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1. Introduction

Symmetry forbids purely hard scattering processes in QED and gravity [1–3]. Indeed, conser-
vation laws and Ward identities associated with large gauge transformations require that the hard
asymptotic particles be accompanied by infinite clouds of soft photons and gravitons [2, 3]. An
infinite number of soft particles should appear in the final scattering state, together with the final
hard particles. These hard and soft particles are highly correlated. Therefore, it is important to
understand the entanglement between them, and to quantify the information carried by the soft
particles [4–11].

Over the years, we have gained many insights from studying the entanglement between local
degrees of freedom across regions of space [12–15]. Given a region A of a Cauchy slice Σ and its
complementA2 , most of the entanglement arises from local field theoretic degrees of freedom near
the two sides of the boundary surface mA. The entanglement entropy diverges, with the singular
terms acquiring universal forms that depend on the geometrical properties of the entangling surface
mA:

(A = 21
Area(mA)

n2 + 22 log n + . . . , (1)

where n is a short distance cutoff and  depends on the extrinsic curvature of mA [12–14, 16, 17].
The coefficients 21 and 22 scale with the number of degrees of freedom of the quantum field theory
and contain useful information [12–14]. In particular, they decrease along RG flows.

In holographic gauge/gravity dualities, such as the AdS/CFT correspondence, the entangling
surface mA grows into an extremal (codimension 2) surface Ã in the bulk [18, 19]. Here, the CFT
state gives rise to a bulk geometry. The bulk surface Ã is homologous to A on the boundary and
minimizes the area functional. The entanglement entropy is equal to the area of Ã in Planck units:

(A =
Area(Ã)

4� (5)
#

, (2)

a formula that is reminiscent of the area law for black hole entropy [18, 19]. This holographic pre-
scription allows us to compute entanglement entropy in strongly coupled CFTs and other quantum
field theory systems. More importantly, it underlies a deep connection between quantum entan-
glement and geometry. Indeed, it has been understood that it is quantum entanglement that builds
geometry and allows for a smooth bulk manifold to emerge [13, 14, 20]. The classic example of
such an emergent geometry is the eternal AdS black hole [21]. This geometry has two causally
disconnected, asymptotically AdS regions, which are separated by the black hole interior. As a
result, we get two copies of the holographic dual CFT, each leaving on one of the disconnected
components of the boundary. The Hilbert space takes the form of a tensor product H1 × H2,
with each factor standing for the Hilbert space of a CFT copy. The black hole is described by the
thermofield double state

|Ψ〉 = 1
√
/

∑
=

4−V�=/2 |�=〉1 × |�=〉2, (3)

where |�=〉 are the energy eigenstates (with energy eigenvalues �=); / is the thermal CFT partition
function and V = 1/) is the inverse temperature [21]. The temperature ) is equal to the Hawking
temperature of the black hole. Notice that this is a non-product state inH1 ×H2, and so the degrees
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of freedom from each CFT copy are entangled. This is despite the fact that the two CFTs are not
interacting. Taking a partial trace over the degrees of freedom of one copy leads to a thermal
density matrix for the other copy, with the Von - Neumann entropy corresponding to the black hole
entropy. Quantum entanglement bridges the two asymptotic regions. This bridging is achieved via
a geometrical wormhole, through the black hole interior, in accordance with the ER=EPR relation
[22]. Destroying the entanglement destroys the connectivity of spacetime, leading to a disconnected
bulk manifold with naked singularities.

Armed with these insights concerning the entanglement of degrees of freedom across regions
of space, it would be interesting to investigate patterns of entanglement inmomentum space [23, 24].
The goal is to uncover properties of the S-matrix of the soft degrees of freedom in the deep infrared.
In particular, the soft part of the S-matrix in gauge theories and gravity is highly constrained by an
infinite number of asymptotic gauge symmetries, giving rise to specific patterns of entanglement
between the soft and the hard particles in the final state. It has been argued that these structures may
shed light on the black hole information paradox [25, 26]. Indeed, since the black hole formation
and evaporation must be accompanied by the production of an infinite number of soft photons and
gravitons, these could play a role in purifying the final state of Hawking radiation. The Hilbert
space admits a decomposition into hard and soft factors

