential to include the sum
over arclengths wrapping S3 to find the polylogarithms. This has no analogue for fields in AdS3.
We give this sum a stark geometric interpretation below.

4.3 S3 worldline quantum mechanics

We can cast the sum appearing in the exact heat kernel, (43), in explicitly geometric terms by
first expressing Km2 as a worldline path-integral. We will then see that this sum emerges as a sum
over path-integral saddle-points that wind S3. Let us begin by expressing the solution to (36) as a
sum over eigenfunctions of ∇2 weighted by their eigenvalue:

Km2(x, y; β) = e−βm
2`2

∞∑
l=0

∑
®m

Yl, ®m(x)e
−βl(l+2)Yl, ®m(y) (52)

where Yl, ®m(x) are a set of hyper-spherical harmonics. In order to write this as a continuous path-
integral we need to take care of this discrete sum. To that degree we will “integrate in" a continuous
variable, p, such that the Gaussian weighting is continuous, as well as a variable α to collapse p to
a discrete set:

Km2(x, y; β) = e−βµ
2 ∑
l, ®m

Y ∗
l, ®m
(x)

(∫
dα
2π

∫
dp eiα(p−l−1)e−βp

2
)

Yl, ®m(y). (53)
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The sums
∑

l, ®m Y ∗
l, ®m

e−iαlYl, ®m can now be performed to write the heat kernel as

Km2(Θ, β) =
e−βµ

2

8π2

∫
dα
2πi

∫
dp

cosα/2 sinα/2

sin2
(
α+Θ

2

)
sin2

(
α−Θ

2

) eiαpe−βp
2
. (54)

where again, Θ is the invariant arclength between x and y. So far this is not a path-integral.
However we can introduce an auxiliary worldline, parameterized by a coordinate τ ∈ [0, 1] and
promote p → P(τ) to a function on this worldline (with boundary conditions P(0) = P(1) = p).
We will then introduce a function X1(τ) to act as a Lagrange multiplier forcing ∂τP(τ) = 0:

Km2(Θ, β) =
e−βµ

2

8π2

∫
dα
2πi

∫
DPDX1 cosα/2 sinα/2

sin2
(
α+Θ

2

)
sin2

(
α−Θ

2

) eiα
∫ 1

0 dτP−β
∫ 1

0 P(τ)2−i
∫ 1

0 X
1(τ)∂τP(τ) ,

(55)
where X1 has boundary conditions X1(0) = X1(1) = 0. We can now integrate out P(τ) to arrive at
a path-integral for X1:

Km2(Θ, β) =
e−βµ

2

8π2

∫
dα
2πi

∫
DX1 cosα/2 sinα/2

sin2
(
α+Θ

2

)
sin2

(
α−Θ

2

) e−
1

4β
∫ 1

0

(
∂τX

1+α
)2

. (56)

Wenow see something interesting: recall thatαwhich began its life reminding us that the eigenvalues
of ∇2 are discrete. However now its role is to change the boundary conditions on X1 to realize
saddle-points of its path-integral that wind the three-sphere. To see this we can pick up the residues
of α’s second order poles at α = ±Θ + 2πn where n ∈ Z. We will also trivially “integrate in" two
other bosonic variables, X2(τ) and X3(τ) to soak up factors of β and arrive at

Km2(Θ, β) = e−βµ
2 ∑
n∈Z

∫
D ®X(n)

(
Θ + 2πn

sinΘ

)
e−

1
4β

∫ 1
0 dτ ∂τ ®X(n) ·∂τ ®X(n) (57)

where ®X(n) = (X1
(n)
,X2,X3) and X1

(n)
= X1 + (Θ + 2πnτ). This is precisely the worldline path-

integral of a particle moving on S3 in a set of Riemann normal coordinates5 [25]. Importantly this
path-integral includes saddles6 that wind the S3, which distinguishes it from similar path-integral
expressions for Euclidean AdS3 [26].

