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1. Motivation

The motivation for the research described here goes back to the first proposal for a non-
relativistic closed string theory at the turn of the century [1, 2]. This proposal made use of the
observation of [3] that, assuming a compact spatial direction, strings with a positive winding
can survive a critical limit of relativistic string theory whereas strings with a negative winding
behave like anti-particles and become infinitely heavy. In the supersymmetric case such a string
theory should lead to a non-relativistic version of N = 1 supergravity in ten spacetime dimensions.
Indeed, about twenty years later it was shown that N = 1 supergravity in ten dimensions allows
for a consistent non-relativistic limit with a particular degenerate geometric structure [4]. This
so-called String Newton-Cartan geometry is a particular extension of the Newton-Cartan geometry
in the sense that the two nondegenerate metrics of Newton-Cartan geometry (one to measure time
intervals and another one to measure spatial distances) are replaced by two nondegenerate metrics
of rank 2 and rank 8, respectively. These two non-degenerate metrics refer to the two directions
longitudinal to the string and to the eight directions transverse to the string.

Soon after the proposal of [1, 2], the possibility to define a non-relativistic closed supermem-
brane theory in eleven dimensions was considered [5]. This suggests that it might also be possible
to define a consistent non-relativistic limit of eleven-dimensional supergravity. Recently, the first
steps in defining such a limit for the bosonic part of eleven-dimensional supergravity were under-
taken [6]. The underlying geometry in this case is a Membrane Newton-Cartan geometry with two
nondegenerate metrics of rank 3 and rank 8 that refer to the three directions longitudinal to the
membrane and to the eight directions transverse to the membrane.

We will show how supersymmetry can be incorporated by imposing a supersymmetric set of
constraints. These constraints involve certain torsion tensor components, called ‘intrinsic torsion’
tensor components, that are independent of the spin-connection fields. Before describing the limit
of eleven-dimensional supergravity, we will first review a few relevant details of this Membrane
Newton-Cartan geometry.

2. Membrane Newton-Cartan Geometry

Before introducing Membrane Newton-Cartan geometry as the geometry underlying non-
relativistic eleven-dimensional supergravity, we will first define Membrane Galilean geometry
since that is the part which can be defined in a mathematically rigorous way. After that we will
explain which further ingredients need to be added to extend the Membrane Galilean geometry to
a Membrane Newton-Cartan geometry.

Our starting point for defining a Membrane Galilean geometry is an 11-dimensional manifold
with a degenerate metric structure that reduces the local structure group to [7, 8]

SO(2, 1) × SO(8) ⋉ R24 . (1)

The Minkowskian worldvolume of a non-relativistic membrane at rest divides up the tangent space
directions of this manifold in 3 ‘longitudinal’ directions and 8 ‘transversal’ ones. The SO(2, 1) and
SO(8) factors of the structure group then correspond to Lorentz transformations of the 3 longitudinal
directions and rotations of the 8 transversal directions, respectively. The R24 factor represents boost
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transformations that can transform transversal directions into longitudinal ones, but not vice versa.
We will refer to these as ‘membrane Galilean boosts’.

In analogy to particle Galilean geometry, the Cartan formulation of Membrane Galilean geome-
try includes two different types of one-forms (also called soldering forms): a ‘longitudinal Vielbein’
𝜏𝜇

𝐴 (𝐴 = 0, 1, 2) and a ‘transversal Vielbein’ 𝑒𝜇𝑎 (𝑎 = 3, · · · , 10). The flat longitudinal index 𝐴

can be freely raised and lowered with a 3-dimensional Minkowski metric 𝜂𝐴𝐵 = diag(−1, 1, 1),
whereas for the flat transversal index 𝑎 this is done using a 8-dimensional Euclidean metric 𝛿𝑎𝑏.
These one-forms transform under the structure group (1) in a reducible, indecomposable manner
according to the following local transformation rules:

𝛿𝜏𝜇
𝐴 = 𝜆𝐴

𝐵𝜏𝜇
𝐵 , 𝛿𝑒𝜇

𝑎 = 𝜆𝑎𝑏𝑒𝜇
𝑏 − 𝜆𝐴

𝑎𝜏𝜇
𝐴 . (2)

Here, 𝜆𝐴𝐵 = −𝜆𝐵𝐴 corresponds to the parameters of longitudinal SO(2, 1) Lorentz transformations,
𝜆𝑎𝑏 = −𝜆𝑏𝑎 to that of transversal SO(8) rotations, while the 𝜆𝐴𝑎 are the 24 Membrane Galilean
boost parameters. Similar to the particle case, one introduces an ‘inverse longitudinal Vielbein’ 𝜏𝐴𝜇

and an ‘inverse transversal Vielbein’ 𝑒𝑎𝜇 (both are also called frame fields) such that the matrices(
𝜏𝜇

𝐴 𝑒𝜇
𝑎
)

and the matrices

(
𝜏𝐴

𝜇

𝑒𝑎
𝜇

)
are each other’s inverse.

The longitudinal and inverse transversal Vielbeine can be ‘squared’ to obtain two degenerate
symmetric (covariant and contravariant) two-tensors that are invariant under local SO(2, 1), SO(8)
and Membrane Galilean boost transformations:

𝜏𝜇𝜈 ≡ 𝜏𝜇
𝐴𝜏𝜈

𝐵𝜂𝐴𝐵 , ℎ𝜇𝜈 ≡ 𝑒𝑎
𝜇𝑒𝑏

𝜈𝛿𝑎𝑏 . (3)

These two tensors constitute a degenerate metric structure on the manifold. The covariant metric
𝜏𝜇𝜈 is referred to as the ‘longitudinal metric’. Its kernel is spanned by the 8 vectors 𝑒𝑎𝜇 and it thus
has rank 3. The contravariant metric ℎ𝜇𝜈 is called the ‘transversal metric’ and has rank 8, since its
kernel is spanned by the 3 one-forms 𝜏𝜇𝐴.

