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1. Introduction

The field theory of high spin particles has been a longstanding and difficult problem in physics.
Specifically, for the case of massive particles, a challenge arises as soon as one tries to propagate
states of spin greater than 1 in an electromagnetic background. In a 1936 paper, Dirac stressed
the importance of formulating equations of motion for these states [6]. Formulating equations of
motion for these states proved to be a challenging problem, as noted by Fierz and Pauli who quickly
took up the challenge [7], but derived in this work their famous Fierz-Pauli Lagrangian for a neutral
massive spin-2.

However, it was only several decades later that the most significant aspect of the problem’s
difficulty was revealed, thanks to the works of various researchers such as Johnson and Sudarshan
[8], and Velo and Zwanziger [9–11]. When Johnson and Sudarshan tried to canonically quantize
minimally coupled spin-3/2 fields, they discovered that the equal-time commutators were not com-
patible with the relativistic covariance of the theory. Later, Velo and Zwanziger demonstrated that
the minimally coupled Lagrangians for spin-3/2 and spin-2 fields exhibited pathological behavior at
the classical level. Interestingly, both problems arose at a specific value of the electromagnetic field
strength, indicating a shared origin. In fact, it was later understood that a sign of the problems is
that the set of secondary constraints becomes degenerate, which signals a loss of invertibility. This
means that the constraints no longer determine all the components of the fields leading to acausality
and loss of hyperbolicity.

The Lagrangian that leads to systems of Fierz-Pauli equations use additional fields of lower
spin s-1, s-2, etc. In the free case, these are as they should be auxiliary non-propagating fields. They
are projected out by the constraints in the systems of Fierz-Pauli equations. Unfortunately, known
tentative Lagrangian tend to mix the different components of the higher spin fields, mixing what was
physical and auxiliary in a non-trivial way, leading to propagation that are not causal..At present,
the Federbush Lagrangian [12] which remains the only four-dimensional Lagrangian describing an
isolated charged massive spin-2 state, has superluminal propagating modes and thus suffers from
the causality loss problem.

The Regge trajectories of String theory contain arbitrarily high spin states. Following the
solution of the string propagation in an electromagnetic field [13–15], Argyres and Nappi utilized
String Field Theory to investigate the first massive level of the open bosonic string [16, 17] and
established a Lagrangian for the massive charged spin-2 field. However, this Lagrangian exhibited
pathologies in dimensions other than d = 26. Porrati and Rahman later investigated its reduction to
four dimensions [18] and showed that it yields a spin-2 field coupled to a scalar. The study of the
second mass level of bosonic strings resulted in the development of an action describing a charged
massive spin-3 coupled to lower spin states [19].

Several works have allowed first to understand well the difficulties, then to make some notable
progress as we will see below. Despite these developments, the problem of high spin particles
remains unsolved to this day, when it comes to finding a Lagrangian with only the fields of higher
spins. Here, we shall report on a substantial progress: a solution the original problem of finding
the equations of motion [1–4].

Half of the presentation delivered in Corfu focused on the utilization of Kaluza-Klein states
based on [5]. A brief overview of this topic is provided in the final section of this document.
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2. Lagrangian for the neutral case

In this part, we take the usual string theory convention α′ = 1/2.

2.1 Bosons

One starts from the action obtained from Superstring Field Theory [4]. After expanding the
superfields into components, the bosonic action has 80 degrees of freedomoff-shell. TheLagrangian
can be split into two independent pieces, each of which being gauge invariant separately:

LB ≡ L1 + L2 (1)

where:

L1 = − 6M̄
(
4 + 3∂2

)
M + 6

[
(2iMm + qm) ∂mM̄ − i

(
N +

1
2

s
)
∂2M̄ + h.c.

]
+ 4MmM̄m +

[
Mm

(
4∂mN̄ + ∂m s̄ + 2∂n s̄mn + 2iq̄m)

+ h.c.
]

−
1
4

s∂2 s̄ + qmq̄m − 2N̄
(
∂2 − 4

)
N −

(
2iqm∂mN̄ + s∂2N̄ + h.c.

)
+ (∂k smk) (∂n s̄mn) −

1
2

i (qm∂m s̄ + 2qm∂n s̄mn + h.c.)