As a final note, we can return to (54) and instead integrate out p directly leading to the
expression of Km2 as an integral over α. This leads ultimately to following integral expression of
the one-loop determinant of a scalar field (after performing the

∫
dβ
β integral and deforming the α

contour in the complex plane):

log Zscalar =

∫ ∞

0

dα
2πα

coshα/2
sinhα/2

χ∆(α) (58)

5It is perhaps surprising that this path-integral, apart from its one-loop pre-factor, looks effectively flat. As shown
in [25], wordline path-integrals on spheres can be simplified by using Riemann normal coordinates where they can be
expanded in a series of 1/m2`2 about the flat path-integral, up to a one-loop pre-factor. Coincidentally in d = 3 this
expansion terminates after one term.

6These inclusions were missed by [25].
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where

χ∆(α) =
e−iµα + eiµα

sinh2 α/2
(59)

is the Harish-Chandra character corresponding to the principal series representation of SO(1, 3)
with ∆ = 1 − iµ [27]. The connection between Euclidean one-loop determinants and Lorentzian
representation characters is generic [24] and hints at interesting connections between entropy,
horizon scattering, and quasi-normal modes [28].

5. Outlook on a 3d quantum de Sitter universe

I’ve tried to provide a friendly introduction to scalar quantum field theory on de Sitter space that
(i) makes clear the role of the representation theory of the dS isometry group and (ii) emphasizes
important differences with scalar fields on AdS. Some of the most surprising differences in fact
happen in Euclidean signature where compactness of Euclidean dS has clear consequences on
scalar Green’s functions and one-loop determinants. Focusing on three dimensions has allowed us
to explore these differences with concrete and, often, exact examples.

As I mentioned in the introduction, focusing on three dimensions also affords us a window into
a quantum de Sitter spacetime. In three dimensions there is no propagating graviton and so gravity
is a topological theory. In fact, Euclidean dS3, at least at the level of the action, is equivalent to two
SU(2) Chern-Simons theories [11, 12]

ikLSCS[AL] + ikRSCS[AR] = −IEH (60)

where
SCS[A] =

1
4π

∫
Tr

(
A ∧ dA +

2
3

A3
)

(61)

(with Tr taken in the fundamental representation of SU(2)) and

IEH = −
1

16πGN

∫
d3x
√
g

(
R − 2`−2

)
. (62)

This follows from writing the Chern-Simons connections as

AL = i(ωa + ea/`)La AR = i(ωa − ea/`)L̄a (63)

where ea and ωa are the co-frame and the dualized spin-connection and {La} and {L̄a} generate
the respective SU(2)’s. The equivalence (60) requires that the Chern-Simons levels are imaginary
and inverse to Newton’s constant7:

kL =
i

4GN
kR = −

i
4GN

. (65)

7I am omitting a potential gravitational Chern-Simons action

IGCS =
1

2π

∫
Tr

(
ω ∧ dω +

2
3
ω3

)
. (64)

with integer coefficient. Either omitting or including IGCS does not alter the basic points made in this section.
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It is tempting to extend this equivalence of actions to an equivalence of path-integrals:∫
Dgµν e−IEH[g] ?

=

∫
DALDAR eikLSCS[AL ]+ikRSCS[AR ] (66)

This identification is subtle at the non-perturbative level. For instance, a sum over saddle-points
relevant for Euclidean dS3 in (66) diverges [29]. However, restricting the left-hand side of (66) to a
saddle-point geometry, M , and the right-hand side to a fixed topology and background connection,
Chern-Simons theory provides a successful framework for perturbative quantum gravity:∫

Dgµν
��
M

e−IEH [g] =

∫
DALDAR |M eikLSCS [AL ]+ikRSCS [AR ] . (67)

For instance by verifying that celebrated “exact techniques" (such as Abelianization [30, 31] and
supersymmetric localization [32]) continue working in the context of Chern-Simons gravity [13]
one can extract the gravity path-integral, Zgrav, about the S3 saddle from well-known SU(2) Chern-
Simons results [33]:

Zgrav =ieSdS
(√

2
kL + 2

sin
(

π

kL + 2

)) (√
2

kR + 2
sin

(
π

kR + 2

))
=ieSdS

8GN

`
sinh2

(
4πGN

`

)
(68)

where SdS = π`
2GN

is the tree-level de Sitter entropy. This result matches, to one-loop order,
the graviton determinant independently calculated from the metric formulation [24]. Analytically
continuing similar exact-results extends this one-loop matching to Lens space saddles in the dS3
gravity path-integral [29].