To define a metric compatible affine connection in Membrane Galilean geometry, we first
introduce a structure group connection Ω𝜇 that takes values in the Lie algebra of (1)

Ω𝜇 =
1
2
𝜔𝜇

𝐴𝐵𝐽𝐴𝐵 + 1
2
𝜔𝜇

𝑎𝑏𝐽𝑎𝑏 + 𝜔𝜇
𝐴𝑎𝐺𝐴𝑎 , (4)

where 𝐽𝐴𝐵 = −𝐽𝐵𝐴, 𝐽𝑎𝑏 = −𝐽𝑏𝑎 and 𝐺𝐴𝑎 are generators of the Lie algebras of SO(2, 1), SO(8) and
R24, respectively. We will refer to 𝜔𝜇

𝐴𝐵 = −𝜔𝜇
𝐵𝐴, 𝜔𝜇

𝑎𝑏 = −𝜔𝜇
𝑏𝑎 and 𝜔𝜇

𝐴𝑎 as spin connections
for longitudinal Lorentz transformations, transversal rotations and Membrane Galilean boosts,
respectively. We next introduce an affine connection Γ

𝜌
𝜇𝜈 by imposing the following ‘Vielbein

postulates’:

𝜕𝜇𝜏𝜈
𝐴 − 𝜔𝜇

𝐴
𝐵𝜏𝜈

𝐵 − Γ
𝜌
𝜇𝜈𝜏𝜌

𝐴 = 0 ,
𝜕𝜇𝑒𝜈

𝑎 − 𝜔𝜇
𝑎𝑏𝑒𝜈𝑏 + 𝜔𝜇

𝐴𝑎𝜏𝜈𝐴 − Γ
𝜌
𝜇𝜈𝑒𝜌

𝑎 = 0 . (5)

The form of these Vielbein postulates is motivated by the requirement that the affine connection
Γ
𝜌
𝜇𝜈 should be invariant under the local structure group transformation rules of the Vielbein fields
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and spin connections. Using (5), one can express Γ
𝜌
𝜇𝜈 in terms of the Vielbeine 𝜏𝜇

𝐴, 𝑒𝜇𝑎, their
inverses and the spin connections 𝜔𝜇

𝐴𝐵, 𝜔𝜇
𝑎𝑏, 𝜔𝜇

𝐴𝑎 as follows:

Γ
𝜌
𝜇𝜈 = 𝜏𝐴

𝜌𝜕𝜇𝜏𝜈
𝐴 + 𝑒𝑎

𝜌𝜕𝜇𝑒𝜈
𝑎 − 𝜔𝜇

𝐴
𝐵𝜏𝜈

𝐵𝜏𝐴
𝜌 − 𝜔𝜇

𝑎
𝑏𝑒𝜈

𝑏𝑒𝑎
𝜌 + 𝜔𝜇

𝐴𝑎𝜏𝜈𝐴𝑒𝑎
𝜌 . (6)

We will view the torsion 2Γ𝜌

[𝜇𝜈 ] of the affine connection as an independent and a priori arbitrary
geometric ingredient. We will split it into ‘longitudinal torsion’ components 𝑇𝜇𝜈 𝐴 along 𝜏𝐴

𝜌 and
‘transversal torsion’ components 𝐸𝜇𝜈

𝑎 along 𝑒𝑎
𝜌:

2Γ𝜌

[𝜇𝜈 ] = 𝜏𝐴
𝜌𝑇𝜇𝜈

𝐴 + 𝑒𝑎
𝜌𝐸𝜇𝜈

𝑎 . (7)

These equations imply that under local SO(2, 1), SO(8) and Membrane Galilean boosts, 𝑇𝜇𝜈 𝐴 and
𝐸𝜇𝜈

𝑎 transform as follows:

𝛿𝑇𝜇𝜈
𝐴 = 𝜆𝐴

𝐵𝑇𝜇𝜈
𝐵 , 𝛿𝐸𝜇𝜈

𝑎 = 𝜆𝑎𝑏𝐸
𝑏
𝜇𝜈 − 𝜆𝐴

𝑎𝑇𝜇𝜈
𝐴 . (8)

By antisymmetrizing the Vielbein postulates (5), one obtains the following equations that are
covariant with respect to the local structure group transformations:

𝑇𝜇𝜈
𝐴 = 2𝜕[𝜇𝜏𝜈 ] 𝐴 − 2𝜔[𝜇

𝐴
𝐵𝜏𝜈 ]

𝐵 , (9)
𝐸𝜇𝜈

𝑎 = 2𝜕[𝜇𝑒𝜈 ]𝑎 − 2𝜔[𝜇
𝑎𝑏𝑒𝜈 ]𝑏 + 2𝜔[𝜇

𝐴𝑎𝜏𝜈 ]𝐴 . (10)

We now wish to investigate which components of the above torsion two-forms 𝑇 𝐴 and 𝐸𝑎 are
independent of a spin-connection. We will call these the ‘intrinsic torsion’ tensor components. For
this purpose, we first decompose the curved indices 𝜇 of the torsion two-forms into longitudinal
indices 𝐴 and transversal indices 𝑎 according to the following decomposition rule for any one-form
𝑉𝜇:

𝑉𝜇 = 𝜏𝜇
𝐴𝑉𝐴 + 𝑒𝜇

𝑎𝑉𝑎 or 𝑉𝐴 = 𝜏𝐴
𝜇𝑉𝜇 and 𝑉𝑎 = 𝑒𝑎

𝜇𝑉𝜇 . (11)

Decomposing the 2-forms (9) and (10) in this way, we find that the following tensor components
correspond to intrinsic torsion:

𝑇𝑎
{𝐴𝐵} , 𝑇𝑎

𝐴
𝐴 , 𝑇𝑎𝑏

𝐴 . (12)

We use here a notation where {𝐴𝐵} indicates the symmetric traceless part of 𝐴𝐵.
To classify the different constraints that one may impose on the intrinsic torsion tensor com-

ponents given in (12), it is important to realize that under Galilean boosts, some components of the
intrinsic torsion tensors transform to other components, and hence, those torsion tensors cannot be
set to zero independently from other torsion components. The way that these boost transformations
act on the torsion tensor components are displayed in Figure 1. This Figure shows that, besides
zero intrinsic torsion, there also exist other boost-invariant sets of constraints on the geometry.
One may systematically derive these sets of constraints by starting in Figure 1 with no constraints
(generic intrinsic torsion) and, next, by adding more constraints starting from below by first setting
the boost-invariant constraint 𝑇𝑎𝑏𝐴 = 0. Continuing in this way, one may add to this constraint a
second constraint by setting one of the two upper components given in Figure 1 to zero such that
one again obtains a boost-invariant set of constraints. The fifth possibility is that one sets both of

4
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Ta
{AB} , Ta

A
A

Tab
A

Figure 1: This Figure indicates the different intrinsic torsion tensor components. The arrow indicates the
direction in which the Membrane Galilean boost transformations act. For instance, the boost transformation
of 𝑇𝑎 {𝐴𝐵} gives 𝑇𝑎𝑏𝐴 but not the other way around.

the upper components to zero which leads to zero intrinsic torsion. These five distinct Membrane
Galilean geometries that one obtains in this way are shortly discussed below (for more details, see
[8]).

1. The intrinsic torsion is unconstrained.

2. Tab
A = 0: According to the Frobenius theorem this constraint implies that the foliation by

transverse submanifolds of dimension 8 is integrable.

3. Tab
A = Ta

{AB} = 0: the foliation is integrable and one can show that the vectors 𝑒𝑎
𝜇 are

homothetic Killing vectors with respect to the longitudinal metric 𝜏𝜇𝜈 .

4. Tab
A = Ta

A
A = 0: the foliation is integrable and the worldvolume 3-form

Ω𝜇𝜈𝜌 = 𝜖𝐴𝐵𝐶𝜏𝜇
𝐴𝜏𝜈

𝐵𝜏𝜌
𝐶 (13)

is closed, i.e. 𝑑Ω = 0.

5. T𝜇𝜈
A = 0: all constraints mentioned above are valid.

This finishes our classification of the Membrane Galilean geometries. To extend these ge-
ometries to a Membrane Newton-Cartan geometry underlying non-relativistic eleven-dimensional
supergravity the following three ingredients need to be added that will be discussed in more detail
in the next section:

1. The geometry underlying non-relativistic eleven-dimensional supergravity contains an additional
3-form 𝑐𝜇𝜈𝜌 whose mathematical description seems to require, according to some of the literature,
the introduction of the notion of gerbes. It transforms under Membrane boost transformations and
plays an important role in describing the geometry.

2. The frame fields of Membrane Newton-Cartan geometry transform under an emergent an-isotropic
local scale symmetry [6, 9] which requires an additional dilatation gauge field 𝑏𝜇 beyond the spin-
connections. It has the effect that the would-be intrinsic torsion tensor components 𝑇𝑎𝐴

𝐴 of Figure
1 contain a dilatation gauge field and therefore are not intrinsic anymore.

3. In the presence of supersymmetry the membrane Newton-Cartan geometry needs to be embedded
into a so-called supergeometry which also contains fermionic intrinsic torsion tensor components.
We will see that to describe the geometry underlying eleven-dimensional supergravity, we need to
impose constraints on both the bosonic and fermionic intrinsic torsion tensor components as well
as on the (super-covariant) extrinsic derivative of the 3-form.

5
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All these additional features will play a role in the next section where we will define a consistent
non-relativistic limit of eleven-dimensional supergravity.

3. A Consistent Limit of 11D Supergravity

We will first discuss a consistent limit of the bosonic part of 11D supergravity. This part
has already been discussed in [6]. Next, we will discuss what happens if one extends to the
supersymmetric case. Since this second part is work in progress [10], we will be brief there and
only give an overview of the situation.

3.1 The Bosonic Case

Our starting point is the bosonic part of 11D supergravity with as basic fields the Elfbein 𝐸 �̂�
𝜇

and three-form 𝐶𝜇𝜈𝜌 with �̂�, 𝜇 = 0, 1, · · · 10. The Lagrangian describing the dynamics of these
basic fields is given by

L(bosonic) = 𝐸

(
𝑅(Ω) − 1

2·4!𝐹𝜇𝜈𝜌𝜎𝐹
𝜇𝜈𝜌𝜎

)
+ 1

1442 𝜖
𝜇1...𝜇11𝐹𝜇1...𝜇4𝐹𝜇5...𝜇8𝐶𝜇9𝜇10𝜇11 . (14)

Here, 𝐸 is the determinant of the elfbein 𝐸 �̂�
𝜇 and 𝐹𝜇𝜈𝜌𝜎 is the external derivative of the three-form

𝐶𝜇𝜈𝜌:
𝐹𝜇𝜈𝜌𝜎 = 4𝜕[𝜇𝐶𝜈𝜌𝜎 ] . (15)