(2)

and

L2 = −
1
2
vmn(2 − ∂2)vmn+

1
2
∂nvmn∂kv

mk+∂nvmn∂k f mk−
1
2

f mn(2 − ∂2) fmn + ∂
nvmnω

m
2

+
1
2
∂n fmn∂k f mk − 2cm (∂n fmn − ∂

nvmn) + εmnpq f mnτ
pq
2 − (∂n∂mv

mn)

(
1
4

h + 6φ
)

− 2cmcm −
1
2
(∂mcm)2 +

1
8
ωm

2 ∂
2ω2m −

1
8
(∂mω

m
2 )

2 − ∂mcm

(
6D +

1
2

h +
3
2
∂2φ − τ1

)
+ ∂mω2m

(
3D −

1
2
∂ncn +

1
4

h −
9
4
∂2φ −

1
2
τ1

)
−Ωm

(
6am −

1
2
ω1m

)
− 66D2

− 3D
(
4h − 6τ1 + 8φ − 5∂2φ

)
−

1
4

h
(
1 −

3
8
∂2

)
h − τ2

1 − τ1

(
3
2
∂2φ − h

)
−

33
8
φ∂4φ

+
3
2

h∂2φ + 2D2
m −

1
8
ϕ∂4ϕ − G

(
−8ϕ + ∂2ϕ

)
− 2G2 −

1
8
ωm

1 ∂
2ω1m −

1
8
(∂mω1m)

2

− Dm
(
12am − 4Cm + ∂

2Cm−4∂mϕ − 2ω1m

)
−ϕ

(
1
2
∂2τ2 −

3
2
∂2∂mam +

1
4
∂2∂mω1m

)
− G (−6∂mam + 4∂mCm + ∂

mω1m + 2τ2) + 6(∂mam)(∂nCn) − τ2 (∂
mCm − 3∂mam)

+ ωm
1

(
2∂nτ2mn + 3∂2am

)
−

1
2
τ2∂

mω1m +
9
2
(∂mam)(∂nω1n) + τ2mnτ

mn
2

− 2∂nτ2mn (6am − Cm) +
1
8

Cm∂4Cm − 6am(2∂2 − 1)am −
33
2

amam + 3am∂2Cm

(3)

However, several degrees of freedom are non-physical. These include auxiliary fields, which are
integrated out before performing appropriate field redefinitions, gauge degrees of freedom that are
totally fixed by the unitary gauge, and non-propagating fields like the transverse components of am
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and cm, which disappear after dualisation. After eliminating these degrees of freedom, further field
redefinitions are needed to decouple the fields in the Lagrangian.

For L1, the auxiliary field Mm is integrated out, which also eliminates s, smn and qm. The
redefinitions

N1 →
1
4

N1 + 3M2, M1 →
1
12

M1 −
N2
3
. (4)

render N2 and M2 auxiliary, so they are integrated out to give

L1 =
1
2

M1

(
−2 + ∂2

)
M1 +

1
2

N1

(
−2 + ∂2

)
N1. (5)

For L2, the auxiliary fields D,Dm,G, τ1, τ2, τ2mn are integrated out, then a gauge-fixed La-
grangian is obtained by making the redefinitions:

ω1m → ω1m + 2am +Ωm −
2
√

3
Cm, ω2m → ω2m − 4∂mφ

cm → cm −
1
2
∂n fmn −

1
8
∂2ω2m +

1
8
∂m∂nω

n
2

h→ h − 8φ −
1
2
∂mω2m, vmn → vmn +

1
8
ηmn∂

kω2k −
1
4
∂mω2n −

1
4
∂nω2m

Cm →
1
√

3
Cm −

1
2
ω1m, am →

1
2

am +
1
4
Ωm −

1
2
√

3
Cm

(6)

These lead to

L2 =
1
2

Cm
(
∂2 − 2

)
Cm +

1
2
∂mCm∂

nCn + amam +
1
2
∂mam∂nan −

1
2

A2 +
2
5

B2

− 2cmcm −
2
5
∂mcm∂ncn −

3
20

h2 +
3

32
h∂2h − vmnvmn +

3
10

h∂mcm

+ 2cm∂nvmn −
1
4

h∂m∂nvmn +
1
2
∂nvmn∂kv

mk +
1
2
vmn∂2vmn

(7)

Although each vector am and cm has four components, only one component represents a
physical degree of freedom for each vector. They are therefore scalar fields in disguise. To exhibit
a Lagrangian with only physical degrees of freedom, we introducing auxiliary scalars A and B.
Field redefinitions are then made, specifically A is shifted by ∂mam and B is shifted by ∂mcm − 3

8 h,
then am and cm can be eliminated to leave behind their dual scalars. Finally, the redefinition
B → 5

√
2

4 B + 15
8 h and h → h + 2

√
2B is made, which leads to the decoupled bosonic Lagrangian.