H� ×H( ,

with H( comprising states with energy less than an infrared scale �� ' � )� (where )� is the
Hawking temperature). Suppose that the black hole evaporation is a unitary process, giving rise to
a final state inH� ×H( of the form

|Ψ〉8= → |Ψ〉>DC = ( |Ψ〉8= =
∑
0

20 ( |�0〉 × |(0〉) . (4)

This should be a non-trivial superposition of a large number of correlated pairs of hard and soft
quanta, signalling a high degree of entanglement. Tracing over the final soft quanta should produce
Hawking’s thermal density matrix for black hole radiation:

d�0F:. = )A( |Ψ〉>DC 〈Ψ|>DC , (5)

placing specific constraints on the coefficients 20 in terms of thermal occupation numbers [26]. The
thermal entropy of the radiation can be understood as entanglement entropy between the soft and
the hard degrees of freedom

(4=C = −)Ad�0F:. log d�0F:. = () ℎ4A<0; ≥
��

4�
. (6)

The second law of thermodynamics requires that this entropy is greater or equal to the Bekenstein-
Hawking entropy of the black hole, and should remain large and finite in the limit �� ' → 0.

In this work, we will study a simpler problem associated with scattering processes in QFT.
Soft particles with energy below some IR energy scale � escape detection, and we would like to
quantify the information carried by these states. In particular, we will study the behavior of the
entanglement entropy as a function of � and _, the IR cutoff of the theory [4–11]. We focus on
scattering processes in perturbative QED, but the results are expected to generilize to perturbative
gravity.
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2. Scattering in QED and entanglement

There are infinitely many conserved charges in QED associated with large gauge transforma-
tions [2, 27, 28]. The gauge parameters do not vanish at infinity but instead asymptote to angle
dependent constants. Indeed, observe that for any scalar gauge function n (G), the corresponding
Noether current

�
`
n = ma (n�`a) = �`aman + �`n, (7)

where �` is the usual electromagnetic current associated with the charge matter fields, is conserved.
The first term in the last equation is the soft part of the epsilon current, which is linear in the
electromagnetic field tensor, while the second term, which is quadratic in the charged matter fields,
is the hard part. The soft part depends on the Lienard-Wiechert field produced by the charged
particles. The conservation of this epsilon current leads to an infinite number of conservation laws
when the gauge parameters n tend to angle dependent constants at infinity. For example in massless
QED, one can define the following charges by integrating the Hodge dual of the epsilon current
(which is a 3-form) on the future and past null infinity, respectively:

&+n =

∫
I+
∗ �n , &−n =

∫
I−
∗ �n . (8)

If the gauge function n obeys suitable boundary conditions at the common boundary of I+, I− [2],
we obtain a conservation law

&+n = &
−
n . (9)

The epsilon charge &−n associated with an initial configuration massless particles on I− must be
equal to &+n associated with the final configuration of massless particles on I+.

These conservation laws give rise to Ward identities constraining the S-matrix

〈>DC |&+n ( − (&−n |8=〉 = 0. (10)

By suitably choosing n , it can be shown that the Ward identities become equivalent to the Soft
Theorems, which govern the IR structure of QED [2].

The first Soft Theorem concerns scattering processes involving the emission of an arbitrary
number of # soft photons with momenta ®@A , A ∈ {1, . . . , #} [1, 29–35]:

U→ V + W1, W2, . . . , W# , (11)

whereU and V stand for generic configurations of incoming and outgoing hard particles, respectively.
The corresponding S-matrix amplitude factorizes in the limit of small photon momenta ®@A :

(VU (W1 . . . W# ) = (VU
#∏
A=1

∑
=

[=4= [?= · n∗( ®@A , ℎA )]
[?= · @A ]

, (12)

where the sums in the soft factor run over all incoming and outgoing particles, 4= is the charge of
the =th particle and [= = +1 for outgoing particles and [= = −1 for incoming particles. Observe
that the soft factor exhibits poles as ®@A → 0, leading to IR divergences in the amplitudes involving
real soft photon emission.
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The second Soft Theorem concerns the exponentiation of IR divergences associatedwith virtual
soft photons. Indeed to all orders, the amplitude square for the exclusive hard process U → V is
given by [1]

|(VU |2 = |( (Λ)VU |
2
(
_

Λ

)�
, (13)

where _ is the IR cutoff scale; Λ > _ is a fixed IR scale, characterizing soft virtual photons and