To define a non-relativistic limit, we write �̂� = (𝐴, 𝑎) and make the following redefinition of
the basic fields:

𝐸𝜇
�̂� = (𝑐𝜏𝜇𝐴 , 𝑐−1/2𝑒𝜇

𝑎) , (16)

𝐶𝜇𝜈𝜌 = −𝑐3𝜖𝐴𝐵𝐶𝜏𝜇
𝐴𝜏𝜈

𝐵𝜏𝜌
𝐶 + 𝑐𝜇𝜈𝜌 . (17)

Here, 𝜏𝜇𝐴, 𝑒𝜇
𝑎 and 𝑐𝜇𝜈𝜌 are the fields that become basic non-relativistic fields after taking the

limit 𝑐 → ∞. Substituting the redefinitions (16) and (17) into the Lagrangian (14), we obtain the
following expansion:

𝑆 = 𝑐3𝑆3 + 𝑐0𝑆0 + 𝑐−3𝑆−3 + . . . (18)

There are divergences of order 𝑐3 arising from all three terms in the Lagrangian (14). The kinetic
term of the three-form even gives rises to two different types of divergences. Fortunately, the
divergence coming from the Einstein-Hilbert term cancels against a similar divergence originating
form the kinetic term of the three-form. Note that this cancellation requires a fine-tuning between
these two terms. A similar cancellation takes place when one considers a so-called critical limit of
the sigma model action describing the coupling of a membrane to the basic fields 𝐸𝜇

�̂� and 𝐶𝜇𝜈𝜌 via
a kinetic term and a Wess-Zumino term. The remaining divergences coming from the three-form
kinetic term and the Chern-Simons term do not cancel but, surprisingly, they combine into the
following form:

𝑆3 =

∫
𝑑11𝑥 − 𝑒

4!
𝑓 (−) 𝑎𝑏𝑐𝑑 𝑓 (−) 𝑎𝑏𝑐𝑑 , (19)

6
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where 𝑒 = det(𝜏𝜇𝐴, 𝑒𝜇
𝑎) and 𝑓 (−) 𝑎𝑏𝑐𝑑 is the anti-self-dual part of 𝑓𝑎𝑏𝑐𝑑 which are the SO(8)

transverse components of the field-strength of the non-relativistic three-form 𝑐𝜇𝜈𝜌:

𝑓𝜇𝜈𝜌𝜎 = 4𝜕[𝜇𝑐𝜈𝜌𝜎 ] . (20)

A divergence of the form (19) can be tamed by introducing an anti-self-dual auxiliary field 𝜆𝑎𝑏𝑐𝑑

(with flat SO(8) indices) and replacing 𝑆3 by the following two terms which contribute to 𝑆0 and
𝑆−3:

𝑆(𝜆) =
∫

𝑑11𝑥
𝑒

4!

(
− 2𝜆𝑎𝑏𝑐𝑑 𝑓

(−)𝑎𝑏𝑐𝑑 + 1
𝑐3𝜆𝑎𝑏𝑐𝑑𝜆

𝑎𝑏𝑐𝑑
)
. (21)

After solving for this auxiliary field from its equation of motion:

𝜆𝑎𝑏𝑐𝑑 = 𝑐3 𝑓 (−) 𝑎𝑏𝑐𝑑 (22)

and substituting this solution back into the action 𝑆(𝜆) one re-obtains the original action (18) with
the divergent term 𝑆3. Note that the solution (22) determines how the auxiliary field transforms
under all the symmetries of the theory before taking the limit. From that one can then derive how
this auxiliary field transforms after taking the limit.

Making the redefinitions (16) and (17) and using the auxiliary field 𝜆𝑎𝑏𝑐𝑑 we are now able to
take the limit 𝑐 → ∞ of the relativistic action (14). We thus end up with the following non-relativistic
action

L = 𝑅 (0) + 1
2𝑇𝑎𝐴

𝐴𝑇𝑎
𝐵
𝐵 − 1

12 𝑓𝐴𝑎𝑏𝑐 𝑓
𝐴𝑎𝑏𝑐 + 1

4 𝑓
𝑎𝑏𝐴𝐵𝜖𝐴𝐵𝐶𝑇𝑎𝑏

𝐶

− 2
4!𝜆𝑎𝑏𝑐𝑑 𝑓

(−)𝑎𝑏𝑐𝑑 + 𝑒−1

1442 𝜖
𝜇1...𝜇11 𝑓𝜇1...𝜇4 𝑓𝜇5...𝜇8𝑐𝜇9𝜇10𝜇11

(23)

in terms of the basic non-relativistic fields

{𝜏𝜇𝐴 , 𝑒𝜇
𝑎 , 𝑐𝜇𝜈𝜌 , 𝜆𝑎𝑏𝑐𝑑} . (24)

Here, 𝑅 (0) is defined in eq. (2.23) of [6] as the term linear in 𝑐 in the expansion of the Ricci scalar.
We note that after taking the limit the first term in 𝑆(𝜆) vanishes and the auxiliary field becomes a
Lagrange multiplier imposing the constraint

𝑓 (−)𝑎𝑏𝑐𝑑 = 0 . (25)

The action (23) is invariant under the following local boost transformations with parameter
𝜆𝐴

𝑎, longitudinal Lorentz rotations with parameter 𝜆𝐴
𝐵, transversal rotations with parameter 𝜆𝑎𝑏,

gauge transformations with a 2-form parameter 𝜆𝜇𝜈 and under an additional emergent dilatation
with parameter 𝛼:

𝛿𝜏𝜇
𝐴 = −𝜆𝐴

𝐵𝜏𝜇
𝐵 + 𝛼𝜏𝜇

𝐴 , (26)

𝛿𝑒𝜇
𝑎 = 𝜆𝐴

𝑎𝜏𝜇
𝐴 − 𝜆𝑎𝑏𝑒𝜇

𝑏 − 1
2𝛼𝑒𝜇

𝑎 , (27)

𝛿𝑐𝜇𝜈𝜌 = −3𝜖𝐴𝐵𝐶𝜆𝐴
𝑎𝑒 [𝜇

𝑎𝜏𝜈
𝐵𝜏𝜌]

𝐶 + 3𝜕[𝜇𝜆𝜈𝜌] , (28)

𝛿𝜆𝑎𝑏𝑐𝑑 = 2
4!