Further redefinitions:
h′mn ≡ vmn + ηmn(

1
4

h + ∂kck) (8)

and
hmn ≡ vmn +

1
4
ηmnh′, (9)

allow finally to get the Lagrangian

LB =
1
2

hmn
(
∂2 − 2

)
hmn −

1
2

h
(
∂2 − 2

)
h + hmn∂

m∂nh + ∂nhmn∂khmk

+
1
2

Cm
(
∂2 − 2

)
Cm +

1
2
(∂mCm)

2 +
1
2

A
(
∂2 − 2

)
A +

1
2

B
(
∂2 − 2

)
B

+
1
2

M1

(
∂2 − 2

)
M1 +

1
2

N1

(
∂2 − 2

)
N1

(10)

which contains a Fierz-Pauli part for the massive spin-2 field.

4



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
5
4

Learning from superstring massive states Karim Benakli

2.2 Fermions

For the fermionic fields, the expansion of the Superstring Field Theory Lagrangian [4] gives:

−LF =i(λmσn∂nλ̄m)+
i
4

(
χ̄mσ̄n∂n∂

2χm

)
−

1
2

[(
λm∂2χm

)
+

(
χ̄m∂2λ̄m

)]
+2

[
λmχm+ χ̄

mλ̄m
]

−
33
4

i
[(
ξ̄σ̄m∂m∂

2ξ
)
+ 4

(
ψσm∂mψ̄

) ]
+

15
2

[(
ψ∂2ξ

)
+

(
ξ̄∂2ψ̄

)]
− 12

[
(ψξ) +

(
ξ̄ψ̄

) ]
+ 3

[
i (χm∂mψ) − i (λm∂mξ) + 2

(
λmσmψ̄

)
+

1
2

(
χmσm∂

2ξ̄
)
+ h.c.

]
− 6

[
i(∂mψσmn χ

n) +
1
2
(χmσn∂m∂nξ̄) + i(λmσmn∂

nξ) + h.c.
]

+
3
4

i
[
(v∂2ψ) − (ψ̄∂2v̄)

]
+

9
8

[(
vσm∂m∂

2ξ̄
)
+ h.c.

]
+ 9i

[
(µψ) − (ψ̄ µ̄)

]
+

3
2

[ (
µσm∂mξ̄

)
+ h.c.

]
− 3i

[
(ζ∂2ξ) − (ξ̄∂2 ζ̄)

]
] − 6

[
(ζσm∂mψ̄) + h.c.

]
+

3
4

[
i(rmσm∂2ξ̄) − 3i(rmσn∂n∂

mξ̄) − 4(rmσmn∂nψ) + 4(rm∂mψ) + h.c.
]

+
1
2
[(λm∂mv) + 2(λmσmn∂nv) − 2i(χmσm µ̄) + h.c.]

+
1
2

[
−(χm∂mζ) − 2(χmσmn∂nζ) + 2i(λmσm ζ̄) + h.c.

]
+

1
4
[(χmσn∂nr̄m)

+( χ̄mσ̄m∂
nrn) + ( χ̄mσ̄n∂mrn) − iεmlkn(χ

mσl∂k r̄n) − 2i(λmσnσ̄mrn) + h.c.
]

+
1
2

[
(v∂2ζ) + (v̄∂2 ζ̄)

]
+ 2

[
(µζ) + (ζ̄ µ̄)

]
+ i

[
(ζ∂mrm) + (r̄m∂m ζ̄)

]
+

1
8

[
−4i(vσm∂m µ̄) + (rmσm∂2v̄) − 2(vσm∂m∂nr̄n) + h.c.

]
− i(ζσm∂m ζ̄)

−
1
2
[(rmσm µ̄) + h.c.] −

1
8

i
[
(rmσk σ̄nσm∂k r̄n) + (rmσk σ̄mσn∂nr̄k)

]
+

3
2

[(
ρ +

1
2

iγ̄σ̄m∂m

) (
i∂2ξ − 2σn∂nψ̄

)
+ h.c.