However these proceedings are about quantum field theory in de Sitter spacetime. Can we
couple matter into this theory? Can we do more in quantum gravity than compute one number:
Zgrav? We find hints of how to do this from the vantage point of effective field theory: Chern-Simons
theories often arise after integrating out massive degrees of freedom. The stand-ins of those massive
degrees of freedom in this effective theory are its Wilson lines which are morally regarded as the
worldlines of massive charged particles.

Herewefind that the lessons learned fromexpressingEuclidean computations asworldline path-
integrals in Section 4.3, are echoed in constructing the effective coupling of matter to Chern-Simons
gravity. In particular, for a scalar field minimally coupled to background geometry determined by
Chern-Simons connections, AL and AR, we can express its one-loop determinant as a integral over
Wilson loops:

log Zscalar =
1
4
Wj[AL, AR]

≡
i
4

∫
dα
α

cosα/2
sinα/2

TrR j P exp

(
α

2π

∮
γ

AL

)
TrR j P exp

(
−
α

2π

∮
γ

AR

)
, (69)

where the α integration contour runs along imaginary axis to just to left and right of the poles at
α = 0 and packages the effect of Wilson loops wrapping the topological S3 arbitrarily many times.
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This object, coined theWilson spool in [13], captures the physics of the worldline path-integrals of
Section 4.3 in the Chern-Simons formalism.

It is not within the scope of these proceedings to undertake the detailed construction (69)
however I will mention that in order for (69) to correctly correspond to massive matter on de Sitter,
the representations appearing there have be constructed from the ground up using an alternative
inner product on the su(2) algebra [13, 34]. This is necessary so that highest-weight representations,
Rj , can admit continuous (and possibly complex) highest-weights

j = −
1
2

(
1 +

√
1 − m2`2

)
(70)

and can correspond to the representations discussed in Section 2.
Since (69) provides an effective expression for the one-loop determinant of a massive field as

an gauge-invariant object we can now insert it into the gravitational path-integral (again restricted
to a given saddle-point)〈

log Zscalar[M]
〉
grav

:=
∫

Dgµν
��
M

e−IEH [g] log Zscalar[gµν] (71)

by inserting the right-hand side of (69) into the Chern-Simons path-integral:〈
log Zscalar[M]

〉
grav
=

1
4

∫
DALDAR |M eikLSCS[AL ]+ikRSCS[AR ]Wj[AL, AR] . (72)

This provides a principle for calculating perturbative quantum gravity corrections to log Zscalar[M]
about the saddle-point, M . This is more than schematic, it is effective: one can verify that the
exact techniques we employed to evaluate the partition function extend to the inclusion of Wilson
loops carrying non-standard SU(2) representations [13]. These techniques reduce the quantum
expectation value of Wilson loops to an ordinary integral. The leading contribution to this integral
as GN → 0 is in fact the exact one-loop determinant of scalar field that we derived in Section 4.2:

lim
GN→0

〈
log Zscalar[S3]

〉
grav

Zgrav
=
πµ3

6
−

1
4π3

(
Li3

(
e−2πµ

)
+ 2πµLi2

(
e−2πµ

)
+ 2π2µ2Li1

(
e−2πµ

))
(73)

where recall µ =
√

m2`2 − 1. This is without any need to minimally subtract any divergences:
within the gravity path-integral, (73) is completely finite.

Moving away from GN → 0, one can utilize exact methods to evaluate (72) order by order in
GN perturbation theory. At each order the Wilson spool provides finite and computable quantum
gravity corrections to log Zscalar. These can be naturally matched to a renormalization of the mass
of the scalar and so provide predictive statements about quantum gravity in de Sitter space.

Wrapping up this 3d perspective, we see that moving down a dimension gives novel and
powerful effective methods for coupling matter to quantum gravity. The full utility of Chern-
Simons for describe the interplay between quantum matter and quantum gravity has yet to be
explored. It will be very interesting to generalize the construction of the Wilson spool, (69), to
include massive spinning fields. Additionally, the spool is a natural object in AdS3 gravity for
describing one-loop determinants, at least at the classical (GN → 0) level [35]; this provides a
non-trivial check of the proposal, (69), beyond the context of de Sitter, however it would be nice
to proceed further and calculate (at least perturbatively) the AdS spool in the gravity path-integral.
This could provide a promising framework for organizing 1/c corrections to CFT correlators.
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