(
𝜆𝐴

[𝑎 𝑓 |𝐴|𝑏𝑐𝑑 ] − dual
)
+ 4𝜆𝑒 [𝑎𝜆 |𝑒 |𝑏𝑐𝑑 ] − 𝛼𝜆𝑎𝑏𝑐𝑑 . (29)
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The emergent dilatations are in line with the fact that the non-relativistic sigma model describing
a membrane in a curved background [5] is invariant under the an-isotropic dilatations of 𝜏𝜇𝐴 and
𝑒𝜇

𝑎.
A few words are in order on the Membrane Newton-Cartan geometry underlying the non-

relativistic action (23). First of all, the formerly intrinsic tensor 𝑇𝑎𝐴
𝐴 is not invariant under the

emergent dilatations. It should therefore be replaced by a dilatation-covariant version that contains
a dilatation gauge field 𝑏𝜇. Therefore, this tensor should be considered as a conventional tensor that
can be used to solve for the transverse components 𝑏𝑎 of the dilatation gauge field. Secondly, as we
explained in the previous section, the Membrane Newton-Cartan geometry is characterized by the
additional three-form 𝑐𝜇𝜈𝜌. Like 𝜏𝜇

𝐴 and 𝑒𝜇
𝑎 and their inverses, this field transforms under boost

transformations as in eq. (28). It’s exterior derivative therefore contains a spin-connection. Like we
did for the torsion tensors one can now consider different flat components of this exterior derivative
and see whether or not they contain a spin-connection. Those, that do not contain a spin-connection
we call intrinsic components. Therefore, on top of the intrinsic torsion tensor components given in
eq. (12), excluding 𝑇𝑎

𝐴
𝐴, we have the following additional intrinsic exterior derivatives:

𝑓𝑎𝑏𝑐𝑑 , 𝑓𝐴𝑏𝑐𝑑 . (30)

The other components, 𝑓𝐴𝐵𝑐𝑑 and 𝑓𝐴𝐵𝐶𝑑 , are conventional tensors containing a spin-connection.
These tensors are set to zero in order to solve for some of the spin-connection components.

At this point we have 573 conventional tensors components

𝑇𝑎
𝐴
𝐴 , 𝑇𝑎

[𝐴𝐵] , 𝑇𝐴𝐵
𝐶 , 𝐸𝜇𝜈

𝑎 , 𝑓𝐴𝐵𝑐𝑑 , 𝑓𝐴𝐵𝐶𝑑 (31)

to solve for the 616 spin-connections and dilatation gauge fields:

𝜔𝜇
𝐴𝐵 , 𝜔𝜇

𝐴𝑎 , 𝜔𝜇
𝑎𝑏 , 𝑏𝜇 . (32)

This implies that we can not solve for 43 dilatation gauge field and spin-connection components. It
turns out that these 43 independent components are given by

𝑏𝐴 and 𝜔𝑎
{𝐴𝐵} . (33)

Since such independent components were absent in the relativistic action and transformation rules
we started from, it implies that they cannot arise in the action and transformations rules after taking
the non-relativistic limit. This has implications for the spin-connection curvatures 1

𝑅𝜇𝜈 = 2 𝜕[𝜇𝑏𝜈 ] , (34a)
𝑅𝜇𝜈

𝐴𝐵 = 2 𝜕[𝜇𝜔𝜈 ]
𝐴𝐵 + 2𝜔[𝜇

𝐴𝐶𝜔𝜈 ]𝐶
𝐵 , (34b)

𝑅𝜇𝜈
𝑎𝑏 = 2 𝜕[𝜇𝜔𝜈 ]

𝑎𝑏 + 2𝜔[𝜇
𝑎𝑐𝜔𝜈 ]𝑐

𝑏 , (34c)
𝑅𝜇𝜈

𝐴𝑎 = 2 𝜕[𝜇𝜔𝜈 ]
𝐴𝑎 + 2𝜔[𝜇

𝐴𝐵𝜔𝜈 ]𝐵
𝑎 + 2𝜔[𝜇

𝑎𝑏𝜔𝜈 ]
𝐴𝑏 + 3 𝑏 [𝜇𝜔𝜈 ]

𝐴𝑎 . (34d)

1The expressions for these curvatures contain additional terms involving the intrinsic torsion tensors. We have not
given these terms here since, as we will see in the next section, these intrinsic torsion tensors will be set to zero by hand.
For the full expressions, see Appendix B of [9].
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that occur after taking the non-relativistic limit. In particular, it implies that the field equations
can only contain the following curvature components that do not contain these independent spin-
connections:

𝑅𝑎𝑏 , 𝑅𝐴𝑎
𝐵𝐶 ≡ 𝑅𝐴𝑎

𝐵𝐶 + 2 𝛿𝐴[𝐵𝑅𝐶 ]
𝑎 ,

𝑅𝑎𝑏
𝐴𝐵 , 𝑅𝑎𝑏

𝐶𝑐 ≡ 𝑅𝑎𝑏
𝐶𝑐 − 𝑅𝐶

[𝑎𝛿
𝑐
𝑏] , (35)

𝑅𝜇𝜈
𝑎𝑏 , 𝑅𝐴𝑎

𝐴𝑏 ≡ 𝑅𝐴𝑎
𝐴𝑏 + 1

8 𝑅𝐴𝐵
𝐴𝐵𝛿𝑎

𝑏 .