]
+ 2 [(χm∂mρ) + (λm∂mγ) + h.c.]

+

[(
µ −

1
4
∂2v

) (
ρ +

1
2

iσm∂mγ̄

)
+ h.c.

]
+

[
irmσmn∂n

(
ρ +

1
2

iσk∂k γ̄

)
+ h.c.

]
− i

(
ρ +

1
2

iγ̄σ̄m∂m

)
σn∂n

(
ρ̄ +

1
2

iσ̄k∂kγ

)
+ 4 [(γρ) + (ρ̄γ̄)]

(11)
We first perform the redefinitions:

λmα → λmα +
1
2

i(σn∂n χ̄m)α +
1
8
(σk σ̄nσm∂k r̄n)α +

1
4
(σnσ̄m∂nζ)α + ∂mζα + 2(σmξ̄)α

µα → µα +
1
4
∂2vα −

1
2

i∂mrmα + i(σm∂m ζ̄)α + 4iξα

rmα → rmα + i∂mvα + 4∂mξα, ρα → ρα +
1
4
∂2ζα −

1
2

i(σm∂mγ̄)α +
1
2
(σm∂mξ̄)α

ζα → ζα − 2(σm∂mξ̄)α, γα → γα −
1
2

i(σm∂m ζ̄)α − iξα

ψα → ψα −
1
2

i(σm∂mξ̄)α, χmα → χmα +
1
4

i(σnσ̄mrn)α −
1
2

i(σm ζ̄)α

(12)

5



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
5
4

Learning from superstring massive states Karim Benakli

In the result µα appears as a Lagrange multiplier for the constraint:

ρα = −9iψα − i(σm χ̄
m)α (13)

which eliminates ρα. We further redefine:

χmα →
√

2(σmn χ
n)α − i(σmψ̄)α

λ̄ Ûαm → λ̄ Ûαm −
1
√

2
i(σ̄mγ)

Ûα + ∂mψ̄
Ûα +

1
√

2
i(σ̄n∂mχn)

Ûα

γα →
1
√

2
γα −

i
2
(σm∂mψ̄)α −

1
2

i(σmλ̄m)α +
1

2
√

2
(σmσ̄n∂mχn)α

ψ̄ Ûα →
i
2
ψ̄ Ûα −

1
2
√

2
(σ̄mχm)

Ûα

(14)

which at end results in

LF = − ε
mnkl(λmσn∂k λ̄l) + ε

mnkl( χ̄mσ̄n∂k χl) − 2
√

2 [(λmσmn χ
n) + h.c.]

− i
(
ψσm∂mψ̄

)
− i(γσm∂mγ̄) −

√
2 [(ψγ) + h.c.]

(15)

where we recognize the Rarita-Schwinger Lagrangian for the massive spin-3/2 (χm, λ̄m) and Dirac
Lagrangian for the massive spin-1/2 (γ, ψ̄). The corresponding equations of motion and constraints
read

iσ̄n Ûαα∂nγα = −
√

2ψ̄ Ûα, iσm
α Ûα∂mψ̄

Ûα = −
√

2γα
iσ̄n Ûαα∂n χmα = −

√
2λ̄ Ûαm, iσn

α Ûα∂nλ̄
Ûα
m = −

√
2χmα

σ̄m Ûαα χmα = 0, ∂mχmα = 0, σm
α Ûαλ̄

Ûα
m = 0, ∂mλ̄ Ûαm = 0

(16)

3. Charged states propagation in a constant electromagnetic background

The open superstrings states carry total charges Q = q0 + qπ , with a matrixM satisfying

M ·MT =
ε

QF (17)

The matrix ε depends on the field strength Fmn and the fundamental scaleΛ of the theory, it appears
in the commutator of the dressed covariant derivatives [13, 16]

Dm = −iMmn Dn, [Dm,Dn] = iεmn (18)

Notably, our analysis continues to hold even if we take the limit εmn → QFmn and Dm → Dm, as
shown by the consistency of the Lagrangian and the derivation of the equations of motion.