� = 2BVU = −
1

8c2

∑
8 9

[8 [ 9 48 4 9 E
−1
8 9 ln

( 1 + E8 9
1 − E8 9

)
(14)

is a positive real constant. Here E8 9 is the magnitude of the relative velocity between particles 8 and
9 given by

E8 9 =

[
1 −

<2
8
<2
9

(?8 · ? 9)2

]1/2

. (15)

Since � is a positive constant, the amplitude (VU vanishes in the strict limit _ → 0. On the other
hand, at any finite order in the QED coupling constant 4, the amplitude is plagued by logarithmic
IR divergences.

A typical hard process U → V violates the & n conservation laws, leading to the vanishing of
the corresponding amplitude (VU. Purely hard processes are forbidden. To satisfy these laws, an
infinite number of soft photons must be produced in the final state. One may restrict to inclusive
cross-sections, which can be shown to be finite, free of any IR divergences, order by order in
perturbation theory [1]. E.g. the cross-section for the transition U → V + any number of soft
photons with �)$) ≤ � is IR finite order by order in perturbation theory, with IR divergences
arising from real photon emission cancelling against IR divergences from virtual soft photons in the
Feynman diagram loops. Alternatively, we may dress the incoming and outgoing charged particles
with coherent clouds of soft photons, in accordance with the Faddeev-Kulish prescription, leading
to non-vanishing, IR finite S-matrix elements [36–39]. In this latter case as well, an infinite number
of soft photons appears in the final state.

In this work, we shall focus on 4− + 4− scattering in perturbative QED, ignoring the Faddeev-
Kulish dressings of the asymptotic particles1. We will work in a large box of finite volume !3. So
the momenta are discrete and the states of definite momentum normalizable. There is a natural IR
cutoff in momentum given by the inverse size of the box, _ = 1/!, which will be taken to zero at
the end of the computations. Our goal is to compute the entanglement entropy between the hard
and the soft particles produced in the final state.

The initial state is a two-electron state with no photons

|k〉8= = |484 9〉 = |U〉, (16)

where 8, 9 stand for the momenta and the polarization indices of the initial particles. The final state
is given by the action of the S-matrix on the initial sate

|k〉>DC = ( |U〉. (17)

1As it was shown in [10, 11], the leading entanglement entropy is independent of the Faddeev-Kulish dressing
function.
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As usual, we set ( = 1 + 8) and impose the unitarity relation

8() − )†) = −)†). (18)

The final state takes the following superposition form

|Ψ〉>DC = |U〉 + )VU |V〉 + )VW,U |VW〉 + . . . , (19)

where |V〉 stands for a generic two electron state, |VW〉 for a two electron state plus an additional
photon and )VU = 〈V |8) |U〉 and )VW,U = 〈VW |8) |U〉 are the corresponding S-matrix elements.
Summation over repeated indices is implied. (The energy and momenta of the final particles are
constrained by energy-momentum conservation.) The hard and soft particles in the final state are
entangled.

We then choose an IR reference scale � < <4, where <4 is the mass of the electron2, and
decompose the Hilbert space into hard and soft factors:

H� ×H( . (20)

The hard factor H� comprises electron/positron and photon states with energy greater than � ,
while the soft factorH( comprises photon states with total energy less than � . The reduced density
matrix for the hard particles can be obtained by taking a partial trace over the soft photons

d� = )A( |k〉>DC 〈k |>DC = d0 + n, d0 = |U〉� 〈U |� . (21)

Recall that d� is a hermitial operator acting on H� , with non-negative eigenvalues that add to
unity. The density matrix d0 associated with the initial two-electron state is pure. The variation
matrix n admits a perturbative expansion in terms of the coupling constant 4 at fixed cutoff scale _,
which is set by the size of the box. Unitarity ensures that Trn = 0, as expected [10, 11].