Besides this, there are also Bianchi identities relating different curvature components.
This finishes our discussion of the bosonic case. Our task is now to extend these results by

including supersymmetry. Since this concerns work in progress we will be less detailed in the next
subsection.

3.2 Introducing Supersymmetry

In the supersymmetric case we introduce an additional fermionic gravitino field Ψ𝜇 (𝑥). There
are then extra fermionic terms that need to be added to the bosonic action given in eq. (14). Ignoring
quartic fermions these fermionic terms are given by

L(fermionic) =
√︁
|𝑔 |

(
−2Ψ̄𝜇𝛾

𝜇𝜈𝜌𝐷𝜈Ψ𝜌 + 1
48𝐹𝜌𝜎𝜆𝜏 (Ψ̄𝜇𝛾

𝜇𝜈𝜌𝜎𝜆𝜏Ψ𝜈 + 12Ψ̄𝜌𝛾𝜎𝜆Ψ𝜏)
)
, (36)

where the covariant derivative in the gravitino kinetic term is given by

𝐷𝜇Ψ𝜈 = 𝜕𝜇Ψ𝜈 + 1
4𝜔𝜇�̂��̂�𝛾

�̂��̂�Ψ𝜈 , (37)

The whole action (bosonic plus fermionic terms) is now invariant under the following supersym-
metry rules (with spinor parameter 𝜖) of the basic fields 𝐸𝜇

�̂�, 𝐶𝜇𝜈𝜌 and Ψ𝜇:

𝛿𝐸𝜇
�̂� = 𝜖𝛾 �̂�Ψ𝜇 ,

𝛿𝐶𝜇𝜈𝜌 = +3𝜖𝛾�̂��̂�𝐸 [𝜇
�̂�𝐸𝜈

�̂�Ψ𝜌]

𝛿Ψ𝜇 = 𝐷𝜇 (�̂�)𝜖 − 1
2

1
144 (𝛾

𝜈𝜌𝜎𝜆
𝜇 − 8𝛾𝜌𝜎𝜆𝛿𝜈𝜇)�̂�𝜈𝜌𝜎𝜆𝜖 .

(38)

with the super-covariant spin-connection �̂�𝜇
�̂��̂� and the supercovariant exterior derivative �̂�𝜇𝜈𝜌𝜎 of

𝐶𝜇𝜈𝜌 given by

�̂�𝜇
�̂��̂� = 𝜔𝜇

�̂��̂� − 1
2 (Ψ𝜇𝛾

�̂�Ψ�̂� − Ψ�̂�𝛾𝜇Ψ
�̂� + Ψ�̂�𝛾 �̂�Ψ𝜇) ,

�̂�𝜇𝜈𝜌𝜎 = 𝐹𝜇𝜈𝜌𝜎 − 6Ψ[𝜇𝛾𝜈𝜌Ψ𝜎 ] .
(39)

To define the non-relativistic limit in the supersymmetric case we redefine the bosonic fields
as before, see eqs. (16) and (17), and we furthermore redefine the gravitino as follows:

Ψ𝜇 = 𝑐−1𝜓+𝜇 + 𝑐1/2𝜓−𝜇 , (40)

where the longitudinal projections 𝜓±𝜇 are defined by:

𝜓±𝜇 ≡ 1
2
(
1 ± 𝛾012

)
𝜓𝜇 . (41)
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Taking the limit of the 11D supergravity action goes rather similar to the bosonic case we
discussed in the previous section. Again, there is a cancellation of divergences originating from the
Einstein-Hilbert term and the kinetic term for the three-form. The only difference is that, including
the fermions in the action, the divergent terms become super-covariant expressions. A similar thing
happens when we try to control the divergent terms that arise from the kinetic term of the three-form
and the Chern-Simons term. One can again tame this divergence by introducing an anti-selfdual
auxiliary field 𝜆𝑎𝑏𝑐𝑑 whose equation of motion, instead of (22), is now given by

𝜆𝑎𝑏𝑐𝑑 = 𝑐3 𝑓 (−) 𝑎𝑏𝑐𝑑 , (42)

where 𝑓 (−) 𝑎𝑏𝑐𝑑 is the supercovariant version of 𝑓 (−) 𝑎𝑏𝑐𝑑:

𝑓 (−) 𝑎𝑏𝑐𝑑 = 𝑓 (−) 𝑎𝑏𝑐𝑑 − 1
4 �̄�−𝑒𝛾

[𝑒𝛾𝑎𝑏𝑐𝑑𝛾
𝑓 ]𝜓− 𝑓 . (43)

Note that the solution (42) can be used to determine how 𝜆𝑎𝑏𝑐𝑑 transforms under supersymmetry.
It turns out to be convenient to define an auxiliary field �̂�𝑎𝑏𝑐𝑑 that differs from 𝜆𝑎𝑏𝑐𝑑 by terms

that are bilinear in the gravitino field:

�̂�𝑎𝑏𝑐𝑑 = 𝜆𝑎𝑏𝑐𝑑 − 1
8
(
�̄�+[𝑎𝛾𝑏𝑐𝜓+𝑑 ] − dual

)
. (44)

Only in this way one obtains, after taking the limit, a Lagrange multiplier field �̂�𝑎𝑏𝑐𝑑 that transforms
under supersymmetry without a term containing the derivative of the supersymmetry parameter.