In [4], the computation of the superspace Lagrangian and equations of motion for the first
massive level of the open superstring [21, 22] was extended to the charged case, thereby generalizing
the work of [16, 20] for the bosonic case.
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3.1 Charged spin 2

Among the bosonic 12 degrees of freedom (d.o.f.) with mass M , 5 form a spin-2 field. It will
be described by the rank-2 tensor hmn. The on-shell conditions of symmetry, tracelessness, and
vanishing divergence are imposed to reduce the d.o.f. in hmn to 5. Additionally, 3 correspond to
a massive vector field Cm and 4 d.o.f. are taken up by four scalar fields M1,N1, A and B. The
Lagrangian reads:

L =C̄m
(
D2 − M2

)
Cm +D

mC̄mD
nCn + 2iεmnC̄

mCn

+ M̄1

(
D2 − M2

)
M1 + N̄1

(
D2 − M2

)
N1

+ ām
(
M2ηmn − iεmn

)
an +DmāmDnan − M2c̄mcm −

2
5
Dmc̄mDncn

+
1
√

2

[
Mc̄m

(
−

2
5
DmH +D

nHnm

)
+ ¯̃Fmn(a)

(
Fmn(c) −

M
√

2
H[mn]

)
+ h.c.

]
+

1
2
H̄mnD

2hmn +
1
2
DnH̄mnDkhmk −

M2

2
H̄ (mn)H(mn) +

M2

20
H̄H + iεnkH̄mnhkm

(19)

with the (dual) field strengths given by

Fmn(a) ≡ Dman −Dnam, F̃mn(a) ≡
1
2
εmnpqFpq(a) (20)

and similarly for Fmn(c), F̃mn(c). The equations of motion for the (decoupled) complex scalars
M1,N1 and massive vector Cm, and the constraint for the latter, are straightforward to obtain:(

D2 − M2
)
M1 = 0,(

D2 − M2
)
N1 = 0(

D2 − M2
)
Cm −DmDnC

n + 2iεmnC
n = 0, DmCm = 0.

(21)

To derive the equations of motion and the constraints for the other fields is cumbersome. We
get for the symmetric tensor hmn:(

D2 − M2
)

hmn − 2i
(
εkmhk

n + εknhk
m

)
= 0

Dnhmn +
√

2Mcm = 0, Mh = −4
√

2Dmcm
(22)

The first line is the four-dimensional version of the same form of equations of motion obtained
in [16] in 26 dimensions. The constraints are not in a satisfactory form and the equations of motion
of the vectors {am, cm} are coupled. To proceed, we first make the on-shell redefinitions

a′m ≡ am −
i

M2 εmnan −
i

M3 ε̃
nkDkhmn +

i
M3 ε̃mnD

nh +
2
√

2
M2 iε̃mncn

c′m ≡ cm −

√
2i

2M2 ε̃mnan +
i

√
2M3

εnkDnhmk

(23)

their equations of motion become

DmDna′n = M2a′m, DmDnc′n = M2c′m (24)
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indicating that a′m, c′m count for only one d.o.f. on-shell each. Next, we consider:

H ′mn ≡ H(mn) +

√
2

M
ηmnD

kck (25)

whereH(mn) is the symmetric part of the rescaled hmn, defined by:

Hmn ≡ (ηmk − iεmk) hk
n, H = h (26)

This new spin-2 satisfies(
D2 − M2

)
H ′mn + 2i [(ε · H ′)mn − (H

′ · ε)mn] = 0,

DnH ′mn = −
i

M
ε̃mnan + i

√
2

M
εmncn, H ′ = 0

(27)

In the free case, ε = 0, the above equations reduce to the Fierz-Pauli system. In order to get
vanishing divergence and trace, we introduce:

hmn ≡
2
3

hmn −
1
6
ηmnh −

i
M2 εm

khkn +

√
2

3M
Dmcn −

1
M4

(
εmkε

lkhnl + εmkεnlhkl −
1
2
ηmnε

klε plhkp

)
−

i
√

2
M3

(
εmkD

kcn − εmkDnck +
1
2
ηmnε

klDkcl

)
−

1
2M4 + 4εε

[
−

2i
M
ε̃mkD

kDnDlal +
5

4M
(ε ε̃) ηmnD

kak −
2

M3 (ε ε̃)DmDnDkak

+
8

M3 ε̃mkεlnD
kDlDpap

]
+

1
2M4 − 4εε

[
M2

6
DmDnh −

1
4
εmkε

k
nh +

i
2
εmkD

kDnh −
5εε
24

ηmnh
]
+ (m↔ n)

(28)
One can check that the above definition yields the following equations of motion and constraints:(

D2 − M2
)
hmn = 2i

(
εkmh

k
n + εknh

k
m

)
Dnhmn = 0, h = 0
DmDna′n = M2a′m, DmDnc′n = M2c′m

(29)

which are the sought for equations of motion and constraints.