The structure of the density matrix is very interesting. The diagonal elements are free of any
IR divergences, order by order in perturbation theory, since they are given in terms of inclusive
Bloch - Nordsieck rates associated with box states. Notice that these scale inversely proportional
with powers of the volume of the box. The non-diagonal elements contain IR divergences at any
finite order in perturbation theory. To all orders, however, these divergences exponentiate leading
to the (faster) vanishing of the non-diagonal elements as _ → 0, and to decoherence [4–11]. For
example, the coefficient of the |V〉� 〈V |� = |4:4;〉� 〈4:4; |� term in the reduced density matrix is
the Bloch - Nordsieck rate associated with the inclusive rate 484 9 → 4:4; + any number of photons
with �)$) ≤ � :

�V, V = )VU)
∗
VU +

∑
lW<�

)VW, U)
∗
VW, U + . . . . (22)

The information carried by the soft photons scales with the entanglement entropy, which is
given by

(4=C = −)Ad� log d� . (23)

To calculate this, one can first compute the Renyi entropies for integer <

(< =
1

1 − < log)A (d� )<, (24)

2More precisely the reference scale � should be chosen according to the sensitivity of the detector.
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and then take the limit
(4=C = lim

<→1
(<. (25)

The Renyi entropies can be also used to quantify the degree of non-purity for the density matrix.
When the density matrix is pure, the Renyi entropies for integer < vanish.

We first expand to a fixed order in perturbation theory, keeping the volume of the box finite,
and take the continuum, _→ 0 limit in the end. Soft photon production appears at order 43, and so
the leading Renyi entropies are of order 46. Defining the following superposition of multiparticle
states, which do not contain any soft photons,

|Φ〉 = |U〉� +
∑
V

)VU |V〉� +
∑
V

∑
lW>�

)VW,U |VW〉� + . . . , (26)

the reduced density matrix d� takes the form [11]

d� = |Φ〉〈Φ| + �, (27)

where � is an order 46 matrix that annihilates |Φ〉 (to this order). The precise expression for � can
be found in [11]. As a result, |Φ〉 is an eigenstate of d� with a large eigenvalue:

_Φ = 〈Φ|Φ〉 = 1 − Δ, (28)

where
Δ =

∑
V

∑
lW<�

)VW,U)
∗
VW,U (29)

is an order 46 quantity, depending on the amplitude for single real photon emission in the energy
range _ < lW < � . All the rest of the eigenvalues of d� are of order 46 or higher. Their sum must
be equal to Δ by unitarity:

_8 = 4
608 , 8 ≠ Φ,

∑
8≠Φ

_8 = Δ, (30)

where the 08’s are order one quantities (or zero to this order).
The large eigenvalue governs the behavior of the Renyi entropies at leading order:

)A (d� )< = 1 − <Δ, < ≥ 2, (31)

giving

(< = −
1

< − 1
ln[1 − <Δ] = <

< − 1
Δ, < ≥ 2. (32)

The expression above for the traces breaks down for sufficiently high < [11] (since they must be
positive, less than unity). From these results, we can also deduce the leading entanglement entropy

(4=C = −
∑
8

_8 ln_8 = −Δ ln 46 + O(46). (33)

which exhibits non-analytic behavior in the coupling constant.
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The coefficient of the non-analytic term is found to be equal to Δ, which is singular in the limit
_ → 0 [10, 11]. Indeed, using the soft theorems for single soft photon emission, we get for the
singular part of the leading perturbative entanglement entropy

(4=C,B8=6 = − ln 46
∑
V

()VU)∗VU)×( ∑
lW<�

1
2+lW

∑
BB
′ ∈{U,V }

4B4B′[B[B′
?B?B′

(?B@W) (?B′@W)

)
. (34)

This is a universal formula, applicable for generic initial states, with arbitrary number of electrons
and positrons [11]. It is also independent of the FK dressing of the asymptotic particles [10, 11].