An additional complication in the supersymmetric case is that we are also facing divergences of
order 𝑐3 in what from now on we will call the𝑄-supersymmetry rules. These additional divergences
are tamed by (1) the emergence of what we call 𝑆-supersymmetries and by (2) imposing constraints
on the (super-covariant version) of the intrinsic torsion tensors and the intrinsic 4-form curvature
tensor components. To understand how this works we consider the expansion of the supersymmetric
action 𝑆 = 𝑆(bosonic) + 𝑆(fermionic) after introducing the auxiliary field 𝜆𝑎𝑏𝑐𝑑:

𝑆 = 𝑐0𝑆0 + 𝑐−3𝑆−3 + · · · (45)

Expanding the SUSY transformations of the fields appearing in the non-relativistic theory as

𝛿 = 𝑐3𝛿3 + 𝑐0𝛿0 + 𝑐−3𝛿−3 + . . . (46)

the invariance of the relativistic theory, in the presence of the auxiliary field, implies the following
identities:

𝛿3𝑆0 = 0 and 𝛿0𝑆0 + 𝛿3𝑆−3 = 0 . (47)

Since 𝑆3 = 0 the form of 𝛿3 must be such that 𝑆0 is automatically invariant under this variation:
this implies the existence of an emergent fermionic shift symmetry which we will denominate
S-supersymmetry. These shift symmetries guarantee that the components of the gravitino that give
rise to the 𝑐3 divergences, do not occur in 𝑆0. We find two S-supersymmetries characterized by
parameters 𝜌𝐴+ and 𝜂− with the following transformation rules:

𝛿𝜏𝜇
𝐴 = 0 , 𝛿𝑒𝜇

𝑎 = 0 ,

𝛿𝑐𝜇𝜈𝜌 = 0 , 𝛿�̂�𝑎𝑏𝑐𝑑 = 0 ,

𝛿𝜓−𝜇 = 𝜏𝜇
𝐴𝛾𝐴𝜂− , 𝛿𝜓+𝜇 = 𝜏𝜇

𝐴𝜌𝐴+ − 1
2𝑒𝜇

𝑎𝛾𝑎𝜂− .

(48)
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Furthermore, for 𝑐 → ∞, we can only have 𝛿0𝑆0 = 0 if we can arrange for 𝛿3 to vanish
identically. This necessitates the imposition of the following supercovariant geometric constraints:

𝑇𝑎𝑏
𝐴 = 0 , 𝑇𝑎

{𝐴𝐵} = 0 , 𝑓𝑎𝑏𝑐𝑑 = 0 , 𝑓𝐴𝑎𝑏𝑐 = 0 , (49)

which includes the supercovariant equation of motion 𝑓 (−) 𝑎𝑏𝑐𝑑 = 0. Looking to the bosonic part
of the 𝑇-tensors, this means that the full torsion tensor is zero, i.e. we are dealing with case 5 in the
classification of the previous section.

Taking the non-relativistic limit of the supersymmetry rules requires one more subtlety as far
as the transformation rules of the gravitino and Lagrange multiplier are concerned. It involves a
redefinition of these transformation rules using a field-dependent so-called trivial symmetry. We
refrain from giving these rules here. For more details, see [10]. The other supersymmetry rules are
not effected by this redefinition and are given by

𝛿𝜏𝜇
𝐴 = 𝜖−𝛾

𝐴𝜓−𝜇 ,

𝛿𝑒𝜇
𝑎 = 𝜖+𝛾

𝑎𝜓−𝜇 + 𝜖−𝛾
𝑎𝜓+𝜇 ,

𝛿𝑐𝜇𝜈𝜌 = 6 𝜖+𝜖𝐴𝐵𝐶𝛾𝐴𝜓+[𝜇𝜏𝜈
𝐵𝜏𝜌]

𝐶 + 3𝜖−𝛾𝑎𝑏𝜓−[𝜇𝑒𝜈
𝑎𝑒𝜌]

𝑏

+ 6
(
𝜖+𝛾𝐴𝑎𝜓−[𝜇𝜏𝜈

𝐴𝑒𝜌]
𝑎 + 𝜖−𝛾𝐴𝑎𝜓+[𝜇𝜏𝜈

𝐴𝑒𝜌]
𝑎
)
.

(50)

The supersymmetry variation of the bosonic constraints (49) will lead to further fermionic
constraints on the gravitino curvature components. Introducing S-supersymmetry gauge fields
𝜙+𝜇𝐴 and 𝜙−𝜇 the Q-covariant and S-covariant gravitino curvatures are given by

𝑟+𝜇𝜈 = 2(∇[𝜇𝜓+𝜈 ] + 𝜏[𝜇
𝐴𝜑+𝜈 ]𝐴 − 1

2𝑒 [𝜇
𝑎𝛾𝑎𝜑−|𝜈 ]) ,

𝑟−𝜇𝜈 = 2(∇[𝜇𝜓−𝜈 ] + 𝜏[𝜇
𝐴𝛾𝐴𝜑−|𝜈 ]) ,

(51)

where the derivatives ∇𝜇 are Q-supercovariant derivatives. The intrinsic fermionic torsion compo-
nents that are independent of the S-supersymmetry gauge fields are given by

𝑟−𝑎𝑏 ≡ 𝑟−𝑎𝑏 ,

𝑟−𝐴𝑎 ≡ 𝑟−𝐴𝑎 − 1
3𝛾𝐴𝛾

𝐵𝑟−𝐵𝑎 ,

𝑟+𝑎𝑏 ≡ 𝑟+𝑎𝑏 + 1
3𝛾[𝑎 |𝛾

𝐵𝑟−𝐵 |𝑏] ,

𝑟+𝑎 ≡ 𝛾𝐴𝑟+𝐴𝑎 − 1
8𝛾𝑎𝛾

𝐵𝐶𝑟−𝐵𝐶 .