3.2 Charged spin3/2

The problem of how massive spin-3/2 charged states propagate in an electromagnetic back-
ground has been around for quite some time, with roots dating back to the 1930s. This problem
is plagued by the issue of superluminal propagation, which leads to causality loss. Despite efforts
to develop causal equations of motion and a Lagrangian, such as in the work of [24], a significant
proportion of the modifications of the minimal theory have failed to restore causality. Nonetheless,
a possible solution to this problemwas proposed in [23]. A Lagrangian ansatz was written where the
coefficients of the different terms can be obtained recursively order by order in the electromagnetic
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field strength. In [4], the computation of the superspace Lagrangian and equations of motion for
the first massive level of the open superstring [21, 22] was extended to the charged case, thereby
generalizing the work of [16, 20] for the bosonic case and allowing us to write explicit forms of the
equations of motion.

The first massive level of open superstrings contains 12 complex fermionic physical degrees
of freedom, with eight of them corresponding to massive spin-3/2 fields denoted (λmj, χmj) and the
remaining four to spin-1/2 ones ψj, γj , with j = 1,2. The corresponding Lagrangian reads:

LF = −
i
2

[
2
(
λm1 σ

nDnλ̄1m
)
+

(
χ̄1mσ̄

nσk σ̄mDkχ1n

)]
−
√

2
[ (
λm

1 χ1m
)
+ h.c.

]
+

[
3

2
√

2
(
χm

1 σmσnD
nψ1

)
−

i
2

(
λm

1 σmψ̄1
)
−

3
2

i
(
χ̄m

1 σ̄mγ1
)
−
√

2
(
λm

1 Dmγ1
)
+ h.c.

]
+

[
i
4

(
ψ1σ

mDmψ̄1
)
+ i (γ1σ

mDmγ̄1)

]
+

1
√

2

[
γ̄1D

2ψ̄1 + h.c.
]

−
i
8

Gmnγ̄1σ̄m [1 − i (ε · σ)]σk [1 − i (ε · σ̄)] σ̄nD
kγ1

+
i
4

Gmn
[
ηmp + i

(
εmp − iε̃mp

) ] [
ηnq − i

(
εnq + iε̃nq

) ]
ψ1σ

kDpDkD
qψ̄1

−
i
4

(
εmnε

mk + ε̃mnε̃
mk

)
ψ1σkD

nψ̄1 −
i
2
ε̃mn

(
ψ1σ

nDmψ̄1
)
+ iε̃mn (γ̄1σ̄

nDmγ1)

+
1

4
√

2

{
Gmn

[
ηkp − i

(
εkp + iε̃kp

) ]
[ηnl − i (εnl + iε̃nl)] γ̄1σ̄mσ

pDkDlψ̄1 + h.c.
}

−

{
i
2
[ηmk − i (εmk + iε̃mk)] λ

m
1 σnD

nDk ψ̄1 +
1

2
√

2
λm1 σn [1 − i (ε · σ̄)] σ̄mD

nγ1 + h.c.
}

+
1
2

[
λm

1 (ε · σ)σmψ̄1 +
1
√

2
(εε − iε ε̃)ψ1γ1 + h.c.

]
+ (1↔ 2, ε ↔ −ε)

(30)
where we denoted the inverse matrix by Gmn ≡ (ηmn − iεmn)

−1. Under the sign flipping εmn ↔

−εmn , Gmn transforms as Gmn ↔ Gnm. The equations of motion and constraints are for the
spin-3/2:

iσnDnλ̄
′

1m = −
√

2 (ηmn − iεmn) χ
′n
1

iσ̄nDnχ
′
1m = −

√
2λ̄1m,

Dmχ′1m = 0, Dmλ̄
′

1m = −

√
2

4
σ̄m (ε · σ) χ′1m

σ̄mχ′1m = 0, σmλ̄
′

1m = 0

(31)

as well as the Dirac equations for the spin-1/2 fields:

iσ̄mDmγ1 = −
√

2ψ̄1, iσmDmψ̄1 = −
√

2γ1 (32)

These can be written in four-component notations using the Dirac spinors:

Φ1 ≡

(
γ1α

ψ̄ Ûα1

)
, Ψ1m ≡

(
χ′1mα
λ̄
′ Ûα
1m

)
(33)
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where

γm =

(
0 σm

σ̄m 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0
0 i

)
(34)

and /D ≡ γmDm.
The spin-1/2 satisfies the Dirac equation:(

i /D +
√

2
)
Φ1 = 0 (35)

The constraints take the form[
Dm −

√
2

4
(εmn + iε̃mn) γn

]
Ψ1m = 0, γmΨ1m = 0 (36)

Projection operators are defined as PL = (1 + iγ5)/2, PR = (1 − iγ5)/2, then the equations of
motion can be written as (

i /D +
√

2
)
Ψ1m =

√
2iεmnΨ

n
1L (37)

The fermions of index 2 correspond to the conjugates of those of index 1 in the neutral case.
Their equations of motion and constraints can be obtained by the sign flip ε → −ε .

4. Kaluza-Klein states for the Weak Gravity Conjecture

TheWeak Gravity Conjecture (WGC) [25, 26] simplest formulation considers a D-dimensional
U(1) gauge theory with a coupling constant g. The WGC requires the existence of at least one state
of mass m and charge q which satisfies the inequality:

gq ≥

√
D − 3
D − 2

κDm, (38)

where κD is defined as κ2
D = 8πGD =

1
MD−2

P ,D

with MP,D the reduced Planck mass in D dimensions.
For these states, this inequality implies that the Newton force is not stronger than the Coulomb
force. A particular example of states that saturate this inequality are Kaluza-Klein states, which
can be used to investigate more general versions of the WGC where for instance extra scalar, i.e.
dilatonic, interactions are present..

Consider compactification from D + 1 to D dimension of a free scalar coupled to general
relativity. In the lower dimension, it is subject to the gravitational interaction, but also to a scalar
(dilatonic) as well as gauge interactions mediated by the component D + 1,D + 1 and D + 1,D of
the higher dimensional gravitons, respectively.

The tree-level 2→ 2 scattering of two KK states ϕn(p1)ϕn(p2) → ϕn(p3)ϕn(p4):

iM =ig2q2
n

(
(p1 + p3) · (p2 + p4)

t
+
(p1 + p4) · (p2 + p3)

u

)
− 4i

D − 1
D − 2

κ2m4
n

(
1
t
+

1
u

)
−
κ2

4

[(
p1µp3ν + p3µp1ν − ηµν

(
p1 · p3 − m2

n

) ) iPµναβ

t

(
p2αp4β + p4αp2β − ηαβ

(
p2 · p4 − m2

n

) )
+ (t, p3, p4) ↔ (u, p4, p3)

]
(39)
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where P is the spin-2 projector

Pαβρσ =
ηαρηβσ + ηασηβρ

2
−
ηαβηρσ

D − 2
(40)

where the different terms account for contributions from the exchanges of the gauge boson, the
dilaton and the graviton, respectively. In the non-relativistic (NR) limit

s − 4m2
n

m2
n

→ 0,
t

m2
n

→ 0, and
u

m2
n

→ 0 (41)

which in terms of the mass give

iM → iMNR = 4im2
n

[
g2q2

n − κ
2m2

n

(
D − 1
D − 2

+
D − 3
D − 2

)] (
1
t
+

1
u

)
= 0. (42)

The cancellation is the result of a specific relation between the charge and the mass (??) that
saturates the WGC. In fact, we can ensure the subdominance of gravity by requiring the existence
a state with charge q and mass m satisfying the relation

g2q2 ≥

(
α2

2
+

D − 3
D − 2

)
κ2m2, (43)

where α is the strength of the dilatonic coupling due to the gauge coupling of the form e2
√

2ακφF2.
The explicit amplitude computation [5] allows to recover the Dilatonic Weak Gravity Conjecture
that was derived in [27] (see also [28] for its generalization) from the study of the extremal Einstein-
Maxwell-dilaton black hole solutions. In the absence of dilatonic forces, α = 0, one retrieves the
original WGC condition (38).

The use of amplitudes to investigate the different forms of WGC, in contrast to extremality of
black holes, has been useful to formulate a scalar version of the WGC [29, 30] and to state the WGC
as a comparison of channels for pair production [31] (valid in four-dimension [5]).
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