2.1 The leading entanglement entropy in the continuum limit

To take the continuum limit, we use the following relation between box and continuum states

| ®?〉�>G →
1

(2� ®? +)1/2
| ®?〉. (35)

We end up with the following expression [10, 11]

(4=C, B8=6 = −
) EA4;

16+
ln

(
�

_

) ∫
32 :̂

(2c)2
ln 46

�2
2<

���8M8 9

:;

���2 B:;, 8 9 , (36)

where ) is the time-scale of the experiment, 8M8 9

:;
is the invariant amplitude for the process

48 + 4 9 → 4: + 4; at tree level (Moller scattering) and EA4; is the relative velocity between the
incoming particles. There is a logarithmic IR divergence in the limit _ → 0 with the reference
energy scale � kept fixed. In particular, the entanglement entropy, per unit time, per particle flux,
is logarithmically divergent in this limit:

B4=C, B8=6 = −
1
16

ln
(
�

_

) ∫
32 :̂

(2c)2
ln 46

�2
2<

���8M8 9

:;

���2 B:;, 8 9 . (37)

The integrand diverges for forward (\ = 0) and backward (\ = c) scattering, where \ is the
scattering angle in the center of mass frame. To regulate this, we introduce an effective lower and
upper cutoff on the scattering angle, \0 ≤ \ ≤ c − \0 (where \0 is a small angle). We can uncover a
very interesting behavior in the high energy limit ? = �2</2 → ∞, \0 → 0, keeping the quantity
b = 4?2 sin2 (\0/2) fixed and large. In this limit, the kinematical factor B:;, 8 9 becomes

B:;,8 9 =
42

4c2 ln
(
b

4<2

)
, (38)

and so it is proportional to the cusp anomalous dimension of QED, 42Γ(i)/4c2, via the relation
b = 2<2(cosh i − 1), which controls the vacuum expectation value of a Wilson loop with a cusp of
angle i [40]. The dominant differential entanglement entropy (per unit time, per particle flux) at
the cutoff angles \0 and c − \0 becomes

3B4=C,B8=6

3Ω
|\=\0, c−\0 = −

46 ln 46

2c2 sin4 \0
ln

(
�

_

)
1
�2
2<

Γ(i)/4c2. (39)

We emphasize that this behavior is universal, exhibited irrespective of the details of the initial state
(any number of electrons/positrons) [11]. The coefficient of the IR logarithmic singularity contains
physical information since it is proportional to the cusp anomalous dimension of QED.

8
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3. The Renyi and entanglement entropies to all orders

The considerations above are valid in a particular limit, where we fix the size of the box !, or
the infrared cutoff _, and take the coupling constant 4 to be sufficiently small. We can proceed now
to carry out a calculation to all orders in the coupling 4, taking _→ 0 without truncating to a given
order in the perturbative expansion. For this purpose, let us define the following superposition of
multiparticle states

|Φ〉 = |U〉� +
∑
V

)VU |V〉� +
∑
V

∑
|W〉∈H�

)VW,U |VW〉� , (40)

where |W〉 = |W1W2, . . . , W=〉 denotes a generic multiphoton state. We require the multiphoton states
|W〉 appearing in |Φ〉 to lie in the hard part of the Hilbert space. In [11] we showed that to all orders
in the coupling, the reduced density matrix d� takes the form

d� = |Φ〉〈Φ| + �, (41)

where � annihilates |Φ〉 (taking into account energy-momentum conservation). So |Φ〉 is an exact
eigenstate of d� with eigenvalue _Φ = 〈Φ|Φ〉. In terms of box amplitudes this eigenvalue is given
by the expression

_Φ = 1 + )UU + )∗UU +
∑
V

)VU)
∗
VU +

∑
V

∑
|W〉∈H�

)VW,U)
∗
VW,U. (42)

It follows that the sum of the rest of the eigenvalues is given by

Δ =
∑
8≠Φ

_8 = −
(
)UU + )∗UU +

∑
V

)VU)
∗
VU +

∑
V

∑
|W〉∈H�

)VW,U)
∗
VW,U

)
. (43)

The amplitudes )VU, )VW,U appearing in the above expressions are hard amplitudes. At any
finite order in perturbation theory, they are plagued by IR logarithmic divergences due to virtual
soft photons running in the loops. To all orders however, these divergences exponentiate leading to
the vanishing of these amplitudes. On the other hand )UU +)∗UU is free of any IR divergences, order
by order in perturbation theory. This is because it is related to the total inclusive cross-section in
the state U by unitarity:

)UU + )∗UU = −
∑
V

)VU)
∗
VU −

∑
V

∑
|W〉
)VW,U)

∗
VW,U = −

)EA4;

+
ΣU. (44)

Taking into account the vanishing of the hard amplitudes in the continuum limit and the scaling of
the box amplitudes with the size of the box, we obtain to all orders

_Φ = 1 + )UU + )∗UU = 1 − )EA4;
+

ΣU (45)

and
Δ =

)EA4;

+
ΣU. (46)

9
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Therefore, the reduced density matrix is dominated by a large eigenvalue, _Φ, which is free of any
IR divergences in _. The rest of the eigenvalues should tend to zero as ! → ∞. For sufficiently
small <, we get

)A (d� )< = 1 − <Δ = 1 − < )EA4;

+
ΣU (47)

and so
(< = −

1
< − 1

ln(1 − <Δ) = <

< − 1
)EA4;

+
ΣU. (48)

The Renyi entropies per unit time, per particle flux, remain finite in the limit:

B< =
<

(< − 1) ΣU. (49)

They are proportional to the total cross-section in the two-electron state U [11].
The entanglement entropy, however, is not analytic in the volume of the box. The non-analytic

behavior is induced by the small eigenvalues, via the expressions −_8 ln_8 , for 8 ≠ Φ. Ignoring the
spin polarization structure, we may approximate the small eigenvalues with the diagonal elements
of d� (in the momentum indices), for example:

�VW,VW =
∑
|W′〉∈H(

)VWW′,U)
∗
VWW′,U (50)

In the continuum limit, taking into account the relative normalization between box and continuum
amplitudes, we find that this diagonal element scales with )2/+# 5 in the large volume limit, where
# 5 is the number of particles in the final state. It induces a logarithmically diverging contribution
to the entanglement entropy, per unit time, per particle flux, in terms of the size of the box (or the
IR cutoff _), of the form ln(+# 5 /)2). So the non-analytic behavior in the IR cutoff _ persists to all
orders in the continuum, large volume limit.

4. Conclusions

Generic scattering processes in QED lead to the appearance of an infinite number of soft
photons in the final state, which may evade detection. We have argued in this work that it is
possible to study quantitatively the entanglement between the soft and hard particles produced,
and in particular to study the flow of information from the initial hard particles to the final soft
degrees of freedom. At the leading perturbative level, the Renyi and entanglement entropies are
governed by a large eigenvalue, which is logarithmically divergent with respect to the IR cutoff _.
The coefficient of the logarithmic divergence in the leading entanglement entropy, per unit time,
per particle flux, exhibits certain universality properties, irrespective of the details of the initial
sate, and it is proportional to the cusp anomalous dimension in QED. These perturbative results are
strictly valid when the size of the box regulating infinite space is kept fixed and the QED coupling
constant is taken to be sufficiently small.

For two-electron scattering processes, we can obtain the behavior of theRenyi and entanglement
entropies to all orders in the QED coupling, in the continuum limit. The IR divergences appearing
in the expression of the large eigenvalue of the density matrix at finite orders in perturbation theory
exponentiate, leading to a non-vanishing, finite result. The Renyi entropies, per unit time, per

10
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particle flux, turn out to be proportional to the total, inclusive cross-section in the initial state,
and so they are free of any IR divergences. The entanglement entropy though retains non-analytic
behavior with respect to the volume of the box. This non analytic behavior appears when we keep
the reference scale � fixed in the limit _→ 0. It would be interesting to obtain an exact expression
for the entanglement entropy, per unit time, per particle flux, to all orders. It may help that for Fock
basis states, the reduced density matrix is almost diagonal.

It would be also interesting to extend the analysis to gravitational scattering processes, and in
particular to processes involving the formation and evaporation of a black hole. It would be nice
to understand the order of limits in the black hole case and to investigate whether the information
carried by the soft photons and gravitons accompanying the Hawking quanta can help ameliorate
the information paradox along the lines of [25, 26].
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