(52)

The supersymmetry variation of the bosonic constraints (49) leads to the following fermionic
constraints

𝑟−𝑎𝑏 = 0 , 𝑟−𝐴𝑎 = 0 , 𝑟+𝑎𝑏 = 0 . (53)

but leaves the components 𝑟+𝑎 unconstrained. On it’s turn, the supersymmetry variation of these
fermionic constraints lead to constraints on the supercovariant spin-connection curvatures. These
can only occur in the (super-covariant versions of the) combinations (35).

The 64 dollar question is whether the constraints we find do not lead to an over-constrained
system. Based upon our experience with taking the limit of the 10D N = 1 supergravity multiplet
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we expect that the Poisson equation is part of the supermultiplet of constraints and equations of
motion but that, due to the emerging local scale symmetry, the Poisson equation itself will not be
among the equations of motion corresponding to the non-relativistic supersymmetric action. We
hope to come back to this soon in [10].

3.3 Gauge-fixing

All present calculations hint to the fact that we obtain a consistent 11D Membrane Newton-
Cartan supergravity multiplet. Instead of verifying whether we have a finite orbit of constraints
under supersymmetry, one can alternatively try to solve for the constraints by gauge-fixing and obtain
an 11D Membrane Newtonian supergravity multiplet. In the case of 3D supergravity [11, 12] this
approach has turned out to be very fruitful [11, 13]. In that case we found a particle Newton-Cartan
supergravity multiplet with the basic fields

{𝜏𝜇 , 𝑒𝜇𝑎 , 𝑚𝜇;𝜓𝜇±} . (54)

Since one of the constraints sets the curvature of spatial rotations equal to zero, we can assume that
space is flat. This allows us to impose the following globally well-defined gauge-fixing [11, 13]:

𝜏𝜇 = 𝛿𝜇
∅ , 𝑒𝜇

𝑎 = (0, 𝛿𝑖 𝑎) , 𝑚𝜇 = (𝑚∅ , 0) , 𝜓𝜇+ = 𝜓𝑖− = 0 , (55)

where we have decomposed the curved index 𝜇 as 𝜇 = (∅, 𝑖 = 1, 2, 3). After this gauge-fixing all
constraints are solved and the multiplet reduces to a 3D particle Newtonian supergravity multiplet
with basic fields

{Φ ,Ψ} , (56)

where Φ = 𝑚∅ is the Newton potential and Ψ = 𝜓∅− is the Newtino potential. One may verify that
the symmetries of the multiplet (56) realize a 3D supersymmetric Bargmann algebra.

We expect that a similar gauge-fixing in eleven dimensions will lead to a 11D Membrane
Newtonian supergravity multiplet with basic fields

{Φ ,Ψ�̄�− , 𝜆𝑎𝑏𝑐𝑑} , with �̄� = ∅, 1, 2 , (57)

where Φ = 𝐶∅12 is the Newton potential and Ψ�̄� = 𝜓�̄�− is it’s fermionic partner. There are a few
notable differences with the 3D case. First of all, in 3D we are dealing with a particle while in 11D
the basic object a membrane. Secondly, we find that in 11D the curvature of spatial rotations is
restricted but not completely set to zero by the constraints. Therefore, we can not assume that space
is flat. The actual existence and consistency of the multiplet (57) needs to be confirmed [10].

4. Generalizations

The establishment of a consistent non-relativistic limit of 11D supergravity, in line with earlier
developments in non-relativistic string theory, paves the way for several generalizations relevant to
non-relativistic string theory.

(1) The double dimensional reduction of our results establish a consistent non-relativistic limit
of 10D IIA supergravity. This theory acts as the low-energy limit of non-relativistic IIA string
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theory and extends the non-relativistic limit of 10D N = 1 supergravity [4] to the case of N = 2
supersymmetry.

(2) Using the same techniques as discussed here, one can also consider taking the limit of the 10D
IIB supergravity theory. The limit of the bosonic part of this theory will be given in [14]. A
noteworthy feature of this theory is that the SL(2,R) duality symmetry is realized in a polynomial
way [14] and that this duality symmetry acts in a branched way on the (𝑝, 𝑞)-string solutions of the
IIB supergravity theory [15].

(3) An unsolved issue remains taking the limit of the 10D heterotic supergravity theory which should
lead to a non-Lorentzian Chern-Simons term. It looks like that in redefining the supergravity and
Yang-Mills fields these two type of fields start mixing but sofar the precise way to do this, avoiding
divergences, has not been given.

(4) We expect that for each (𝑝 + 1)-form in a given supergravity multiplet there should exist a
corresponding 𝑝-brane Newton-Cartan supergravity theory. For instance, there should exist an 11D
five-brane Newton-Cartan supergravity multiplet corresponding to the 11D six-form 𝐶6 which is
the Poincare dual of the three-form 𝐶3 we considered here.

All these new results on non-relativistic 𝑝-brane Newton-Cartan supergravity theories will
enable us to investigate the half-supersymmetric brane solutions of these different theories. In
particular, an interesting set to consider are the half-supersymmetric D-brane solutions since they
can tell us more about the feasibility of a non-relativistic holographic principle with non-relativistic
gravity in the bulk. We hope to come back to this issue in the nearby future.
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